; RUN: llc < %s -asm-verbose=false | FileCheck %s ; Test that basic 64-bit floating-point operations assemble as expected. target datalayout = "e-p:32:32-i64:64-n32:64-S128" target triple = "wasm32-unknown-unknown" declare double @llvm.fabs.f64(double) declare double @llvm.copysign.f64(double, double) declare double @llvm.sqrt.f64(double) declare double @llvm.ceil.f64(double) declare double @llvm.floor.f64(double) declare double @llvm.trunc.f64(double) declare double @llvm.nearbyint.f64(double) declare double @llvm.rint.f64(double) declare double @llvm.fma.f64(double, double, double) ; CHECK-LABEL: fadd64: ; CHECK-NEXT: .param f64, f64{{$}} ; CHECK-NEXT: .result f64{{$}} ; CHECK-NEXT: f64.add $push0=, $0, $1{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @fadd64(double %x, double %y) { %a = fadd double %x, %y ret double %a } ; CHECK-LABEL: fsub64: ; CHECK: f64.sub $push0=, $0, $1{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @fsub64(double %x, double %y) { %a = fsub double %x, %y ret double %a } ; CHECK-LABEL: fmul64: ; CHECK: f64.mul $push0=, $0, $1{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @fmul64(double %x, double %y) { %a = fmul double %x, %y ret double %a } ; CHECK-LABEL: fdiv64: ; CHECK: f64.div $push0=, $0, $1{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @fdiv64(double %x, double %y) { %a = fdiv double %x, %y ret double %a } ; CHECK-LABEL: fabs64: ; CHECK: f64.abs $push0=, $0{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @fabs64(double %x) { %a = call double @llvm.fabs.f64(double %x) ret double %a } ; CHECK-LABEL: fneg64: ; CHECK: f64.neg $push0=, $0{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @fneg64(double %x) { %a = fsub double -0., %x ret double %a } ; CHECK-LABEL: copysign64: ; CHECK: f64.copysign $push0=, $0, $1{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @copysign64(double %x, double %y) { %a = call double @llvm.copysign.f64(double %x, double %y) ret double %a } ; CHECK-LABEL: sqrt64: ; CHECK: f64.sqrt $push0=, $0{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @sqrt64(double %x) { %a = call double @llvm.sqrt.f64(double %x) ret double %a } ; CHECK-LABEL: ceil64: ; CHECK: f64.ceil $push0=, $0{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @ceil64(double %x) { %a = call double @llvm.ceil.f64(double %x) ret double %a } ; CHECK-LABEL: floor64: ; CHECK: f64.floor $push0=, $0{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @floor64(double %x) { %a = call double @llvm.floor.f64(double %x) ret double %a } ; CHECK-LABEL: trunc64: ; CHECK: f64.trunc $push0=, $0{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @trunc64(double %x) { %a = call double @llvm.trunc.f64(double %x) ret double %a } ; CHECK-LABEL: nearest64: ; CHECK: f64.nearest $push0=, $0{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @nearest64(double %x) { %a = call double @llvm.nearbyint.f64(double %x) ret double %a } ; CHECK-LABEL: nearest64_via_rint: ; CHECK: f64.nearest $push0=, $0{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @nearest64_via_rint(double %x) { %a = call double @llvm.rint.f64(double %x) ret double %a } ; Min and max tests. LLVM currently only forms fminnan and fmaxnan nodes in ; cases where there's a single fcmp with a select and it can prove that one ; of the arms is never NaN, so we only test that case. In the future if LLVM ; learns to form fminnan/fmaxnan in more cases, we can write more general ; tests. ; CHECK-LABEL: fmin64: ; CHECK: f64.min $push1=, $0, $pop0{{$}} ; CHECK-NEXT: return $pop1{{$}} define double @fmin64(double %x) { %a = fcmp ult double %x, 0.0 %b = select i1 %a, double %x, double 0.0 ret double %b } ; CHECK-LABEL: fmax64: ; CHECK: f64.max $push1=, $0, $pop0{{$}} ; CHECK-NEXT: return $pop1{{$}} define double @fmax64(double %x) { %a = fcmp ugt double %x, 0.0 %b = select i1 %a, double %x, double 0.0 ret double %b } ; CHECK-LABEL: fma64: ; CHECK: {{^}} f64.call $push0=, fma, $0, $1, $2{{$}} ; CHECK-NEXT: return $pop0{{$}} define double @fma64(double %a, double %b, double %c) { %d = call double @llvm.fma.f64(double %a, double %b, double %c) ret double %d }