; RUN: llc < %s -mtriple=x86_64-pc-linux -mcpu=prescott | FileCheck %s --check-prefix=PRESCOTT ; RUN: llc < %s -mtriple=x86_64-pc-linux -mcpu=nehalem | FileCheck %s --check-prefix=NEHALEM ;;; TODO: The last run line chooses cpu=nehalem to reveal possible bugs in the "foo" test case. ;;; ;;; Nehalem has a 'fast unaligned memory' attribute, so (1) some of the loads and stores ;;; are certainly unaligned and (2) the first load and first store overlap with the second ;;; load and second store respectively. ;;; ;;; Is either of these sequences ideal? ;;; Is the ideal code being generated for all CPU models? define float @foo(i8* nocapture %buf, float %a, float %b) nounwind uwtable { ; PRESCOTT-LABEL: foo: ; PRESCOTT: # BB#0: # %entry ; PRESCOTT-NEXT: movw .Ltmp0+20(%rip), %ax ; PRESCOTT-NEXT: movw %ax, 20(%rdi) ; PRESCOTT-NEXT: movl .Ltmp0+16(%rip), %eax ; PRESCOTT-NEXT: movl %eax, 16(%rdi) ; PRESCOTT-NEXT: movq .Ltmp0+8(%rip), %rax ; PRESCOTT-NEXT: movq %rax, 8(%rdi) ; PRESCOTT-NEXT: movq .Ltmp0(%rip), %rax ; PRESCOTT-NEXT: movq %rax, (%rdi) ; ; NEHALEM-LABEL: foo: ; NEHALEM: # BB#0: # %entry ; NEHALEM-NEXT: movq .Ltmp0+14(%rip), %rax ; NEHALEM-NEXT: movq %rax, 14(%rdi) ; NEHALEM-NEXT: movups .Ltmp0(%rip), %xmm2 ; NEHALEM-NEXT: movups %xmm2, (%rdi) entry: tail call void @llvm.memcpy.p0i8.p0i8.i64(i8* %buf, i8* blockaddress(@foo, %out), i64 22, i32 1, i1 false) br label %out out: ; preds = %entry %add = fadd float %a, %b ret float %add } declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture, i64, i32, i1) nounwind