//===- Win32/Process.cpp - Win32 Process Implementation ------- -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides the Win32 specific implementation of the Process class. // //===----------------------------------------------------------------------===// #include "llvm/Support/Allocator.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/WindowsError.h" #include // The Windows.h header must be after LLVM and standard headers. #include "WindowsSupport.h" #include #include #include #include #ifdef __MINGW32__ #if (HAVE_LIBPSAPI != 1) #error "libpsapi.a should be present" #endif #if (HAVE_LIBSHELL32 != 1) #error "libshell32.a should be present" #endif #else #pragma comment(lib, "psapi.lib") #pragma comment(lib, "shell32.lib") #endif //===----------------------------------------------------------------------===// //=== WARNING: Implementation here must contain only Win32 specific code //=== and must not be UNIX code //===----------------------------------------------------------------------===// #ifdef __MINGW32__ // This ban should be lifted when MinGW 1.0+ has defined this value. # define _HEAPOK (-2) #endif using namespace llvm; using namespace sys; using std::error_code; process::id_type self_process::get_id() { return GetCurrentProcessId(); } static TimeValue getTimeValueFromFILETIME(FILETIME Time) { ULARGE_INTEGER TimeInteger; TimeInteger.LowPart = Time.dwLowDateTime; TimeInteger.HighPart = Time.dwHighDateTime; // FILETIME's are # of 100 nanosecond ticks (1/10th of a microsecond) return TimeValue( static_cast(TimeInteger.QuadPart / 10000000), static_cast( (TimeInteger.QuadPart % 10000000) * 100)); } TimeValue self_process::get_user_time() const { FILETIME ProcCreate, ProcExit, KernelTime, UserTime; if (GetProcessTimes(GetCurrentProcess(), &ProcCreate, &ProcExit, &KernelTime, &UserTime) == 0) return TimeValue(); return getTimeValueFromFILETIME(UserTime); } TimeValue self_process::get_system_time() const { FILETIME ProcCreate, ProcExit, KernelTime, UserTime; if (GetProcessTimes(GetCurrentProcess(), &ProcCreate, &ProcExit, &KernelTime, &UserTime) == 0) return TimeValue(); return getTimeValueFromFILETIME(KernelTime); } // This function retrieves the page size using GetNativeSystemInfo() and is // present solely so it can be called once to initialize the self_process member // below. static unsigned getPageSize() { // GetNativeSystemInfo() provides the physical page size which may differ // from GetSystemInfo() in 32-bit applications running under WOW64. SYSTEM_INFO info; GetNativeSystemInfo(&info); // FIXME: FileOffset in MapViewOfFile() should be aligned to not dwPageSize, // but dwAllocationGranularity. return static_cast(info.dwPageSize); } // This constructor guaranteed to be run exactly once on a single thread, and // sets up various process invariants that can be queried cheaply from then on. self_process::self_process() : PageSize(getPageSize()) { } size_t Process::GetMallocUsage() { _HEAPINFO hinfo; hinfo._pentry = NULL; size_t size = 0; while (_heapwalk(&hinfo) == _HEAPOK) size += hinfo._size; return size; } void Process::GetTimeUsage(TimeValue &elapsed, TimeValue &user_time, TimeValue &sys_time) { elapsed = TimeValue::now(); FILETIME ProcCreate, ProcExit, KernelTime, UserTime; if (GetProcessTimes(GetCurrentProcess(), &ProcCreate, &ProcExit, &KernelTime, &UserTime) == 0) return; user_time = getTimeValueFromFILETIME(UserTime); sys_time = getTimeValueFromFILETIME(KernelTime); } // Some LLVM programs such as bugpoint produce core files as a normal part of // their operation. To prevent the disk from filling up, this configuration // item does what's necessary to prevent their generation. void Process::PreventCoreFiles() { // Windows does have the concept of core files, called minidumps. However, // disabling minidumps for a particular application extends past the lifetime // of that application, which is the incorrect behavior for this API. // Additionally, the APIs require elevated privileges to disable and re- // enable minidumps, which makes this untenable. For more information, see // WerAddExcludedApplication and WerRemoveExcludedApplication (Vista and // later). // // Windows also has modal pop-up message boxes. As this method is used by // bugpoint, preventing these pop-ups is additionally important. SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX); } /// Returns the environment variable \arg Name's value as a string encoded in /// UTF-8. \arg Name is assumed to be in UTF-8 encoding. Optional Process::GetEnv(StringRef Name) { // Convert the argument to UTF-16 to pass it to _wgetenv(). SmallVector NameUTF16; if (windows::UTF8ToUTF16(Name, NameUTF16)) return None; // Environment variable can be encoded in non-UTF8 encoding, and there's no // way to know what the encoding is. The only reliable way to look up // multibyte environment variable is to use GetEnvironmentVariableW(). SmallVector Buf; size_t Size = MAX_PATH; do { Buf.reserve(Size); Size = GetEnvironmentVariableW(NameUTF16.data(), Buf.data(), Buf.capacity()); if (Size == 0) return None; // Try again with larger buffer. } while (Size > Buf.capacity()); Buf.set_size(Size); // Convert the result from UTF-16 to UTF-8. SmallVector Res; if (windows::UTF16ToUTF8(Buf.data(), Size, Res)) return None; return std::string(Res.data()); } static error_code windows_error(DWORD E) { return mapWindowsError(E); } error_code Process::GetArgumentVector(SmallVectorImpl &Args, ArrayRef, SpecificBumpPtrAllocator &ArgAllocator) { int NewArgCount; error_code ec; wchar_t **UnicodeCommandLine = CommandLineToArgvW(GetCommandLineW(), &NewArgCount); if (!UnicodeCommandLine) return windows_error(::GetLastError()); Args.reserve(NewArgCount); for (int i = 0; i < NewArgCount; ++i) { SmallVector NewArgString; ec = windows::UTF16ToUTF8(UnicodeCommandLine[i], wcslen(UnicodeCommandLine[i]), NewArgString); if (ec) break; char *Buffer = ArgAllocator.Allocate(NewArgString.size() + 1); ::memcpy(Buffer, NewArgString.data(), NewArgString.size() + 1); Args.push_back(Buffer); } LocalFree(UnicodeCommandLine); if (ec) return ec; return error_code(); } bool Process::StandardInIsUserInput() { return FileDescriptorIsDisplayed(0); } bool Process::StandardOutIsDisplayed() { return FileDescriptorIsDisplayed(1); } bool Process::StandardErrIsDisplayed() { return FileDescriptorIsDisplayed(2); } bool Process::FileDescriptorIsDisplayed(int fd) { DWORD Mode; // Unused return (GetConsoleMode((HANDLE)_get_osfhandle(fd), &Mode) != 0); } unsigned Process::StandardOutColumns() { unsigned Columns = 0; CONSOLE_SCREEN_BUFFER_INFO csbi; if (GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi)) Columns = csbi.dwSize.X; return Columns; } unsigned Process::StandardErrColumns() { unsigned Columns = 0; CONSOLE_SCREEN_BUFFER_INFO csbi; if (GetConsoleScreenBufferInfo(GetStdHandle(STD_ERROR_HANDLE), &csbi)) Columns = csbi.dwSize.X; return Columns; } // The terminal always has colors. bool Process::FileDescriptorHasColors(int fd) { return FileDescriptorIsDisplayed(fd); } bool Process::StandardOutHasColors() { return FileDescriptorHasColors(1); } bool Process::StandardErrHasColors() { return FileDescriptorHasColors(2); } static bool UseANSI = false; void Process::UseANSIEscapeCodes(bool enable) { UseANSI = enable; } namespace { class DefaultColors { private: WORD defaultColor; public: DefaultColors() :defaultColor(GetCurrentColor()) {} static unsigned GetCurrentColor() { CONSOLE_SCREEN_BUFFER_INFO csbi; if (GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi)) return csbi.wAttributes; return 0; } WORD operator()() const { return defaultColor; } }; DefaultColors defaultColors; } bool Process::ColorNeedsFlush() { return !UseANSI; } const char *Process::OutputBold(bool bg) { if (UseANSI) return "\033[1m"; WORD colors = DefaultColors::GetCurrentColor(); if (bg) colors |= BACKGROUND_INTENSITY; else colors |= FOREGROUND_INTENSITY; SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), colors); return 0; } const char *Process::OutputColor(char code, bool bold, bool bg) { if (UseANSI) return colorcodes[bg?1:0][bold?1:0][code&7]; WORD colors; if (bg) { colors = ((code&1) ? BACKGROUND_RED : 0) | ((code&2) ? BACKGROUND_GREEN : 0 ) | ((code&4) ? BACKGROUND_BLUE : 0); if (bold) colors |= BACKGROUND_INTENSITY; } else { colors = ((code&1) ? FOREGROUND_RED : 0) | ((code&2) ? FOREGROUND_GREEN : 0 ) | ((code&4) ? FOREGROUND_BLUE : 0); if (bold) colors |= FOREGROUND_INTENSITY; } SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), colors); return 0; } static WORD GetConsoleTextAttribute(HANDLE hConsoleOutput) { CONSOLE_SCREEN_BUFFER_INFO info; GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &info); return info.wAttributes; } const char *Process::OutputReverse() { if (UseANSI) return "\033[7m"; const WORD attributes = GetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE)); const WORD foreground_mask = FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_INTENSITY; const WORD background_mask = BACKGROUND_BLUE | BACKGROUND_GREEN | BACKGROUND_RED | BACKGROUND_INTENSITY; const WORD color_mask = foreground_mask | background_mask; WORD new_attributes = ((attributes & FOREGROUND_BLUE )?BACKGROUND_BLUE :0) | ((attributes & FOREGROUND_GREEN )?BACKGROUND_GREEN :0) | ((attributes & FOREGROUND_RED )?BACKGROUND_RED :0) | ((attributes & FOREGROUND_INTENSITY)?BACKGROUND_INTENSITY:0) | ((attributes & BACKGROUND_BLUE )?FOREGROUND_BLUE :0) | ((attributes & BACKGROUND_GREEN )?FOREGROUND_GREEN :0) | ((attributes & BACKGROUND_RED )?FOREGROUND_RED :0) | ((attributes & BACKGROUND_INTENSITY)?FOREGROUND_INTENSITY:0) | 0; new_attributes = (attributes & ~color_mask) | (new_attributes & color_mask); SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), new_attributes); return 0; } const char *Process::ResetColor() { if (UseANSI) return "\033[0m"; SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), defaultColors()); return 0; } unsigned Process::GetRandomNumber() { HCRYPTPROV HCPC; if (!::CryptAcquireContextW(&HCPC, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) report_fatal_error("Could not acquire a cryptographic context"); ScopedCryptContext CryptoProvider(HCPC); unsigned Ret; if (!::CryptGenRandom(CryptoProvider, sizeof(Ret), reinterpret_cast(&Ret))) report_fatal_error("Could not generate a random number"); return Ret; }