//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Stack allocation //===----------------------------------------------------------------------===// def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt), [(callseq_start timm:$amt)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), [(callseq_end timm:$amt1, timm:$amt2)]>; let neverHasSideEffects = 1 in { // Takes as input the value of the stack pointer after a dynamic allocation // has been made. Sets the output to the address of the dynamically- // allocated area itself, skipping the outgoing arguments. // // This expands to an LA or LAY instruction. We restrict the offset // to the range of LA and keep the LAY range in reserve for when // the size of the outgoing arguments is added. def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src), [(set GR64:$dst, dynalloc12only:$src)]>; } //===----------------------------------------------------------------------===// // Control flow instructions //===----------------------------------------------------------------------===// // A return instruction. R1 is the condition-code mask (all 1s) // and R2 is the target address, which is always stored in %r14. let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1, R1 = 15, R2 = 14, isCodeGenOnly = 1 in { def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>; } // Unconditional branches. R1 is the condition-code mask (all 1s). let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in { let isIndirectBranch = 1 in def BR : InstRR<0x07, (outs), (ins ADDR64:$R2), "br\t$R2", [(brind ADDR64:$R2)]>; // An assembler extended mnemonic for BRC. def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2", [(br bb:$I2)]>; // An assembler extended mnemonic for BRCL. (The extension is "G" // rather than "L" because "JL" is "Jump if Less".) def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>; } // Conditional branches. It's easier for LLVM to handle these branches // in their raw BRC/BRCL form, with the 4-bit condition-code mask being // the first operand. It seems friendlier to use mnemonic forms like // JE and JLH when writing out the assembly though. let isBranch = 1, isTerminator = 1, Uses = [CC] in { let isCodeGenOnly = 1, CCMaskFirst = 1 in { def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1, brtarget16:$I2), "j$R1\t$I2", [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>; def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1, brtarget32:$I2), "jg$R1\t$I2", []>; } def AsmBRC : InstRI<0xA74, (outs), (ins uimm8zx4:$R1, brtarget16:$I2), "brc\t$R1, $I2", []>; def AsmBRCL : InstRIL<0xC04, (outs), (ins uimm8zx4:$R1, brtarget32:$I2), "brcl\t$R1, $I2", []>; } // Fused compare-and-branch instructions. As for normal branches, // we handle these instructions internally in their raw CRJ-like form, // but use assembly macros like CRJE when writing them out. // // These instructions do not use or clobber the condition codes. // We nevertheless pretend that they clobber CC, so that we can lower // them to separate comparisons and BRCLs if the branch ends up being // out of range. multiclass CompareBranches { let isBranch = 1, isTerminator = 1, Defs = [CC] in { def RJ : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3, brtarget16:$RI4), "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>; def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3, brtarget16:$RI4), "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>; def IJ : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3, brtarget16:$RI4), "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>; def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3, brtarget16:$RI4), "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>; def LRJ : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3, brtarget16:$RI4), "clrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>; def LGRJ : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3, brtarget16:$RI4), "clgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>; def LIJ : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, ccmask:$M3, brtarget16:$RI4), "clij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>; def LGIJ : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, ccmask:$M3, brtarget16:$RI4), "clgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>; } } let isCodeGenOnly = 1 in defm C : CompareBranches; defm AsmC : CompareBranches; // Define AsmParser mnemonics for each general condition-code mask // (integer or floating-point) multiclass CondExtendedMnemonic ccmask, string name> { let R1 = ccmask in { def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j"##name##"\t$I2", []>; def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg"##name##"\t$I2", []>; } def LOCR : FixedCondUnaryRRF<"locr"##name, 0xB9F2, GR32, GR32, ccmask>; def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>; def LOC : FixedCondUnaryRSY<"loc"##name, 0xEBF2, GR32, ccmask, 4>; def LOCG : FixedCondUnaryRSY<"locg"##name, 0xEBE2, GR64, ccmask, 8>; def STOC : FixedCondStoreRSY<"stoc"##name, 0xEBF3, GR32, ccmask, 4>; def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>; } defm AsmO : CondExtendedMnemonic<1, "o">; defm AsmH : CondExtendedMnemonic<2, "h">; defm AsmNLE : CondExtendedMnemonic<3, "nle">; defm AsmL : CondExtendedMnemonic<4, "l">; defm AsmNHE : CondExtendedMnemonic<5, "nhe">; defm AsmLH : CondExtendedMnemonic<6, "lh">; defm AsmNE : CondExtendedMnemonic<7, "ne">; defm AsmE : CondExtendedMnemonic<8, "e">; defm AsmNLH : CondExtendedMnemonic<9, "nlh">; defm AsmHE : CondExtendedMnemonic<10, "he">; defm AsmNL : CondExtendedMnemonic<11, "nl">; defm AsmLE : CondExtendedMnemonic<12, "le">; defm AsmNH : CondExtendedMnemonic<13, "nh">; defm AsmNO : CondExtendedMnemonic<14, "no">; // Define AsmParser mnemonics for each integer condition-code mask. // This is like the list above, except that condition 3 is not possible // and that the low bit of the mask is therefore always 0. This means // that each condition has two names. Conditions "o" and "no" are not used. // // We don't make one of the two names an alias of the other because // we need the custom parsing routines to select the correct register class. multiclass IntCondExtendedMnemonicA ccmask, string name> { let M3 = ccmask in { def CR : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, brtarget16:$RI4), "crj"##name##"\t$R1, $R2, $RI4", []>; def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, brtarget16:$RI4), "cgrj"##name##"\t$R1, $R2, $RI4", []>; def CI : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, brtarget16:$RI4), "cij"##name##"\t$R1, $I2, $RI4", []>; def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, brtarget16:$RI4), "cgij"##name##"\t$R1, $I2, $RI4", []>; def CLR : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, brtarget16:$RI4), "clrj"##name##"\t$R1, $R2, $RI4", []>; def CLGR : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, brtarget16:$RI4), "clgrj"##name##"\t$R1, $R2, $RI4", []>; def CLI : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, brtarget16:$RI4), "clij"##name##"\t$R1, $I2, $RI4", []>; def CLGI : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, brtarget16:$RI4), "clgij"##name##"\t$R1, $I2, $RI4", []>; } } multiclass IntCondExtendedMnemonic ccmask, string name1, string name2> : IntCondExtendedMnemonicA { let isAsmParserOnly = 1 in defm Alt : IntCondExtendedMnemonicA; } defm AsmJH : IntCondExtendedMnemonic<2, "h", "nle">; defm AsmJL : IntCondExtendedMnemonic<4, "l", "nhe">; defm AsmJLH : IntCondExtendedMnemonic<6, "lh", "ne">; defm AsmJE : IntCondExtendedMnemonic<8, "e", "nlh">; defm AsmJHE : IntCondExtendedMnemonic<10, "he", "nl">; defm AsmJLE : IntCondExtendedMnemonic<12, "le", "nh">; // Decrement a register and branch if it is nonzero. These don't clobber CC, // but we might need to split long branches into sequences that do. let Defs = [CC] in { def BRCT : BranchUnaryRI<"brct", 0xA76, GR32>; def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>; } //===----------------------------------------------------------------------===// // Select instructions //===----------------------------------------------------------------------===// def Select32 : SelectWrapper; def Select64 : SelectWrapper; defm CondStore8_32 : CondStores; defm CondStore16_32 : CondStores; defm CondStore32_32 : CondStores; defm CondStore8 : CondStores; defm CondStore16 : CondStores; defm CondStore32 : CondStores; defm CondStore64 : CondStores; //===----------------------------------------------------------------------===// // Call instructions //===----------------------------------------------------------------------===// // The definitions here are for the call-clobbered registers. let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D, F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D, CC], R1 = 14, isCodeGenOnly = 1 in { def BRAS : InstRI<0xA75, (outs), (ins pcrel16call:$I2, variable_ops), "bras\t%r14, $I2", []>; def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$I2, variable_ops), "brasl\t%r14, $I2", [(z_call pcrel32call:$I2)]>; def BASR : InstRR<0x0D, (outs), (ins ADDR64:$R2, variable_ops), "basr\t%r14, $R2", [(z_call ADDR64:$R2)]>; } // Sibling calls. Indirect sibling calls must be via R1, since R2 upwards // are argument registers and since branching to R0 is a no-op. let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, isCodeGenOnly = 1, R1 = 15 in { def CallJG : InstRIL<0xC04, (outs), (ins pcrel32call:$I2), "jg\t$I2", [(z_sibcall pcrel32call:$I2)]>; let R2 = 1, Uses = [R1D] in def CallBR : InstRR<0x07, (outs), (ins), "br\t%r1", [(z_sibcall R1D)]>; } // Define the general form of the call instructions for the asm parser. // These instructions don't hard-code %r14 as the return address register. def AsmBRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2), "bras\t$R1, $I2", []>; def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2), "brasl\t$R1, $I2", []>; def AsmBASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2), "basr\t$R1, $R2", []>; //===----------------------------------------------------------------------===// // Move instructions //===----------------------------------------------------------------------===// // Register moves. let neverHasSideEffects = 1 in { def LR : UnaryRR <"l", 0x18, null_frag, GR32, GR32>; def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>; } let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { def LTR : UnaryRR <"lt", 0x12, null_frag, GR32, GR32>; def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>; } // Move on condition. let isCodeGenOnly = 1, Uses = [CC] in { def LOCR : CondUnaryRRF<"loc", 0xB9F2, GR32, GR32>; def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>; } let Uses = [CC] in { def AsmLOCR : AsmCondUnaryRRF<"loc", 0xB9F2, GR32, GR32>; def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>; } // Immediate moves. let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { // 16-bit sign-extended immediates. def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>; def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>; // Other 16-bit immediates. def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>; def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>; def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>; def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>; // 32-bit immediates. def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>; def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>; def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>; } // Register loads. let canFoldAsLoad = 1, SimpleBDXLoad = 1 in { defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>; def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>; // These instructions are split after register allocation, so we don't // want a custom inserter. let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src), [(set GR128:$dst, (load bdxaddr20only128:$src))]>; } } let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { def LT : UnaryRXY<"lt", 0xE312, load, GR32, 4>; def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>; } let canFoldAsLoad = 1 in { def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>; def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>; } // Load on condition. let isCodeGenOnly = 1, Uses = [CC] in { def LOC : CondUnaryRSY<"loc", 0xEBF2, nonvolatile_load, GR32, 4>; def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>; } let Uses = [CC] in { def AsmLOC : AsmCondUnaryRSY<"loc", 0xEBF2, GR32, 4>; def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>; } // Register stores. let SimpleBDXStore = 1 in { let isCodeGenOnly = 1 in defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>; def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>; // These instructions are split after register allocation, so we don't // want a custom inserter. let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst), [(store GR128:$src, bdxaddr20only128:$dst)]>; } } let isCodeGenOnly = 1 in def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>; def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>; // Store on condition. let isCodeGenOnly = 1, Uses = [CC] in { def STOC32 : CondStoreRSY<"stoc", 0xEBF3, GR32, 4>; def STOC : CondStoreRSY<"stoc", 0xEBF3, GR64, 4>; def STOCG : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>; } let Uses = [CC] in { def AsmSTOC : AsmCondStoreRSY<"stoc", 0xEBF3, GR32, 4>; def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>; } // 8-bit immediate stores to 8-bit fields. defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>; // 16-bit immediate stores to 16-, 32- or 64-bit fields. def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>; def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>; def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>; // Memory-to-memory moves. let mayLoad = 1, mayStore = 1 in defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>; // String moves. let mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0W] in defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>; //===----------------------------------------------------------------------===// // Sign extensions //===----------------------------------------------------------------------===// // // Note that putting these before zero extensions mean that we will prefer // them for anyextload*. There's not really much to choose between the two // either way, but signed-extending loads have a short LH and a long LHY, // while zero-extending loads have only the long LLH. // //===----------------------------------------------------------------------===// // 32-bit extensions from registers. let neverHasSideEffects = 1 in { def LBR : UnaryRRE<"lb", 0xB926, sext8, GR32, GR32>; def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>; } // 64-bit extensions from registers. let neverHasSideEffects = 1 in { def LGBR : UnaryRRE<"lgb", 0xB906, sext8, GR64, GR64>; def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>; def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>; } let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR64>; // Match 32-to-64-bit sign extensions in which the source is already // in a 64-bit register. def : Pat<(sext_inreg GR64:$src, i32), (LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>; // 32-bit extensions from memory. def LB : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>; defm LH : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>; def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>; // 64-bit extensions from memory. def LGB : UnaryRXY<"lgb", 0xE377, asextloadi8, GR64, 1>; def LGH : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>; def LGF : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>; def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>; def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>; let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>; //===----------------------------------------------------------------------===// // Zero extensions //===----------------------------------------------------------------------===// // 32-bit extensions from registers. let neverHasSideEffects = 1 in { def LLCR : UnaryRRE<"llc", 0xB994, zext8, GR32, GR32>; def LLHR : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>; } // 64-bit extensions from registers. let neverHasSideEffects = 1 in { def LLGCR : UnaryRRE<"llgc", 0xB984, zext8, GR64, GR64>; def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>; def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>; } // Match 32-to-64-bit zero extensions in which the source is already // in a 64-bit register. def : Pat<(and GR64:$src, 0xffffffff), (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>; // 32-bit extensions from memory. def LLC : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>; def LLH : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>; def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>; // 64-bit extensions from memory. def LLGC : UnaryRXY<"llgc", 0xE390, azextloadi8, GR64, 1>; def LLGH : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>; def LLGF : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>; def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>; def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>; //===----------------------------------------------------------------------===// // Truncations //===----------------------------------------------------------------------===// // Truncations of 64-bit registers to 32-bit registers. def : Pat<(i32 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, subreg_32bit)>; // Truncations of 32-bit registers to memory. let isCodeGenOnly = 1 in { defm STC32 : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>; defm STH32 : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>; def STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>; } // Truncations of 64-bit registers to memory. defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR64, 1>; defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64, 2>; def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>; defm ST : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64, 4>; def STRL : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>; //===----------------------------------------------------------------------===// // Multi-register moves //===----------------------------------------------------------------------===// // Multi-register loads. def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>; // Multi-register stores. def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>; //===----------------------------------------------------------------------===// // Byte swaps //===----------------------------------------------------------------------===// // Byte-swapping register moves. let neverHasSideEffects = 1 in { def LRVR : UnaryRRE<"lrv", 0xB91F, bswap, GR32, GR32>; def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>; } // Byte-swapping loads. Unlike normal loads, these instructions are // allowed to access storage more than once. def LRV : UnaryRXY<"lrv", 0xE31E, loadu, GR32, 4>; def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu, GR64, 8>; // Likewise byte-swapping stores. def STRV : StoreRXY<"strv", 0xE33E, storeu, GR32, 4>; def STRVG : StoreRXY<"strvg", 0xE32F, storeu, GR64, 8>; //===----------------------------------------------------------------------===// // Load address instructions //===----------------------------------------------------------------------===// // Load BDX-style addresses. let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1, DispKey = "la" in { let DispSize = "12" in def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2), "la\t$R1, $XBD2", [(set GR64:$R1, laaddr12pair:$XBD2)]>; let DispSize = "20" in def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2), "lay\t$R1, $XBD2", [(set GR64:$R1, laaddr20pair:$XBD2)]>; } // Load a PC-relative address. There's no version of this instruction // with a 16-bit offset, so there's no relaxation. let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2), "larl\t$R1, $I2", [(set GR64:$R1, pcrel32:$I2)]>; } //===----------------------------------------------------------------------===// // Absolute and Negation //===----------------------------------------------------------------------===// let Defs = [CC] in { let CCValues = 0xF, CompareZeroCCMask = 0x8 in { def LPR : UnaryRR <"lp", 0x10, z_iabs32, GR32, GR32>; def LPGR : UnaryRRE<"lpg", 0xB900, z_iabs64, GR64, GR64>; } let CCValues = 0xE, CompareZeroCCMask = 0xE in def LPGFR : UnaryRRE<"lpgf", 0xB910, null_frag, GR64, GR32>; } defm : SXU; let Defs = [CC] in { let CCValues = 0xF, CompareZeroCCMask = 0x8 in { def LNR : UnaryRR <"ln", 0x11, z_inegabs32, GR32, GR32>; def LNGR : UnaryRRE<"lng", 0xB901, z_inegabs64, GR64, GR64>; } let CCValues = 0xE, CompareZeroCCMask = 0xE in def LNGFR : UnaryRRE<"lngf", 0xB911, null_frag, GR64, GR32>; } defm : SXU; let Defs = [CC] in { let CCValues = 0xF, CompareZeroCCMask = 0x8 in { def LCR : UnaryRR <"lc", 0x13, ineg, GR32, GR32>; def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>; } let CCValues = 0xE, CompareZeroCCMask = 0xE in def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>; } defm : SXU; //===----------------------------------------------------------------------===// // Insertion //===----------------------------------------------------------------------===// let isCodeGenOnly = 1 in defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>; defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>; defm : InsertMem<"inserti8", IC32, GR32, azextloadi8, bdxaddr12pair>; defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>; defm : InsertMem<"inserti8", IC, GR64, azextloadi8, bdxaddr12pair>; defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>; // Insertions of a 16-bit immediate, leaving other bits unaffected. // We don't have or_as_insert equivalents of these operations because // OI is available instead. let isCodeGenOnly = 1 in { def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>; def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>; } def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>; def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>; def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>; def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>; // ...likewise for 32-bit immediates. For GR32s this is a general // full-width move. (We use IILF rather than something like LLILF // for 32-bit moves because IILF leaves the upper 32 bits of the // GR64 unchanged.) let isCodeGenOnly = 1, isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>; } def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>; def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>; // An alternative model of inserthf, with the first operand being // a zero-extended value. def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm), (IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit), imm64hf32:$imm)>; //===----------------------------------------------------------------------===// // Addition //===----------------------------------------------------------------------===// // Plain addition. let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in { // Addition of a register. let isCommutable = 1 in { defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>; defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>; } def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>; // Addition of signed 16-bit immediates. defm AHI : BinaryRIAndK<"ahi", 0xA7A, 0xECD8, add, GR32, imm32sx16>; defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>; // Addition of signed 32-bit immediates. def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>; def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>; // Addition of memory. defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, asextloadi16, 2>; defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load, 4>; def AGF : BinaryRXY<"agf", 0xE318, add, GR64, asextloadi32, 4>; def AG : BinaryRXY<"ag", 0xE308, add, GR64, load, 8>; // Addition to memory. def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>; def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>; } defm : SXB; // Addition producing a carry. let Defs = [CC] in { // Addition of a register. let isCommutable = 1 in { defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>; defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>; } def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>; // Addition of signed 16-bit immediates. def ALHSIK : BinaryRIE<"alhsik", 0xECDA, addc, GR32, imm32sx16>, Requires<[FeatureDistinctOps]>; def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>, Requires<[FeatureDistinctOps]>; // Addition of unsigned 32-bit immediates. def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>; def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>; // Addition of memory. defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>; def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, azextloadi32, 4>; def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load, 8>; } defm : ZXB; // Addition producing and using a carry. let Defs = [CC], Uses = [CC] in { // Addition of a register. def ALCR : BinaryRRE<"alc", 0xB998, adde, GR32, GR32>; def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>; // Addition of memory. def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load, 4>; def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>; } //===----------------------------------------------------------------------===// // Subtraction //===----------------------------------------------------------------------===// // Plain substraction. Although immediate forms exist, we use the // add-immediate instruction instead. let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in { // Subtraction of a register. defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>; def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>; defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>; // Subtraction of memory. defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, asextloadi16, 2>; defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>; def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, asextloadi32, 4>; def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load, 8>; } defm : SXB; // Subtraction producing a carry. let Defs = [CC] in { // Subtraction of a register. defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>; def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>; defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>; // Subtraction of unsigned 32-bit immediates. These don't match // subc because we prefer addc for constants. def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>; def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>; // Subtraction of memory. defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>; def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, azextloadi32, 4>; def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load, 8>; } defm : ZXB; // Subtraction producing and using a carry. let Defs = [CC], Uses = [CC] in { // Subtraction of a register. def SLBR : BinaryRRE<"slb", 0xB999, sube, GR32, GR32>; def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>; // Subtraction of memory. def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load, 4>; def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>; } //===----------------------------------------------------------------------===// // AND //===----------------------------------------------------------------------===// let Defs = [CC] in { // ANDs of a register. let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>; defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>; } let isConvertibleToThreeAddress = 1 in { // ANDs of a 16-bit immediate, leaving other bits unaffected. // The CC result only reflects the 16-bit field, not the full register. let isCodeGenOnly = 1 in { def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>; def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>; } def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>; def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>; def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>; def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>; // ANDs of a 32-bit immediate, leaving other bits unaffected. // The CC result only reflects the 32-bit field, which means we can // use it as a zero indicator for i32 operations but not otherwise. let isCodeGenOnly = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>; def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>; def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>; } // ANDs of memory. let CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>; def NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>; } // AND to memory defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>; // Block AND. let mayLoad = 1, mayStore = 1 in defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>; } defm : RMWIByte; defm : RMWIByte; //===----------------------------------------------------------------------===// // OR //===----------------------------------------------------------------------===// let Defs = [CC] in { // ORs of a register. let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>; defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>; } // ORs of a 16-bit immediate, leaving other bits unaffected. // The CC result only reflects the 16-bit field, not the full register. let isCodeGenOnly = 1 in { def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>; def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>; } def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>; def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>; def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>; def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>; // ORs of a 32-bit immediate, leaving other bits unaffected. // The CC result only reflects the 32-bit field, which means we can // use it as a zero indicator for i32 operations but not otherwise. let isCodeGenOnly = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>; def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>; def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>; // ORs of memory. let CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>; def OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>; } // OR to memory defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>; // Block OR. let mayLoad = 1, mayStore = 1 in defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>; } defm : RMWIByte; defm : RMWIByte; //===----------------------------------------------------------------------===// // XOR //===----------------------------------------------------------------------===// let Defs = [CC] in { // XORs of a register. let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>; defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>; } // XORs of a 32-bit immediate, leaving other bits unaffected. // The CC result only reflects the 32-bit field, which means we can // use it as a zero indicator for i32 operations but not otherwise. let isCodeGenOnly = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>; def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>; def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>; // XORs of memory. let CCValues = 0xC, CompareZeroCCMask = 0x8 in { defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>; def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>; } // XOR to memory defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>; // Block XOR. let mayLoad = 1, mayStore = 1 in defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>; } defm : RMWIByte; defm : RMWIByte; //===----------------------------------------------------------------------===// // Multiplication //===----------------------------------------------------------------------===// // Multiplication of a register. let isCommutable = 1 in { def MSR : BinaryRRE<"ms", 0xB252, mul, GR32, GR32>; def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>; } def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>; defm : SXB; // Multiplication of a signed 16-bit immediate. def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>; def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>; // Multiplication of a signed 32-bit immediate. def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>; def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>; // Multiplication of memory. defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>; defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>; def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>; def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load, 8>; // Multiplication of a register, producing two results. def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>; // Multiplication of memory, producing two results. def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>; //===----------------------------------------------------------------------===// // Division and remainder //===----------------------------------------------------------------------===// // Division and remainder, from registers. def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>; def DSGR : BinaryRRE<"dsg", 0xB90D, z_sdivrem64, GR128, GR64>; def DLR : BinaryRRE<"dl", 0xB997, z_udivrem32, GR128, GR32>; def DLGR : BinaryRRE<"dlg", 0xB987, z_udivrem64, GR128, GR64>; // Division and remainder, from memory. def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>; def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load, 8>; def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load, 4>; def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load, 8>; //===----------------------------------------------------------------------===// // Shifts //===----------------------------------------------------------------------===// // Shift left. let neverHasSideEffects = 1 in { defm SLL : ShiftRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>; def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64>; } // Logical shift right. let neverHasSideEffects = 1 in { defm SRL : ShiftRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>; def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64>; } // Arithmetic shift right. let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { defm SRA : ShiftRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>; def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64>; } // Rotate left. let neverHasSideEffects = 1 in { def RLL : ShiftRSY<"rll", 0xEB1D, rotl, GR32>; def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64>; } // Rotate second operand left and inserted selected bits into first operand. // These can act like 32-bit operands provided that the constant start and // end bits (operands 2 and 3) are in the range [32, 64). let Defs = [CC] in { let isCodeGenOnly = 1 in def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>; let CCValues = 0xE, CompareZeroCCMask = 0xE in def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>; } // Forms of RISBG that only affect one word of the destination register. // They do not set CC. let isCodeGenOnly = 1 in def RISBLG32 : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR32>, Requires<[FeatureHighWord]>; def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GR64, GR64>, Requires<[FeatureHighWord]>; def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR64, GR64>, Requires<[FeatureHighWord]>; // Rotate second operand left and perform a logical operation with selected // bits of the first operand. The CC result only describes the selected bits, // so isn't useful for a full comparison against zero. let Defs = [CC] in { def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>; def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>; def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>; } //===----------------------------------------------------------------------===// // Comparison //===----------------------------------------------------------------------===// // Signed comparisons. We put these before the unsigned comparisons because // some of the signed forms have COMPARE AND BRANCH equivalents whereas none // of the unsigned forms do. let Defs = [CC], CCValues = 0xE in { // Comparison with a register. def CR : CompareRR <"c", 0x19, z_scmp, GR32, GR32>; def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>; def CGR : CompareRRE<"cg", 0xB920, z_scmp, GR64, GR64>; // Comparison with a signed 16-bit immediate. def CHI : CompareRI<"chi", 0xA7E, z_scmp, GR32, imm32sx16>; def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>; // Comparison with a signed 32-bit immediate. def CFI : CompareRIL<"cfi", 0xC2D, z_scmp, GR32, simm32>; def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>; // Comparison with memory. defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>; defm C : CompareRXPair<"c", 0x59, 0xE359, z_scmp, GR32, load, 4>; def CGH : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>; def CGF : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>; def CG : CompareRXY<"cg", 0xE320, z_scmp, GR64, load, 8>; def CHRL : CompareRILPC<"chrl", 0xC65, z_scmp, GR32, aligned_asextloadi16>; def CRL : CompareRILPC<"crl", 0xC6D, z_scmp, GR32, aligned_load>; def CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>; def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>; def CGRL : CompareRILPC<"cgrl", 0xC68, z_scmp, GR64, aligned_load>; // Comparison between memory and a signed 16-bit immediate. def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>; def CHSI : CompareSIL<"chsi", 0xE55C, z_scmp, load, imm32sx16>; def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>; } defm : SXB; // Unsigned comparisons. let Defs = [CC], CCValues = 0xE, IsLogical = 1 in { // Comparison with a register. def CLR : CompareRR <"cl", 0x15, z_ucmp, GR32, GR32>; def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>; def CLGR : CompareRRE<"clg", 0xB921, z_ucmp, GR64, GR64>; // Comparison with a signed 32-bit immediate. def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>; def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>; // Comparison with memory. defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>; def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>; def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load, 8>; def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32, aligned_azextloadi16>; def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32, aligned_load>; def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64, aligned_azextloadi16>; def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64, aligned_azextloadi32>; def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64, aligned_load>; // Comparison between memory and an unsigned 8-bit immediate. defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>; // Comparison between memory and an unsigned 16-bit immediate. def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>; def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>; def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>; } defm : ZXB; // Memory-to-memory comparison. let mayLoad = 1, Defs = [CC] in defm CLC : MemorySS<"clc", 0xD5, z_clc, z_clc_loop>; // String comparison. let mayLoad = 1, Defs = [CC], Uses = [R0W] in defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>; // Test under mask. let Defs = [CC] in { let isCodeGenOnly = 1 in { def TMLL32 : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>; def TMLH32 : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>; } def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR64, imm64ll16>; def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR64, imm64lh16>; def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GR64, imm64hl16>; def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GR64, imm64hh16>; defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>; } //===----------------------------------------------------------------------===// // Prefetch //===----------------------------------------------------------------------===// def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>; def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>; //===----------------------------------------------------------------------===// // Atomic operations //===----------------------------------------------------------------------===// def ATOMIC_SWAPW : AtomicLoadWBinaryReg; def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32; def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64; def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg; def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm; def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32; def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32; def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32; def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64; def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64; def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64; def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg; def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32; def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64; def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg; def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm; def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32; def ATOMIC_LOAD_NILL32 : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NILH32 : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NILF32 : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64; def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHL : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHH : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHF : AtomicLoadBinaryImm64; def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg; def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm; def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32; def ATOMIC_LOAD_OILL32 : AtomicLoadBinaryImm32; def ATOMIC_LOAD_OILH32 : AtomicLoadBinaryImm32; def ATOMIC_LOAD_OILF32 : AtomicLoadBinaryImm32; def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64; def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm64; def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm64; def ATOMIC_LOAD_OIHL : AtomicLoadBinaryImm64; def ATOMIC_LOAD_OIHH : AtomicLoadBinaryImm64; def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm64; def ATOMIC_LOAD_OIHF : AtomicLoadBinaryImm64; def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg; def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm; def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32; def ATOMIC_LOAD_XILF32 : AtomicLoadBinaryImm32; def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64; def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm64; def ATOMIC_LOAD_XIHF : AtomicLoadBinaryImm64; def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg; def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm; def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32; def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32; def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64; def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHLi : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHHi : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm64; def ATOMIC_LOAD_NIHFi : AtomicLoadBinaryImm64; def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg; def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32; def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64; def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg; def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32; def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64; def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg; def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32; def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64; def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg; def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32; def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64; def ATOMIC_CMP_SWAPW : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap, ADDR32:$bitshift, ADDR32:$negbitshift, uimm32:$bitsize), [(set GR32:$dst, (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap, ADDR32:$bitshift, ADDR32:$negbitshift, uimm32:$bitsize))]> { let Defs = [CC]; let mayLoad = 1; let mayStore = 1; let usesCustomInserter = 1; } let Defs = [CC] in { defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>; def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>; } //===----------------------------------------------------------------------===// // Miscellaneous Instructions. //===----------------------------------------------------------------------===// // Extract CC into bits 29 and 28 of a register. let Uses = [CC] in def IPM : InherentRRE<"ipm", 0xB222, GR32, (z_ipm)>; // Read a 32-bit access register into a GR32. As with all GR32 operations, // the upper 32 bits of the enclosing GR64 remain unchanged, which is useful // when a 64-bit address is stored in a pair of access registers. def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2), "ear\t$R1, $R2", [(set GR32:$R1, (z_extract_access access_reg:$R2))]>; // Find leftmost one, AKA count leading zeros. The instruction actually // returns a pair of GR64s, the first giving the number of leading zeros // and the second giving a copy of the source with the leftmost one bit // cleared. We only use the first result here. let Defs = [CC] in { def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>; } def : Pat<(ctlz GR64:$src), (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>; // Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext. def : Pat<(i64 (anyext GR32:$src)), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>; // There are no 32-bit equivalents of LLILL and LLILH, so use a full // 64-bit move followed by a subreg. This preserves the invariant that // all GR32 operations only modify the low 32 bits. def : Pat<(i32 imm32ll16:$src), (EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>; def : Pat<(i32 imm32lh16:$src), (EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>; // Extend GR32s and GR64s to GR128s. let usesCustomInserter = 1 in { def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>; def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; } // Search a block of memory for a character. let mayLoad = 1, Defs = [CC], Uses = [R0W] in defm SRST : StringRRE<"srst", 0xb25e, z_search_string>; //===----------------------------------------------------------------------===// // Peepholes. //===----------------------------------------------------------------------===// // Use AL* for GR64 additions of unsigned 32-bit values. defm : ZXB; def : Pat<(add GR64:$src1, imm64zx32:$src2), (ALGFI GR64:$src1, imm64zx32:$src2)>; def : Pat<(add GR64:$src1, (azextloadi32 bdxaddr20only:$addr)), (ALGF GR64:$src1, bdxaddr20only:$addr)>; // Use SL* for GR64 subtractions of unsigned 32-bit values. defm : ZXB; def : Pat<(add GR64:$src1, imm64zx32n:$src2), (SLGFI GR64:$src1, imm64zx32n:$src2)>; def : Pat<(sub GR64:$src1, (azextloadi32 bdxaddr20only:$addr)), (SLGF GR64:$src1, bdxaddr20only:$addr)>; // Optimize sign-extended 1/0 selects to -1/0 selects. This is important // for vector legalization. def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid, uimm8zx4:$cc)), (i32 31)), (i32 31)), (Select32 (LHI -1), (LHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>; def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid, uimm8zx4:$cc)))), (i32 63)), (i32 63)), (Select64 (LGHI -1), (LGHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>; // Peepholes for turning scalar operations into block operations. defm : BlockLoadStore; defm : BlockLoadStore; defm : BlockLoadStore; defm : BlockLoadStore; defm : BlockLoadStore; defm : BlockLoadStore; defm : BlockLoadStore;