//===- llvm/Support/Unix/Program.cpp -----------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Unix specific portion of the Program class. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// //=== WARNING: Implementation here must contain only generic UNIX code that //=== is guaranteed to work on *all* UNIX variants. //===----------------------------------------------------------------------===// #include "Unix.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/FileSystem.h" #include #if HAVE_SYS_STAT_H #include #endif #if HAVE_SYS_RESOURCE_H #include #endif #if HAVE_SIGNAL_H #include #endif #if HAVE_FCNTL_H #include #endif #if HAVE_UNISTD_H #include #endif #ifdef HAVE_POSIX_SPAWN #include #if !defined(__APPLE__) extern char **environ; #else #include // _NSGetEnviron #endif #endif namespace llvm { using namespace sys; // This function just uses the PATH environment variable to find the program. std::string sys::FindProgramByName(const std::string& progName) { // Check some degenerate cases if (progName.length() == 0) // no program return ""; std::string temp = progName; // Use the given path verbatim if it contains any slashes; this matches // the behavior of sh(1) and friends. if (progName.find('/') != std::string::npos) return temp; // At this point, the file name is valid and does not contain slashes. Search // for it through the directories specified in the PATH environment variable. // Get the path. If its empty, we can't do anything to find it. const char *PathStr = getenv("PATH"); if (PathStr == 0) return ""; // Now we have a colon separated list of directories to search; try them. size_t PathLen = strlen(PathStr); while (PathLen) { // Find the first colon... const char *Colon = std::find(PathStr, PathStr+PathLen, ':'); // Check to see if this first directory contains the executable... SmallString<128> FilePath(PathStr,Colon); sys::path::append(FilePath, progName); if (sys::fs::can_execute(Twine(FilePath))) return FilePath.str(); // Found the executable! // Nope it wasn't in this directory, check the next path in the list! PathLen -= Colon-PathStr; PathStr = Colon; // Advance past duplicate colons while (*PathStr == ':') { PathStr++; PathLen--; } } return ""; } static bool RedirectIO(const StringRef *Path, int FD, std::string* ErrMsg) { if (Path == 0) // Noop return false; std::string File; if (Path->empty()) // Redirect empty paths to /dev/null File = "/dev/null"; else File = *Path; // Open the file int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY|O_CREAT, 0666); if (InFD == -1) { MakeErrMsg(ErrMsg, "Cannot open file '" + File + "' for " + (FD == 0 ? "input" : "output")); return true; } // Install it as the requested FD if (dup2(InFD, FD) == -1) { MakeErrMsg(ErrMsg, "Cannot dup2"); close(InFD); return true; } close(InFD); // Close the original FD return false; } #ifdef HAVE_POSIX_SPAWN static bool RedirectIO_PS(const std::string *Path, int FD, std::string *ErrMsg, posix_spawn_file_actions_t *FileActions) { if (Path == 0) // Noop return false; const char *File; if (Path->empty()) // Redirect empty paths to /dev/null File = "/dev/null"; else File = Path->c_str(); if (int Err = posix_spawn_file_actions_addopen( FileActions, FD, File, FD == 0 ? O_RDONLY : O_WRONLY | O_CREAT, 0666)) return MakeErrMsg(ErrMsg, "Cannot dup2", Err); return false; } #endif static void TimeOutHandler(int Sig) { } static void SetMemoryLimits (unsigned size) { #if HAVE_SYS_RESOURCE_H && HAVE_GETRLIMIT && HAVE_SETRLIMIT struct rlimit r; __typeof__ (r.rlim_cur) limit = (__typeof__ (r.rlim_cur)) (size) * 1048576; // Heap size getrlimit (RLIMIT_DATA, &r); r.rlim_cur = limit; setrlimit (RLIMIT_DATA, &r); #ifdef RLIMIT_RSS // Resident set size. getrlimit (RLIMIT_RSS, &r); r.rlim_cur = limit; setrlimit (RLIMIT_RSS, &r); #endif #ifdef RLIMIT_AS // e.g. NetBSD doesn't have it. // Don't set virtual memory limit if built with any Sanitizer. They need 80Tb // of virtual memory for shadow memory mapping. #if !LLVM_MEMORY_SANITIZER_BUILD && !LLVM_ADDRESS_SANITIZER_BUILD // Virtual memory. getrlimit (RLIMIT_AS, &r); r.rlim_cur = limit; setrlimit (RLIMIT_AS, &r); #endif #endif #endif } } static bool Execute(void **Data, StringRef Program, const char **args, const char **envp, const StringRef **redirects, unsigned memoryLimit, std::string *ErrMsg) { // If this OS has posix_spawn and there is no memory limit being implied, use // posix_spawn. It is more efficient than fork/exec. #ifdef HAVE_POSIX_SPAWN if (memoryLimit == 0) { posix_spawn_file_actions_t FileActionsStore; posix_spawn_file_actions_t *FileActions = 0; // If we call posix_spawn_file_actions_addopen we have to make sure the // c strings we pass to it stay alive until the call to posix_spawn, // so we copy any StringRefs into this variable. std::string RedirectsStorage[3]; if (redirects) { std::string *RedirectsStr[3] = {0, 0, 0}; for (int I = 0; I < 3; ++I) { if (redirects[I]) { RedirectsStorage[I] = *redirects[I]; RedirectsStr[I] = &RedirectsStorage[I]; } } FileActions = &FileActionsStore; posix_spawn_file_actions_init(FileActions); // Redirect stdin/stdout. if (RedirectIO_PS(RedirectsStr[0], 0, ErrMsg, FileActions) || RedirectIO_PS(RedirectsStr[1], 1, ErrMsg, FileActions)) return false; if (redirects[1] == 0 || redirects[2] == 0 || *redirects[1] != *redirects[2]) { // Just redirect stderr if (RedirectIO_PS(RedirectsStr[2], 2, ErrMsg, FileActions)) return false; } else { // If stdout and stderr should go to the same place, redirect stderr // to the FD already open for stdout. if (int Err = posix_spawn_file_actions_adddup2(FileActions, 1, 2)) return !MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout", Err); } } if (!envp) #if !defined(__APPLE__) envp = const_cast(environ); #else // environ is missing in dylibs. envp = const_cast(*_NSGetEnviron()); #endif // Explicitly initialized to prevent what appears to be a valgrind false // positive. pid_t PID = 0; int Err = posix_spawn(&PID, Program.str().c_str(), FileActions, /*attrp*/0, const_cast(args), const_cast(envp)); if (FileActions) posix_spawn_file_actions_destroy(FileActions); if (Err) return !MakeErrMsg(ErrMsg, "posix_spawn failed", Err); if (Data) *Data = reinterpret_cast(PID); return true; } #endif // Create a child process. int child = fork(); switch (child) { // An error occurred: Return to the caller. case -1: MakeErrMsg(ErrMsg, "Couldn't fork"); return false; // Child process: Execute the program. case 0: { // Redirect file descriptors... if (redirects) { // Redirect stdin if (RedirectIO(redirects[0], 0, ErrMsg)) { return false; } // Redirect stdout if (RedirectIO(redirects[1], 1, ErrMsg)) { return false; } if (redirects[1] && redirects[2] && *(redirects[1]) == *(redirects[2])) { // If stdout and stderr should go to the same place, redirect stderr // to the FD already open for stdout. if (-1 == dup2(1,2)) { MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout"); return false; } } else { // Just redirect stderr if (RedirectIO(redirects[2], 2, ErrMsg)) { return false; } } } // Set memory limits if (memoryLimit!=0) { SetMemoryLimits(memoryLimit); } // Execute! std::string PathStr = Program; if (envp != 0) execve(PathStr.c_str(), const_cast(args), const_cast(envp)); else execv(PathStr.c_str(), const_cast(args)); // If the execve() failed, we should exit. Follow Unix protocol and // return 127 if the executable was not found, and 126 otherwise. // Use _exit rather than exit so that atexit functions and static // object destructors cloned from the parent process aren't // redundantly run, and so that any data buffered in stdio buffers // cloned from the parent aren't redundantly written out. _exit(errno == ENOENT ? 127 : 126); } // Parent process: Break out of the switch to do our processing. default: break; } if (Data) *Data = reinterpret_cast(child); return true; } static int Wait(void *&Data, StringRef Program, unsigned secondsToWait, std::string *ErrMsg) { #ifdef HAVE_SYS_WAIT_H struct sigaction Act, Old; assert(Data && "invalid pid to wait on, process not started?"); // Install a timeout handler. The handler itself does nothing, but the simple // fact of having a handler at all causes the wait below to return with EINTR, // unlike if we used SIG_IGN. if (secondsToWait) { memset(&Act, 0, sizeof(Act)); Act.sa_handler = TimeOutHandler; sigemptyset(&Act.sa_mask); sigaction(SIGALRM, &Act, &Old); alarm(secondsToWait); } // Parent process: Wait for the child process to terminate. int status; uint64_t pid = reinterpret_cast(Data); pid_t child = static_cast(pid); while (waitpid(pid, &status, 0) != child) if (secondsToWait && errno == EINTR) { // Kill the child. kill(child, SIGKILL); // Turn off the alarm and restore the signal handler alarm(0); sigaction(SIGALRM, &Old, 0); // Wait for child to die if (wait(&status) != child) MakeErrMsg(ErrMsg, "Child timed out but wouldn't die"); else MakeErrMsg(ErrMsg, "Child timed out", 0); return -2; // Timeout detected } else if (errno != EINTR) { MakeErrMsg(ErrMsg, "Error waiting for child process"); return -1; } // We exited normally without timeout, so turn off the timer. if (secondsToWait) { alarm(0); sigaction(SIGALRM, &Old, 0); } // Return the proper exit status. Detect error conditions // so we can return -1 for them and set ErrMsg informatively. int result = 0; if (WIFEXITED(status)) { result = WEXITSTATUS(status); #ifdef HAVE_POSIX_SPAWN // The posix_spawn child process returns 127 on any kind of error. // Following the POSIX convention for command-line tools (which posix_spawn // itself apparently does not), check to see if the failure was due to some // reason other than the file not existing, and return 126 in this case. bool Exists; if (result == 127 && !llvm::sys::fs::exists(Program, Exists) && Exists) result = 126; #endif if (result == 127) { if (ErrMsg) *ErrMsg = llvm::sys::StrError(ENOENT); return -1; } if (result == 126) { if (ErrMsg) *ErrMsg = "Program could not be executed"; return -1; } } else if (WIFSIGNALED(status)) { if (ErrMsg) { *ErrMsg = strsignal(WTERMSIG(status)); #ifdef WCOREDUMP if (WCOREDUMP(status)) *ErrMsg += " (core dumped)"; #endif } // Return a special value to indicate that the process received an unhandled // signal during execution as opposed to failing to execute. return -2; } return result; #else if (ErrMsg) *ErrMsg = "Program::Wait is not implemented on this platform yet!"; return -1; #endif } namespace llvm { error_code sys::ChangeStdinToBinary(){ // Do nothing, as Unix doesn't differentiate between text and binary. return make_error_code(errc::success); } error_code sys::ChangeStdoutToBinary(){ // Do nothing, as Unix doesn't differentiate between text and binary. return make_error_code(errc::success); } error_code sys::ChangeStderrToBinary(){ // Do nothing, as Unix doesn't differentiate between text and binary. return make_error_code(errc::success); } bool llvm::sys::argumentsFitWithinSystemLimits(ArrayRef Args) { static long ArgMax = sysconf(_SC_ARG_MAX); // System says no practical limit. if (ArgMax == -1) return true; // Conservatively account for space required by environment variables. ArgMax /= 2; size_t ArgLength = 0; for (ArrayRef::iterator I = Args.begin(), E = Args.end(); I != E; ++I) { ArgLength += strlen(*I) + 1; if (ArgLength > size_t(ArgMax)) { return false; } } return true; } }