//===- ARM64CallingConv.td - Calling Conventions for ARM64 -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This describes the calling conventions for ARM64 architecture. // //===----------------------------------------------------------------------===// /// CCIfAlign - Match of the original alignment of the arg class CCIfAlign : CCIf; /// CCIfBigEndian - Match only if we're in big endian mode. class CCIfBigEndian : CCIf<"State.getTarget().getDataLayout()->isBigEndian()", A>; //===----------------------------------------------------------------------===// // ARM AAPCS64 Calling Convention //===----------------------------------------------------------------------===// def CC_ARM64_AAPCS : CallingConv<[ CCIfType<[v2f32], CCBitConvertToType>, CCIfType<[v2f64, v4f32], CCBitConvertToType>, // Big endian vectors must be passed as if they were 1-element vectors so that // their lanes are in a consistent order. CCIfBigEndian>>, CCIfBigEndian>>, // An SRet is passed in X8, not X0 like a normal pointer parameter. CCIfSRet>>, // Put ByVal arguments directly on the stack. Minimum size and alignment of a // slot is 64-bit. CCIfByVal>, // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers, // up to eight each of GPR and FPR. CCIfType<[i1, i8, i16], CCCustom<"CC_ARM64_Custom_i1i8i16_Reg">>, CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7], [X0, X1, X2, X3, X4, X5, X6, X7]>>, // i128 is split to two i64s, we can't fit half to register X7. CCIfType<[i64], CCIfSplit>>, // i128 is split to two i64s, and its stack alignment is 16 bytes. CCIfType<[i64], CCIfSplit>>, CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7], [W0, W1, W2, W3, W4, W5, W6, W7]>>, CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7], [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7], [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7], [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, // If more than will fit in registers, pass them on the stack instead. CCIfType<[i1, i8, i16], CCAssignToStack<8, 8>>, CCIfType<[i32, f32], CCAssignToStack<8, 8>>, CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8], CCAssignToStack<8, 8>>, CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToStack<16, 16>> ]>; def RetCC_ARM64_AAPCS : CallingConv<[ CCIfType<[v2f32], CCBitConvertToType>, CCIfType<[v2f64, v4f32], CCBitConvertToType>, // Big endian vectors must be passed as if they were 1-element vectors so that // their lanes are in a consistent order. CCIfBigEndian>>, CCIfBigEndian>>, CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7], [X0, X1, X2, X3, X4, X5, X6, X7]>>, CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7], [W0, W1, W2, W3, W4, W5, W6, W7]>>, CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7], [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7], [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7], [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>> ]>; // Darwin uses a calling convention which differs in only two ways // from the standard one at this level: // + i128s (i.e. split i64s) don't need even registers. // + Stack slots are sized as needed rather than being at least 64-bit. def CC_ARM64_DarwinPCS : CallingConv<[ CCIfType<[v2f32], CCBitConvertToType>, CCIfType<[v2f64, v4f32, f128], CCBitConvertToType>, // An SRet is passed in X8, not X0 like a normal pointer parameter. CCIfSRet>>, // Put ByVal arguments directly on the stack. Minimum size and alignment of a // slot is 64-bit. CCIfByVal>, // Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers, // up to eight each of GPR and FPR. CCIfType<[i1, i8, i16], CCCustom<"CC_ARM64_Custom_i1i8i16_Reg">>, CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7], [X0, X1, X2, X3, X4, X5, X6, X7]>>, // i128 is split to two i64s, we can't fit half to register X7. CCIfType<[i64], CCIfSplit>>, // i128 is split to two i64s, and its stack alignment is 16 bytes. CCIfType<[i64], CCIfSplit>>, CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7], [W0, W1, W2, W3, W4, W5, W6, W7]>>, CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7], [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7], [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7], [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, // If more than will fit in registers, pass them on the stack instead. CCIfType<[i1, i8, i16], CCCustom<"CC_ARM64_Custom_i1i8i16_Stack">>, CCIfType<[i32, f32], CCAssignToStack<4, 4>>, CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8], CCAssignToStack<8, 8>>, CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToStack<16, 16>> ]>; def CC_ARM64_DarwinPCS_VarArg : CallingConv<[ CCIfType<[v2f32], CCBitConvertToType>, CCIfType<[v2f64, v4f32, f128], CCBitConvertToType>, // Handle all scalar types as either i64 or f64. CCIfType<[i8, i16, i32], CCPromoteToType>, CCIfType<[f32], CCPromoteToType>, // Everything is on the stack. // i128 is split to two i64s, and its stack alignment is 16 bytes. CCIfType<[i64], CCIfSplit>>, CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32], CCAssignToStack<8, 8>>, CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64], CCAssignToStack<16, 16>> ]>; // The WebKit_JS calling convention only passes the first argument (the callee) // in register and the remaining arguments on stack. We allow 32bit stack slots, // so that WebKit can write partial values in the stack and define the other // 32bit quantity as undef. def CC_ARM64_WebKit_JS : CallingConv<[ // Handle i1, i8, i16, i32, and i64 passing in register X0 (W0). CCIfType<[i1, i8, i16], CCCustom<"CC_ARM64_WebKit_JS_i1i8i16_Reg">>, CCIfType<[i32], CCAssignToRegWithShadow<[W0], [X0]>>, CCIfType<[i64], CCAssignToRegWithShadow<[X0], [W0]>>, // Pass the remaining arguments on the stack instead. CCIfType<[i1, i8, i16], CCAssignToStack<4, 4>>, CCIfType<[i32, f32], CCAssignToStack<4, 4>>, CCIfType<[i64, f64], CCAssignToStack<8, 8>> ]>; def RetCC_ARM64_WebKit_JS : CallingConv<[ CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7], [X0, X1, X2, X3, X4, X5, X6, X7]>>, CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7], [W0, W1, W2, W3, W4, W5, W6, W7]>>, CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7], [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>, CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7], [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>> ]>; // FIXME: LR is only callee-saved in the sense that *we* preserve it and are // presumably a callee to someone. External functions may not do so, but this // is currently safe since BL has LR as an implicit-def and what happens after a // tail call doesn't matter. // // It would be better to model its preservation semantics properly (create a // vreg on entry, use it in RET & tail call generation; make that vreg def if we // end up saving LR as part of a call frame). Watch this space... def CSR_ARM64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22, X23, X24, X25, X26, X27, X28, D8, D9, D10, D11, D12, D13, D14, D15)>; // Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since // 'this' and the pointer return value are both passed in X0 in these cases, // this can be partially modelled by treating X0 as a callee-saved register; // only the resulting RegMask is used; the SaveList is ignored // // (For generic ARM 64-bit ABI code, clang will not generate constructors or // destructors with 'this' returns, so this RegMask will not be used in that // case) def CSR_ARM64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_ARM64_AAPCS, X0)>; // The function used by Darwin to obtain the address of a thread-local variable // guarantees more than a normal AAPCS function. x16 and x17 are used on the // fast path for calculation, but other registers except X0 (argument/return) // and LR (it is a call, after all) are preserved. def CSR_ARM64_TLS_Darwin : CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17), FP, (sequence "Q%u", 0, 31))>; // The ELF stub used for TLS-descriptor access saves every feasible // register. Only X0 and LR are clobbered. def CSR_ARM64_TLS_ELF : CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP, (sequence "Q%u", 0, 31))>; def CSR_ARM64_AllRegs : CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP, (sequence "X%u", 0, 28), FP, LR, SP, (sequence "B%u", 0, 31), (sequence "H%u", 0, 31), (sequence "S%u", 0, 31), (sequence "D%u", 0, 31), (sequence "Q%u", 0, 31))>;