; RUN: llc < %s -march=x86-64 -verify-machineinstrs | FileCheck %s --check-prefix X64 ; RUN: llc < %s -march=x86 -verify-machineinstrs | FileCheck %s --check-prefix X32 ; RUN: llc < %s -march=x86-64 -mattr=slow-incdec -verify-machineinstrs | FileCheck %s --check-prefix SLOW_INC ; This file checks that atomic (non-seq_cst) stores of immediate values are ; done in one mov instruction and not 2. More precisely, it makes sure that the ; immediate is not first copied uselessly into a register. ; Similarily, it checks that a binary operation of an immediate with an atomic ; variable that is stored back in that variable is done as a single instruction. ; For example: x.store(42 + x.load(memory_order_acquire), memory_order_release) ; should be just an add instruction, instead of loading x into a register, doing ; an add and storing the result back. ; The binary operations supported are currently add, and, or, xor. ; sub is not supported because they are translated by an addition of the ; negated immediate. ; Finally, we also check the same kind of pattern for inc/dec ; seq_cst stores are left as (lock) xchgl, but we try to check every other ; attribute at least once. ; Please note that these operations do not require the lock prefix: only ; sequentially consistent stores require this kind of protection on X86. ; And even for seq_cst operations, llvm uses the xchg instruction which has ; an implicit lock prefix, so making it explicit is not required. define void @store_atomic_imm_8(i8* %p) { ; X64-LABEL: store_atomic_imm_8 ; X64: movb ; X64-NOT: movb ; X32-LABEL: store_atomic_imm_8 ; X32: movb ; X32-NOT: movb store atomic i8 42, i8* %p release, align 1 ret void } define void @store_atomic_imm_16(i16* %p) { ; X64-LABEL: store_atomic_imm_16 ; X64: movw ; X64-NOT: movw ; X32-LABEL: store_atomic_imm_16 ; X32: movw ; X32-NOT: movw store atomic i16 42, i16* %p monotonic, align 2 ret void } define void @store_atomic_imm_32(i32* %p) { ; X64-LABEL: store_atomic_imm_32 ; X64: movl ; X64-NOT: movl ; On 32 bits, there is an extra movl for each of those functions ; (probably for alignment reasons). ; X32-LABEL: store_atomic_imm_32 ; X32: movl 4(%esp), %eax ; X32: movl ; X32-NOT: movl store atomic i32 42, i32* %p release, align 4 ret void } define void @store_atomic_imm_64(i64* %p) { ; X64-LABEL: store_atomic_imm_64 ; X64: movq ; X64-NOT: movq ; These are implemented with a CAS loop on 32 bit architectures, and thus ; cannot be optimized in the same way as the others. ; X32-LABEL: store_atomic_imm_64 ; X32: cmpxchg8b store atomic i64 42, i64* %p release, align 8 ret void } ; If an immediate is too big to fit in 32 bits, it cannot be store in one mov, ; even on X64, one must use movabsq that can only target a register. define void @store_atomic_imm_64_big(i64* %p) { ; X64-LABEL: store_atomic_imm_64_big ; X64: movabsq ; X64: movq store atomic i64 100000000000, i64* %p monotonic, align 8 ret void } ; It would be incorrect to replace a lock xchgl by a movl define void @store_atomic_imm_32_seq_cst(i32* %p) { ; X64-LABEL: store_atomic_imm_32_seq_cst ; X64: xchgl ; X32-LABEL: store_atomic_imm_32_seq_cst ; X32: xchgl store atomic i32 42, i32* %p seq_cst, align 4 ret void } ; ----- ADD ----- define void @add_8(i8* %p) { ; X64-LABEL: add_8 ; X64-NOT: lock ; X64: addb ; X64-NOT: movb ; X32-LABEL: add_8 ; X32-NOT: lock ; X32: addb ; X32-NOT: movb %1 = load atomic i8* %p seq_cst, align 1 %2 = add i8 %1, 2 store atomic i8 %2, i8* %p release, align 1 ret void } define void @add_16(i16* %p) { ; Currently the transformation is not done on 16 bit accesses, as the backend ; treat 16 bit arithmetic as expensive on X86/X86_64. ; X64-LABEL: add_16 ; X64-NOT: addw ; X32-LABEL: add_16 ; X32-NOT: addw %1 = load atomic i16* %p acquire, align 2 %2 = add i16 %1, 2 store atomic i16 %2, i16* %p release, align 2 ret void } define void @add_32(i32* %p) { ; X64-LABEL: add_32 ; X64-NOT: lock ; X64: addl ; X64-NOT: movl ; X32-LABEL: add_32 ; X32-NOT: lock ; X32: addl ; X32-NOT: movl %1 = load atomic i32* %p acquire, align 4 %2 = add i32 %1, 2 store atomic i32 %2, i32* %p monotonic, align 4 ret void } define void @add_64(i64* %p) { ; X64-LABEL: add_64 ; X64-NOT: lock ; X64: addq ; X64-NOT: movq ; We do not check X86-32 as it cannot do 'addq'. ; X32-LABEL: add_64 %1 = load atomic i64* %p acquire, align 8 %2 = add i64 %1, 2 store atomic i64 %2, i64* %p release, align 8 ret void } define void @add_32_seq_cst(i32* %p) { ; X64-LABEL: add_32_seq_cst ; X64: xchgl ; X32-LABEL: add_32_seq_cst ; X32: xchgl %1 = load atomic i32* %p monotonic, align 4 %2 = add i32 %1, 2 store atomic i32 %2, i32* %p seq_cst, align 4 ret void } ; ----- AND ----- define void @and_8(i8* %p) { ; X64-LABEL: and_8 ; X64-NOT: lock ; X64: andb ; X64-NOT: movb ; X32-LABEL: and_8 ; X32-NOT: lock ; X32: andb ; X32-NOT: movb %1 = load atomic i8* %p monotonic, align 1 %2 = and i8 %1, 2 store atomic i8 %2, i8* %p release, align 1 ret void } define void @and_16(i16* %p) { ; Currently the transformation is not done on 16 bit accesses, as the backend ; treat 16 bit arithmetic as expensive on X86/X86_64. ; X64-LABEL: and_16 ; X64-NOT: andw ; X32-LABEL: and_16 ; X32-NOT: andw %1 = load atomic i16* %p acquire, align 2 %2 = and i16 %1, 2 store atomic i16 %2, i16* %p release, align 2 ret void } define void @and_32(i32* %p) { ; X64-LABEL: and_32 ; X64-NOT: lock ; X64: andl ; X64-NOT: movl ; X32-LABEL: and_32 ; X32-NOT: lock ; X32: andl ; X32-NOT: movl %1 = load atomic i32* %p acquire, align 4 %2 = and i32 %1, 2 store atomic i32 %2, i32* %p release, align 4 ret void } define void @and_64(i64* %p) { ; X64-LABEL: and_64 ; X64-NOT: lock ; X64: andq ; X64-NOT: movq ; We do not check X86-32 as it cannot do 'andq'. ; X32-LABEL: and_64 %1 = load atomic i64* %p acquire, align 8 %2 = and i64 %1, 2 store atomic i64 %2, i64* %p release, align 8 ret void } define void @and_32_seq_cst(i32* %p) { ; X64-LABEL: and_32_seq_cst ; X64: xchgl ; X32-LABEL: and_32_seq_cst ; X32: xchgl %1 = load atomic i32* %p monotonic, align 4 %2 = and i32 %1, 2 store atomic i32 %2, i32* %p seq_cst, align 4 ret void } ; ----- OR ----- define void @or_8(i8* %p) { ; X64-LABEL: or_8 ; X64-NOT: lock ; X64: orb ; X64-NOT: movb ; X32-LABEL: or_8 ; X32-NOT: lock ; X32: orb ; X32-NOT: movb %1 = load atomic i8* %p acquire, align 1 %2 = or i8 %1, 2 store atomic i8 %2, i8* %p release, align 1 ret void } define void @or_16(i16* %p) { ; X64-LABEL: or_16 ; X64-NOT: orw ; X32-LABEL: or_16 ; X32-NOT: orw %1 = load atomic i16* %p acquire, align 2 %2 = or i16 %1, 2 store atomic i16 %2, i16* %p release, align 2 ret void } define void @or_32(i32* %p) { ; X64-LABEL: or_32 ; X64-NOT: lock ; X64: orl ; X64-NOT: movl ; X32-LABEL: or_32 ; X32-NOT: lock ; X32: orl ; X32-NOT: movl %1 = load atomic i32* %p acquire, align 4 %2 = or i32 %1, 2 store atomic i32 %2, i32* %p release, align 4 ret void } define void @or_64(i64* %p) { ; X64-LABEL: or_64 ; X64-NOT: lock ; X64: orq ; X64-NOT: movq ; We do not check X86-32 as it cannot do 'orq'. ; X32-LABEL: or_64 %1 = load atomic i64* %p acquire, align 8 %2 = or i64 %1, 2 store atomic i64 %2, i64* %p release, align 8 ret void } define void @or_32_seq_cst(i32* %p) { ; X64-LABEL: or_32_seq_cst ; X64: xchgl ; X32-LABEL: or_32_seq_cst ; X32: xchgl %1 = load atomic i32* %p monotonic, align 4 %2 = or i32 %1, 2 store atomic i32 %2, i32* %p seq_cst, align 4 ret void } ; ----- XOR ----- define void @xor_8(i8* %p) { ; X64-LABEL: xor_8 ; X64-NOT: lock ; X64: xorb ; X64-NOT: movb ; X32-LABEL: xor_8 ; X32-NOT: lock ; X32: xorb ; X32-NOT: movb %1 = load atomic i8* %p acquire, align 1 %2 = xor i8 %1, 2 store atomic i8 %2, i8* %p release, align 1 ret void } define void @xor_16(i16* %p) { ; X64-LABEL: xor_16 ; X64-NOT: xorw ; X32-LABEL: xor_16 ; X32-NOT: xorw %1 = load atomic i16* %p acquire, align 2 %2 = xor i16 %1, 2 store atomic i16 %2, i16* %p release, align 2 ret void } define void @xor_32(i32* %p) { ; X64-LABEL: xor_32 ; X64-NOT: lock ; X64: xorl ; X64-NOT: movl ; X32-LABEL: xor_32 ; X32-NOT: lock ; X32: xorl ; X32-NOT: movl %1 = load atomic i32* %p acquire, align 4 %2 = xor i32 %1, 2 store atomic i32 %2, i32* %p release, align 4 ret void } define void @xor_64(i64* %p) { ; X64-LABEL: xor_64 ; X64-NOT: lock ; X64: xorq ; X64-NOT: movq ; We do not check X86-32 as it cannot do 'xorq'. ; X32-LABEL: xor_64 %1 = load atomic i64* %p acquire, align 8 %2 = xor i64 %1, 2 store atomic i64 %2, i64* %p release, align 8 ret void } define void @xor_32_seq_cst(i32* %p) { ; X64-LABEL: xor_32_seq_cst ; X64: xchgl ; X32-LABEL: xor_32_seq_cst ; X32: xchgl %1 = load atomic i32* %p monotonic, align 4 %2 = xor i32 %1, 2 store atomic i32 %2, i32* %p seq_cst, align 4 ret void } ; ----- INC ----- define void @inc_8(i8* %p) { ; X64-LABEL: inc_8 ; X64-NOT: lock ; X64: incb ; X64-NOT: movb ; X32-LABEL: inc_8 ; X32-NOT: lock ; X32: incb ; X32-NOT: movb ; SLOW_INC-LABEL: inc_8 ; SLOW_INC-NOT: incb ; SLOW_INC-NOT: movb %1 = load atomic i8* %p seq_cst, align 1 %2 = add i8 %1, 1 store atomic i8 %2, i8* %p release, align 1 ret void } define void @inc_16(i16* %p) { ; Currently the transformation is not done on 16 bit accesses, as the backend ; treat 16 bit arithmetic as expensive on X86/X86_64. ; X64-LABEL: inc_16 ; X64-NOT: incw ; X32-LABEL: inc_16 ; X32-NOT: incw ; SLOW_INC-LABEL: inc_16 ; SLOW_INC-NOT: incw %1 = load atomic i16* %p acquire, align 2 %2 = add i16 %1, 1 store atomic i16 %2, i16* %p release, align 2 ret void } define void @inc_32(i32* %p) { ; X64-LABEL: inc_32 ; X64-NOT: lock ; X64: incl ; X64-NOT: movl ; X32-LABEL: inc_32 ; X32-NOT: lock ; X32: incl ; X32-NOT: movl ; SLOW_INC-LABEL: inc_32 ; SLOW_INC-NOT: incl ; SLOW_INC-NOT: movl %1 = load atomic i32* %p acquire, align 4 %2 = add i32 %1, 1 store atomic i32 %2, i32* %p monotonic, align 4 ret void } define void @inc_64(i64* %p) { ; X64-LABEL: inc_64 ; X64-NOT: lock ; X64: incq ; X64-NOT: movq ; We do not check X86-32 as it cannot do 'incq'. ; X32-LABEL: inc_64 ; SLOW_INC-LABEL: inc_64 ; SLOW_INC-NOT: incq ; SLOW_INC-NOT: movq %1 = load atomic i64* %p acquire, align 8 %2 = add i64 %1, 1 store atomic i64 %2, i64* %p release, align 8 ret void } define void @inc_32_seq_cst(i32* %p) { ; X64-LABEL: inc_32_seq_cst ; X64: xchgl ; X32-LABEL: inc_32_seq_cst ; X32: xchgl %1 = load atomic i32* %p monotonic, align 4 %2 = add i32 %1, 1 store atomic i32 %2, i32* %p seq_cst, align 4 ret void } ; ----- DEC ----- define void @dec_8(i8* %p) { ; X64-LABEL: dec_8 ; X64-NOT: lock ; X64: decb ; X64-NOT: movb ; X32-LABEL: dec_8 ; X32-NOT: lock ; X32: decb ; X32-NOT: movb ; SLOW_INC-LABEL: dec_8 ; SLOW_INC-NOT: decb ; SLOW_INC-NOT: movb %1 = load atomic i8* %p seq_cst, align 1 %2 = sub i8 %1, 1 store atomic i8 %2, i8* %p release, align 1 ret void } define void @dec_16(i16* %p) { ; Currently the transformation is not done on 16 bit accesses, as the backend ; treat 16 bit arithmetic as expensive on X86/X86_64. ; X64-LABEL: dec_16 ; X64-NOT: decw ; X32-LABEL: dec_16 ; X32-NOT: decw ; SLOW_INC-LABEL: dec_16 ; SLOW_INC-NOT: decw %1 = load atomic i16* %p acquire, align 2 %2 = sub i16 %1, 1 store atomic i16 %2, i16* %p release, align 2 ret void } define void @dec_32(i32* %p) { ; X64-LABEL: dec_32 ; X64-NOT: lock ; X64: decl ; X64-NOT: movl ; X32-LABEL: dec_32 ; X32-NOT: lock ; X32: decl ; X32-NOT: movl ; SLOW_INC-LABEL: dec_32 ; SLOW_INC-NOT: decl ; SLOW_INC-NOT: movl %1 = load atomic i32* %p acquire, align 4 %2 = sub i32 %1, 1 store atomic i32 %2, i32* %p monotonic, align 4 ret void } define void @dec_64(i64* %p) { ; X64-LABEL: dec_64 ; X64-NOT: lock ; X64: decq ; X64-NOT: movq ; We do not check X86-32 as it cannot do 'decq'. ; X32-LABEL: dec_64 ; SLOW_INC-LABEL: dec_64 ; SLOW_INC-NOT: decq ; SLOW_INC-NOT: movq %1 = load atomic i64* %p acquire, align 8 %2 = sub i64 %1, 1 store atomic i64 %2, i64* %p release, align 8 ret void } define void @dec_32_seq_cst(i32* %p) { ; X64-LABEL: dec_32_seq_cst ; X64: xchgl ; X32-LABEL: dec_32_seq_cst ; X32: xchgl %1 = load atomic i32* %p monotonic, align 4 %2 = sub i32 %1, 1 store atomic i32 %2, i32* %p seq_cst, align 4 ret void }