; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=sse2 < %s | FileCheck %s ; PR22428: https://llvm.org/bugs/show_bug.cgi?id=22428 ; f1, f2, f3, and f4 should use an integer logic instruction. ; f9 and f10 should use an FP (SSE) logic instruction. ; ; f5, f6, f7, and f8 are less clear. ; ; For f5 and f6, we can save a register move by using an FP logic instruction, ; but we may need to calculate the relative costs of an SSE op vs. int op vs. ; scalar <-> SSE register moves. ; ; For f7 and f8, the SSE instructions don't take immediate operands, so if we ; use one of those, we either have to load a constant from memory or move the ; scalar immediate value from an integer register over to an SSE register. ; Optimizing for size may affect that decision. Also, note that there are no ; scalar versions of the FP logic ops, so if we want to fold a load into a ; logic op, we have to load or splat a 16-byte vector constant. ; 1 FP operand, 1 int operand, int result define i32 @f1(float %x, i32 %y) { ; CHECK-LABEL: f1: ; CHECK: # BB#0: ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: andl %edi, %eax ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %bc1, %y ret i32 %and } ; Swap operands of the logic op. define i32 @f2(float %x, i32 %y) { ; CHECK-LABEL: f2: ; CHECK: # BB#0: ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: andl %edi, %eax ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %y, %bc1 ret i32 %and } ; 1 FP operand, 1 constant operand, int result define i32 @f3(float %x) { ; CHECK-LABEL: f3: ; CHECK: # BB#0: ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: andl $1, %eax ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %bc1, 1 ret i32 %and } ; Swap operands of the logic op. define i32 @f4(float %x) { ; CHECK-LABEL: f4: ; CHECK: # BB#0: ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: andl $2, %eax ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 2, %bc1 ret i32 %and } ; 1 FP operand, 1 integer operand, FP result define float @f5(float %x, i32 %y) { ; CHECK-LABEL: f5: ; CHECK: # BB#0: ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: andl %edi, %eax ; CHECK-NEXT: movd %eax, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %bc1, %y %bc2 = bitcast i32 %and to float ret float %bc2 } ; Swap operands of the logic op. define float @f6(float %x, i32 %y) { ; CHECK-LABEL: f6: ; CHECK: # BB#0: ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: andl %edi, %eax ; CHECK-NEXT: movd %eax, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %y, %bc1 %bc2 = bitcast i32 %and to float ret float %bc2 } ; 1 FP operand, 1 constant operand, FP result define float @f7(float %x) { ; CHECK-LABEL: f7: ; CHECK: # BB#0: ; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero ; CHECK-NEXT: andps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %bc1, 3 %bc2 = bitcast i32 %and to float ret float %bc2 } ; Swap operands of the logic op. define float @f8(float %x) { ; CHECK-LABEL: f8: ; CHECK: # BB#0: ; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero ; CHECK-NEXT: andps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 4, %bc1 %bc2 = bitcast i32 %and to float ret float %bc2 } ; 2 FP operands, int result define i32 @f9(float %x, float %y) { ; CHECK-LABEL: f9: ; CHECK: # BB#0: ; CHECK-NEXT: andps %xmm1, %xmm0 ; CHECK-NEXT: movd %xmm0, %eax ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %bc2 = bitcast float %y to i32 %and = and i32 %bc1, %bc2 ret i32 %and } ; 2 FP operands, FP result define float @f10(float %x, float %y) { ; CHECK-LABEL: f10: ; CHECK: # BB#0: ; CHECK-NEXT: andps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %bc2 = bitcast float %y to i32 %and = and i32 %bc1, %bc2 %bc3 = bitcast i32 %and to float ret float %bc3 } define float @or(float %x, float %y) { ; CHECK-LABEL: or: ; CHECK: # BB#0: ; CHECK-NEXT: orps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %bc2 = bitcast float %y to i32 %and = or i32 %bc1, %bc2 %bc3 = bitcast i32 %and to float ret float %bc3 } define float @xor(float %x, float %y) { ; CHECK-LABEL: xor: ; CHECK: # BB#0: ; CHECK-NEXT: xorps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %bc2 = bitcast float %y to i32 %and = xor i32 %bc1, %bc2 %bc3 = bitcast i32 %and to float ret float %bc3 } define float @f7_or(float %x) { ; CHECK-LABEL: f7_or: ; CHECK: # BB#0: ; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero ; CHECK-NEXT: orps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = or i32 %bc1, 3 %bc2 = bitcast i32 %and to float ret float %bc2 } define float @f7_xor(float %x) { ; CHECK-LABEL: f7_xor: ; CHECK: # BB#0: ; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero ; CHECK-NEXT: xorps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = xor i32 %bc1, 3 %bc2 = bitcast i32 %and to float ret float %bc2 } ; Make sure that doubles work too. define double @doubles(double %x, double %y) { ; CHECK-LABEL: doubles: ; CHECK: # BB#0: ; CHECK-NEXT: andpd %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast double %x to i64 %bc2 = bitcast double %y to i64 %and = and i64 %bc1, %bc2 %bc3 = bitcast i64 %and to double ret double %bc3 } define double @f7_double(double %x) { ; CHECK-LABEL: f7_double: ; CHECK: # BB#0: ; CHECK-NEXT: movsd {{.*#+}} xmm1 = mem[0],zero ; CHECK-NEXT: andpd %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast double %x to i64 %and = and i64 %bc1, 3 %bc2 = bitcast i64 %and to double ret double %bc2 } ; Grabbing the sign bit is a special case that could be handled ; by movmskps/movmskpd, but if we're not shifting it over, then ; a simple FP logic op is cheaper. define float @movmsk(float %x) { ; CHECK-LABEL: movmsk: ; CHECK: # BB#0: ; CHECK-NEXT: movss {{.*#+}} xmm1 = mem[0],zero,zero,zero ; CHECK-NEXT: andps %xmm1, %xmm0 ; CHECK-NEXT: retq %bc1 = bitcast float %x to i32 %and = and i32 %bc1, 2147483648 %bc2 = bitcast i32 %and to float ret float %bc2 }