; RUN: llc -march=amdgcn -mcpu=verde -verify-machineinstrs < %s | FileCheck -check-prefix=SI -check-prefix=FUNC %s ; RUN: llc -march=amdgcn -mcpu=tonga -verify-machineinstrs < %s | FileCheck -check-prefix=SI -check-prefix=FUNC %s ; RUN: llc -march=r600 -mcpu=redwood < %s | FileCheck -check-prefix=EG -check-prefix=FUNC %s ; RUN: llc -march=r600 -mcpu=cayman < %s | FileCheck -check-prefix=CM -check-prefix=FUNC %s ;===------------------------------------------------------------------------===; ; Global Address Space ;===------------------------------------------------------------------------===; ; FUNC-LABEL: {{^}}store_i1: ; EG: MEM_RAT MSKOR ; SI: buffer_store_byte define void @store_i1(i1 addrspace(1)* %out) { entry: store i1 true, i1 addrspace(1)* %out ret void } ; i8 store ; FUNC-LABEL: {{^}}store_i8: ; EG: MEM_RAT MSKOR T[[RW_GPR:[0-9]]].XW, T{{[0-9]}}.X ; IG 0: Get the byte index and truncate the value ; EG: AND_INT * T{{[0-9]}}.[[BI_CHAN:[XYZW]]], KC0[2].Y, literal.x ; EG: LSHL T{{[0-9]}}.[[SHIFT_CHAN:[XYZW]]], PV.[[BI_CHAN]], literal.x ; EG: AND_INT * T{{[0-9]}}.[[TRUNC_CHAN:[XYZW]]], KC0[2].Z, literal.y ; EG-NEXT: 3(4.203895e-45), 255(3.573311e-43) ; IG 1: Truncate the calculated the shift amount for the mask ; IG 2: Shift the value and the mask ; EG: LSHL T[[RW_GPR]].X, PS, PV.[[SHIFT_CHAN]] ; EG: LSHL * T[[RW_GPR]].W, literal.x, PV.[[SHIFT_CHAN]] ; EG-NEXT: 255 ; IG 3: Initialize the Y and Z channels to zero ; XXX: An optimal scheduler should merge this into one of the prevous IGs. ; EG: MOV T[[RW_GPR]].Y, 0.0 ; EG: MOV * T[[RW_GPR]].Z, 0.0 ; SI: buffer_store_byte define void @store_i8(i8 addrspace(1)* %out, i8 %in) { entry: store i8 %in, i8 addrspace(1)* %out ret void } ; i16 store ; FUNC-LABEL: {{^}}store_i16: ; EG: MEM_RAT MSKOR T[[RW_GPR:[0-9]]].XW, T{{[0-9]}}.X ; IG 0: Get the byte index and truncate the value ; EG: AND_INT * T{{[0-9]}}.[[BI_CHAN:[XYZW]]], KC0[2].Y, literal.x ; EG-NEXT: 3(4.203895e-45), ; EG: LSHL T{{[0-9]}}.[[SHIFT_CHAN:[XYZW]]], PV.[[BI_CHAN]], literal.x ; EG: AND_INT * T{{[0-9]}}.[[TRUNC_CHAN:[XYZW]]], KC0[2].Z, literal.y ; EG-NEXT: 3(4.203895e-45), 65535(9.183409e-41) ; IG 1: Truncate the calculated the shift amount for the mask ; IG 2: Shift the value and the mask ; EG: LSHL T[[RW_GPR]].X, PS, PV.[[SHIFT_CHAN]] ; EG: LSHL * T[[RW_GPR]].W, literal.x, PV.[[SHIFT_CHAN]] ; EG-NEXT: 65535 ; IG 3: Initialize the Y and Z channels to zero ; XXX: An optimal scheduler should merge this into one of the prevous IGs. ; EG: MOV T[[RW_GPR]].Y, 0.0 ; EG: MOV * T[[RW_GPR]].Z, 0.0 ; SI: buffer_store_short define void @store_i16(i16 addrspace(1)* %out, i16 %in) { entry: store i16 %in, i16 addrspace(1)* %out ret void } ; FUNC-LABEL: {{^}}store_v2i8: ; EG: MEM_RAT MSKOR ; EG-NOT: MEM_RAT MSKOR ; SI: buffer_store_byte ; SI: buffer_store_byte define void @store_v2i8(<2 x i8> addrspace(1)* %out, <2 x i32> %in) { entry: %0 = trunc <2 x i32> %in to <2 x i8> store <2 x i8> %0, <2 x i8> addrspace(1)* %out ret void } ; FUNC-LABEL: {{^}}store_v2i16: ; EG: MEM_RAT_CACHELESS STORE_RAW ; CM: MEM_RAT_CACHELESS STORE_DWORD ; SI: buffer_store_short ; SI: buffer_store_short define void @store_v2i16(<2 x i16> addrspace(1)* %out, <2 x i32> %in) { entry: %0 = trunc <2 x i32> %in to <2 x i16> store <2 x i16> %0, <2 x i16> addrspace(1)* %out ret void } ; FUNC-LABEL: {{^}}store_v4i8: ; EG: MEM_RAT_CACHELESS STORE_RAW ; CM: MEM_RAT_CACHELESS STORE_DWORD ; SI: buffer_store_byte ; SI: buffer_store_byte ; SI: buffer_store_byte ; SI: buffer_store_byte define void @store_v4i8(<4 x i8> addrspace(1)* %out, <4 x i32> %in) { entry: %0 = trunc <4 x i32> %in to <4 x i8> store <4 x i8> %0, <4 x i8> addrspace(1)* %out ret void } ; floating-point store ; FUNC-LABEL: {{^}}store_f32: ; EG: MEM_RAT_CACHELESS STORE_RAW T{{[0-9]+\.X, T[0-9]+\.X}}, 1 ; CM: MEM_RAT_CACHELESS STORE_DWORD T{{[0-9]+\.X, T[0-9]+\.X}} ; SI: buffer_store_dword define void @store_f32(float addrspace(1)* %out, float %in) { store float %in, float addrspace(1)* %out ret void } ; FUNC-LABEL: {{^}}store_v4i16: ; EG: MEM_RAT MSKOR ; EG: MEM_RAT MSKOR ; EG: MEM_RAT MSKOR ; EG: MEM_RAT MSKOR ; EG-NOT: MEM_RAT MSKOR ; SI: buffer_store_short ; SI: buffer_store_short ; SI: buffer_store_short ; SI: buffer_store_short ; SI-NOT: buffer_store_byte define void @store_v4i16(<4 x i16> addrspace(1)* %out, <4 x i32> %in) { entry: %0 = trunc <4 x i32> %in to <4 x i16> store <4 x i16> %0, <4 x i16> addrspace(1)* %out ret void } ; vec2 floating-point stores ; FUNC-LABEL: {{^}}store_v2f32: ; EG: MEM_RAT_CACHELESS STORE_RAW ; CM: MEM_RAT_CACHELESS STORE_DWORD ; SI: buffer_store_dwordx2 define void @store_v2f32(<2 x float> addrspace(1)* %out, float %a, float %b) { entry: %0 = insertelement <2 x float> , float %a, i32 0 %1 = insertelement <2 x float> %0, float %b, i32 1 store <2 x float> %1, <2 x float> addrspace(1)* %out ret void } ; FUNC-LABEL: {{^}}store_v4i32: ; EG: MEM_RAT_CACHELESS STORE_RAW ; EG-NOT: MEM_RAT_CACHELESS STORE_RAW ; CM: MEM_RAT_CACHELESS STORE_DWORD ; CM-NOT: MEM_RAT_CACHELESS STORE_DWORD ; SI: buffer_store_dwordx4 define void @store_v4i32(<4 x i32> addrspace(1)* %out, <4 x i32> %in) { entry: store <4 x i32> %in, <4 x i32> addrspace(1)* %out ret void } ; FUNC-LABEL: {{^}}store_i64_i8: ; EG: MEM_RAT MSKOR ; SI: buffer_store_byte define void @store_i64_i8(i8 addrspace(1)* %out, i64 %in) { entry: %0 = trunc i64 %in to i8 store i8 %0, i8 addrspace(1)* %out ret void } ; FUNC-LABEL: {{^}}store_i64_i16: ; EG: MEM_RAT MSKOR ; SI: buffer_store_short define void @store_i64_i16(i16 addrspace(1)* %out, i64 %in) { entry: %0 = trunc i64 %in to i16 store i16 %0, i16 addrspace(1)* %out ret void } ;===------------------------------------------------------------------------===; ; Local Address Space ;===------------------------------------------------------------------------===; ; FUNC-LABEL: {{^}}store_local_i1: ; EG: LDS_BYTE_WRITE ; SI: ds_write_b8 define void @store_local_i1(i1 addrspace(3)* %out) { entry: store i1 true, i1 addrspace(3)* %out ret void } ; FUNC-LABEL: {{^}}store_local_i8: ; EG: LDS_BYTE_WRITE ; SI: ds_write_b8 define void @store_local_i8(i8 addrspace(3)* %out, i8 %in) { store i8 %in, i8 addrspace(3)* %out ret void } ; FUNC-LABEL: {{^}}store_local_i16: ; EG: LDS_SHORT_WRITE ; SI: ds_write_b16 define void @store_local_i16(i16 addrspace(3)* %out, i16 %in) { store i16 %in, i16 addrspace(3)* %out ret void } ; FUNC-LABEL: {{^}}store_local_v2i16: ; EG: LDS_WRITE ; CM: LDS_WRITE ; SI: ds_write_b16 ; SI: ds_write_b16 define void @store_local_v2i16(<2 x i16> addrspace(3)* %out, <2 x i16> %in) { entry: store <2 x i16> %in, <2 x i16> addrspace(3)* %out ret void } ; FUNC-LABEL: {{^}}store_local_v4i8: ; EG: LDS_WRITE ; CM: LDS_WRITE ; SI: ds_write_b8 ; SI: ds_write_b8 ; SI: ds_write_b8 ; SI: ds_write_b8 define void @store_local_v4i8(<4 x i8> addrspace(3)* %out, <4 x i8> %in) { entry: store <4 x i8> %in, <4 x i8> addrspace(3)* %out ret void } ; FUNC-LABEL: {{^}}store_local_v2i32: ; EG: LDS_WRITE ; EG: LDS_WRITE ; CM: LDS_WRITE ; CM: LDS_WRITE ; SI: ds_write_b64 define void @store_local_v2i32(<2 x i32> addrspace(3)* %out, <2 x i32> %in) { entry: store <2 x i32> %in, <2 x i32> addrspace(3)* %out ret void } ; FUNC-LABEL: {{^}}store_local_v4i32: ; EG: LDS_WRITE ; EG: LDS_WRITE ; EG: LDS_WRITE ; EG: LDS_WRITE ; CM: LDS_WRITE ; CM: LDS_WRITE ; CM: LDS_WRITE ; CM: LDS_WRITE ; SI: ds_write_b32 ; SI: ds_write_b32 ; SI: ds_write_b32 ; SI: ds_write_b32 define void @store_local_v4i32(<4 x i32> addrspace(3)* %out, <4 x i32> %in) { entry: store <4 x i32> %in, <4 x i32> addrspace(3)* %out ret void } ; FUNC-LABEL: {{^}}store_local_i64_i8: ; EG: LDS_BYTE_WRITE ; SI: ds_write_b8 define void @store_local_i64_i8(i8 addrspace(3)* %out, i64 %in) { entry: %0 = trunc i64 %in to i8 store i8 %0, i8 addrspace(3)* %out ret void } ; FUNC-LABEL: {{^}}store_local_i64_i16: ; EG: LDS_SHORT_WRITE ; SI: ds_write_b16 define void @store_local_i64_i16(i16 addrspace(3)* %out, i64 %in) { entry: %0 = trunc i64 %in to i16 store i16 %0, i16 addrspace(3)* %out ret void } ; The stores in this function are combined by the optimizer to create a ; 64-bit store with 32-bit alignment. This is legal for SI and the legalizer ; should not try to split the 64-bit store back into 2 32-bit stores. ; ; Evergreen / Northern Islands don't support 64-bit stores yet, so there should ; be two 32-bit stores. ; FUNC-LABEL: {{^}}vecload2: ; EG: MEM_RAT_CACHELESS STORE_RAW ; CM: MEM_RAT_CACHELESS STORE_DWORD ; SI: buffer_store_dwordx2 define void @vecload2(i32 addrspace(1)* nocapture %out, i32 addrspace(2)* nocapture %mem) #0 { entry: %0 = load i32, i32 addrspace(2)* %mem, align 4 %arrayidx1.i = getelementptr inbounds i32, i32 addrspace(2)* %mem, i64 1 %1 = load i32, i32 addrspace(2)* %arrayidx1.i, align 4 store i32 %0, i32 addrspace(1)* %out, align 4 %arrayidx1 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 1 store i32 %1, i32 addrspace(1)* %arrayidx1, align 4 ret void } attributes #0 = { nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "unsafe-fp-math"="false" "use-soft-float"="false" } ; When i128 was a legal type this program generated cannot select errors: ; FUNC-LABEL: {{^}}"i128-const-store": ; FIXME: We should be able to to this with one store instruction ; EG: STORE_RAW ; EG: STORE_RAW ; EG: STORE_RAW ; EG: STORE_RAW ; CM: STORE_DWORD ; CM: STORE_DWORD ; CM: STORE_DWORD ; CM: STORE_DWORD ; SI: buffer_store_dwordx4 define void @i128-const-store(i32 addrspace(1)* %out) { entry: store i32 1, i32 addrspace(1)* %out, align 4 %arrayidx2 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 1 store i32 1, i32 addrspace(1)* %arrayidx2, align 4 %arrayidx4 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 2 store i32 2, i32 addrspace(1)* %arrayidx4, align 4 %arrayidx6 = getelementptr inbounds i32, i32 addrspace(1)* %out, i64 3 store i32 2, i32 addrspace(1)* %arrayidx6, align 4 ret void }