; RUN: llc < %s -mtriple=x86_64-linux-gnu | FileCheck %s ; fold (shl (zext (lshr (A, X))), X) -> (zext (shl (lshr (A, X)), X)) ; Canolicalize the sequence shl/zext/lshr performing the zeroextend ; as the last instruction of the sequence. ; This will help DAGCombiner to identify and then fold the sequence ; of shifts into a single AND. ; This transformation is profitable if the shift amounts are the same ; and if there is only one use of the zext. define i16 @fun1(i8 zeroext %v) { entry: %shr = lshr i8 %v, 4 %ext = zext i8 %shr to i16 %shl = shl i16 %ext, 4 ret i16 %shl } ; CHECK-LABEL: @fun1 ; CHECK: and ; CHECK-NOT: shr ; CHECK-NOT: shl ; CHECK: ret define i32 @fun2(i8 zeroext %v) { entry: %shr = lshr i8 %v, 4 %ext = zext i8 %shr to i32 %shl = shl i32 %ext, 4 ret i32 %shl } ; CHECK-LABEL: @fun2 ; CHECK: and ; CHECK-NOT: shr ; CHECK-NOT: shl ; CHECK: ret define i32 @fun3(i16 zeroext %v) { entry: %shr = lshr i16 %v, 4 %ext = zext i16 %shr to i32 %shl = shl i32 %ext, 4 ret i32 %shl } ; CHECK-LABEL: @fun3 ; CHECK: and ; CHECK-NOT: shr ; CHECK-NOT: shl ; CHECK: ret define i64 @fun4(i8 zeroext %v) { entry: %shr = lshr i8 %v, 4 %ext = zext i8 %shr to i64 %shl = shl i64 %ext, 4 ret i64 %shl } ; CHECK-LABEL: @fun4 ; CHECK: and ; CHECK-NOT: shr ; CHECK-NOT: shl ; CHECK: ret define i64 @fun5(i16 zeroext %v) { entry: %shr = lshr i16 %v, 4 %ext = zext i16 %shr to i64 %shl = shl i64 %ext, 4 ret i64 %shl } ; CHECK-LABEL: @fun5 ; CHECK: and ; CHECK-NOT: shr ; CHECK-NOT: shl ; CHECK: ret define i64 @fun6(i32 zeroext %v) { entry: %shr = lshr i32 %v, 4 %ext = zext i32 %shr to i64 %shl = shl i64 %ext, 4 ret i64 %shl } ; CHECK-LABEL: @fun6 ; CHECK: and ; CHECK-NOT: shr ; CHECK-NOT: shl ; CHECK: ret ; Don't fold the pattern if we use arithmetic shifts. define i64 @fun7(i8 zeroext %v) { entry: %shr = ashr i8 %v, 4 %ext = zext i8 %shr to i64 %shl = shl i64 %ext, 4 ret i64 %shl } ; CHECK-LABEL: @fun7 ; CHECK: sar ; CHECK: shl ; CHECK: ret define i64 @fun8(i16 zeroext %v) { entry: %shr = ashr i16 %v, 4 %ext = zext i16 %shr to i64 %shl = shl i64 %ext, 4 ret i64 %shl } ; CHECK-LABEL: @fun8 ; CHECK: sar ; CHECK: shl ; CHECK: ret define i64 @fun9(i32 zeroext %v) { entry: %shr = ashr i32 %v, 4 %ext = zext i32 %shr to i64 %shl = shl i64 %ext, 4 ret i64 %shl } ; CHECK-LABEL: @fun9 ; CHECK: sar ; CHECK: shl ; CHECK: ret ; Don't fold the pattern if there is more than one use of the ; operand in input to the shift left. define i64 @fun10(i8 zeroext %v) { entry: %shr = lshr i8 %v, 4 %ext = zext i8 %shr to i64 %shl = shl i64 %ext, 4 %add = add i64 %shl, %ext ret i64 %add } ; CHECK-LABEL: @fun10 ; CHECK: shr ; CHECK: shl ; CHECK: ret define i64 @fun11(i16 zeroext %v) { entry: %shr = lshr i16 %v, 4 %ext = zext i16 %shr to i64 %shl = shl i64 %ext, 4 %add = add i64 %shl, %ext ret i64 %add } ; CHECK-LABEL: @fun11 ; CHECK: shr ; CHECK: shl ; CHECK: ret define i64 @fun12(i32 zeroext %v) { entry: %shr = lshr i32 %v, 4 %ext = zext i32 %shr to i64 %shl = shl i64 %ext, 4 %add = add i64 %shl, %ext ret i64 %add } ; CHECK-LABEL: @fun12 ; CHECK: shr ; CHECK: shl ; CHECK: ret ; PR17380 ; Make sure that the combined dags are legal if we run the DAGCombiner after ; Legalization took place. The add instruction is redundant and increases by ; one the number of uses of the zext. This prevents the transformation from ; firing before dags are legalized and optimized. ; Once the add is removed, the number of uses becomes one and therefore the ; dags are canonicalized. After Legalization, we need to make sure that the ; valuetype for the shift count is legal. ; Verify also that we correctly fold the shl-shr sequence into an ; AND with bitmask. define void @g(i32 %a) { %b = lshr i32 %a, 2 %c = zext i32 %b to i64 %d = add i64 %c, 1 %e = shl i64 %c, 2 tail call void @f(i64 %e) ret void } ; CHECK-LABEL: @g ; CHECK-NOT: shr ; CHECK-NOT: shl ; CHECK: and ; CHECK-NEXT: jmp declare void @f(i64)