//===- llvm/Support/Unix/Path.cpp - Unix Path Implementation -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Unix specific portion of the Path class. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// //=== WARNING: Implementation here must contain only generic UNIX code that //=== is guaranteed to work on *all* UNIX variants. //===----------------------------------------------------------------------===// #include "Unix.h" #if HAVE_SYS_STAT_H #include #endif #if HAVE_FCNTL_H #include #endif #ifdef HAVE_SYS_MMAN_H #include #endif #ifdef HAVE_SYS_STAT_H #include #endif #if HAVE_UTIME_H #include #endif #if HAVE_TIME_H #include #endif #if HAVE_DIRENT_H # include # define NAMLEN(dirent) strlen((dirent)->d_name) #else # define dirent direct # define NAMLEN(dirent) (dirent)->d_namlen # if HAVE_SYS_NDIR_H # include # endif # if HAVE_SYS_DIR_H # include # endif # if HAVE_NDIR_H # include # endif #endif #if HAVE_DLFCN_H #include #endif #ifdef __APPLE__ #include #endif // Put in a hack for Cygwin which falsely reports that the mkdtemp function // is available when it is not. #ifdef __CYGWIN__ # undef HAVE_MKDTEMP #endif namespace { inline bool lastIsSlash(const std::string& path) { return !path.empty() && path[path.length() - 1] == '/'; } } namespace llvm { using namespace sys; const char sys::PathSeparator = ':'; StringRef Path::GetEXESuffix() { return StringRef(); } Path::Path(StringRef p) : path(p) {} Path::Path(const char *StrStart, unsigned StrLen) : path(StrStart, StrLen) {} Path& Path::operator=(StringRef that) { path.assign(that.data(), that.size()); return *this; } bool Path::isValid() const { // Empty paths are considered invalid here. // This code doesn't check MAXPATHLEN because there's no need. Nothing in // LLVM manipulates Paths with fixed-sizes arrays, and if the OS can't // handle names longer than some limit, it'll report this on demand using // ENAMETOLONG. return !path.empty(); } bool Path::isAbsolute(const char *NameStart, unsigned NameLen) { assert(NameStart); if (NameLen == 0) return false; return NameStart[0] == '/'; } bool Path::isAbsolute() const { if (path.empty()) return false; return path[0] == '/'; } Path Path::GetRootDirectory() { Path result; result.set("/"); return result; } Path Path::GetTemporaryDirectory(std::string *ErrMsg) { #if defined(HAVE_MKDTEMP) // The best way is with mkdtemp but that's not available on many systems, // Linux and FreeBSD have it. Others probably won't. char pathname[] = "/tmp/llvm_XXXXXX"; if (0 == mkdtemp(pathname)) { MakeErrMsg(ErrMsg, std::string(pathname) + ": can't create temporary directory"); return Path(); } return Path(pathname); #elif defined(HAVE_MKSTEMP) // If no mkdtemp is available, mkstemp can be used to create a temporary file // which is then removed and created as a directory. We prefer this over // mktemp because of mktemp's inherent security and threading risks. We still // have a slight race condition from the time the temporary file is created to // the time it is re-created as a directoy. char pathname[] = "/tmp/llvm_XXXXXX"; int fd = 0; if (-1 == (fd = mkstemp(pathname))) { MakeErrMsg(ErrMsg, std::string(pathname) + ": can't create temporary directory"); return Path(); } ::close(fd); ::unlink(pathname); // start race condition, ignore errors if (-1 == ::mkdir(pathname, S_IRWXU)) { // end race condition MakeErrMsg(ErrMsg, std::string(pathname) + ": can't create temporary directory"); return Path(); } return Path(pathname); #elif defined(HAVE_MKTEMP) // If a system doesn't have mkdtemp(3) or mkstemp(3) but it does have // mktemp(3) then we'll assume that system (e.g. AIX) has a reasonable // implementation of mktemp(3) and doesn't follow BSD 4.3's lead of replacing // the XXXXXX with the pid of the process and a letter. That leads to only // twenty six temporary files that can be generated. char pathname[] = "/tmp/llvm_XXXXXX"; char *TmpName = ::mktemp(pathname); if (TmpName == 0) { MakeErrMsg(ErrMsg, std::string(TmpName) + ": can't create unique directory name"); return Path(); } if (-1 == ::mkdir(TmpName, S_IRWXU)) { MakeErrMsg(ErrMsg, std::string(TmpName) + ": can't create temporary directory"); return Path(); } return Path(TmpName); #else // This is the worst case implementation. tempnam(3) leaks memory unless its // on an SVID2 (or later) system. On BSD 4.3 it leaks. tmpnam(3) has thread // issues. The mktemp(3) function doesn't have enough variability in the // temporary name generated. So, we provide our own implementation that // increments an integer from a random number seeded by the current time. This // should be sufficiently unique that we don't have many collisions between // processes. Generally LLVM processes don't run very long and don't use very // many temporary files so this shouldn't be a big issue for LLVM. static time_t num = ::time(0); char pathname[MAXPATHLEN]; do { num++; sprintf(pathname, "/tmp/llvm_%010u", unsigned(num)); } while ( 0 == access(pathname, F_OK ) ); if (-1 == ::mkdir(pathname, S_IRWXU)) { MakeErrMsg(ErrMsg, std::string(pathname) + ": can't create temporary directory"); return Path(); } return Path(pathname); #endif } void Path::GetSystemLibraryPaths(std::vector& Paths) { #ifdef LTDL_SHLIBPATH_VAR char* env_var = getenv(LTDL_SHLIBPATH_VAR); if (env_var != 0) { getPathList(env_var,Paths); } #endif // FIXME: Should this look at LD_LIBRARY_PATH too? Paths.push_back(sys::Path("/usr/local/lib/")); Paths.push_back(sys::Path("/usr/X11R6/lib/")); Paths.push_back(sys::Path("/usr/lib/")); Paths.push_back(sys::Path("/lib/")); } void Path::GetBitcodeLibraryPaths(std::vector& Paths) { char * env_var = getenv("LLVM_LIB_SEARCH_PATH"); if (env_var != 0) { getPathList(env_var,Paths); } #ifdef LLVM_LIBDIR { Path tmpPath; if (tmpPath.set(LLVM_LIBDIR)) if (tmpPath.canRead()) Paths.push_back(tmpPath); } #endif GetSystemLibraryPaths(Paths); } Path Path::GetUserHomeDirectory() { const char* home = getenv("HOME"); Path result; if (home && result.set(home)) return result; result.set("/"); return result; } Path Path::GetCurrentDirectory() { char pathname[MAXPATHLEN]; if (!getcwd(pathname, MAXPATHLEN)) { assert(false && "Could not query current working directory."); return Path(); } return Path(pathname); } #if defined(__FreeBSD__) || defined (__NetBSD__) || \ defined(__OpenBSD__) || defined(__minix) static int test_dir(char buf[PATH_MAX], char ret[PATH_MAX], const char *dir, const char *bin) { struct stat sb; snprintf(buf, PATH_MAX, "%s/%s", dir, bin); if (realpath(buf, ret) == NULL) return (1); if (stat(buf, &sb) != 0) return (1); return (0); } static char * getprogpath(char ret[PATH_MAX], const char *bin) { char *pv, *s, *t, buf[PATH_MAX]; /* First approach: absolute path. */ if (bin[0] == '/') { if (test_dir(buf, ret, "/", bin) == 0) return (ret); return (NULL); } /* Second approach: relative path. */ if (strchr(bin, '/') != NULL) { if (getcwd(buf, PATH_MAX) == NULL) return (NULL); if (test_dir(buf, ret, buf, bin) == 0) return (ret); return (NULL); } /* Third approach: $PATH */ if ((pv = getenv("PATH")) == NULL) return (NULL); s = pv = strdup(pv); if (pv == NULL) return (NULL); while ((t = strsep(&s, ":")) != NULL) { if (test_dir(buf, ret, t, bin) == 0) { free(pv); return (ret); } } free(pv); return (NULL); } #endif // __FreeBSD__ || __NetBSD__ /// GetMainExecutable - Return the path to the main executable, given the /// value of argv[0] from program startup. Path Path::GetMainExecutable(const char *argv0, void *MainAddr) { #if defined(__APPLE__) // On OS X the executable path is saved to the stack by dyld. Reading it // from there is much faster than calling dladdr, especially for large // binaries with symbols. char exe_path[MAXPATHLEN]; uint32_t size = sizeof(exe_path); if (_NSGetExecutablePath(exe_path, &size) == 0) { char link_path[MAXPATHLEN]; if (realpath(exe_path, link_path)) return Path(link_path); } #elif defined(__FreeBSD__) || defined (__NetBSD__) || \ defined(__OpenBSD__) || defined(__minix) char exe_path[PATH_MAX]; if (getprogpath(exe_path, argv0) != NULL) return Path(exe_path); #elif defined(__linux__) || defined(__CYGWIN__) char exe_path[MAXPATHLEN]; ssize_t len = readlink("/proc/self/exe", exe_path, sizeof(exe_path)); if (len >= 0) return Path(StringRef(exe_path, len)); #elif defined(HAVE_DLFCN_H) // Use dladdr to get executable path if available. Dl_info DLInfo; int err = dladdr(MainAddr, &DLInfo); if (err == 0) return Path(); // If the filename is a symlink, we need to resolve and return the location of // the actual executable. char link_path[MAXPATHLEN]; if (realpath(DLInfo.dli_fname, link_path)) return Path(link_path); #else #error GetMainExecutable is not implemented on this host yet. #endif return Path(); } StringRef Path::getDirname() const { return getDirnameCharSep(path, "/"); } StringRef Path::getBasename() const { // Find the last slash std::string::size_type slash = path.rfind('/'); if (slash == std::string::npos) slash = 0; else slash++; std::string::size_type dot = path.rfind('.'); if (dot == std::string::npos || dot < slash) return StringRef(path).substr(slash); else return StringRef(path).substr(slash, dot - slash); } StringRef Path::getSuffix() const { // Find the last slash std::string::size_type slash = path.rfind('/'); if (slash == std::string::npos) slash = 0; else slash++; std::string::size_type dot = path.rfind('.'); if (dot == std::string::npos || dot < slash) return StringRef(); else return StringRef(path).substr(dot + 1); } bool Path::getMagicNumber(std::string &Magic, unsigned len) const { assert(len < 1024 && "Request for magic string too long"); char Buf[1025]; int fd = ::open(path.c_str(), O_RDONLY); if (fd < 0) return false; ssize_t bytes_read = ::read(fd, Buf, len); ::close(fd); if (ssize_t(len) != bytes_read) return false; Magic.assign(Buf, len); return true; } bool Path::exists() const { return 0 == access(path.c_str(), F_OK ); } bool Path::isDirectory() const { struct stat buf; if (0 != stat(path.c_str(), &buf)) return false; return ((buf.st_mode & S_IFMT) == S_IFDIR) ? true : false; } bool Path::isSymLink() const { struct stat buf; if (0 != lstat(path.c_str(), &buf)) return false; return S_ISLNK(buf.st_mode); } bool Path::canRead() const { return 0 == access(path.c_str(), R_OK); } bool Path::canWrite() const { return 0 == access(path.c_str(), W_OK); } bool Path::isRegularFile() const { // Get the status so we can determine if it's a file or directory struct stat buf; if (0 != stat(path.c_str(), &buf)) return false; if (S_ISREG(buf.st_mode)) return true; return false; } bool Path::canExecute() const { if (0 != access(path.c_str(), R_OK | X_OK )) return false; struct stat buf; if (0 != stat(path.c_str(), &buf)) return false; if (!S_ISREG(buf.st_mode)) return false; return true; } StringRef Path::getLast() const { // Find the last slash size_t pos = path.rfind('/'); // Handle the corner cases if (pos == std::string::npos) return path; // If the last character is a slash if (pos == path.length()-1) { // Find the second to last slash size_t pos2 = path.rfind('/', pos-1); if (pos2 == std::string::npos) return StringRef(path).substr(0,pos); else return StringRef(path).substr(pos2+1,pos-pos2-1); } // Return everything after the last slash return StringRef(path).substr(pos+1); } const FileStatus * PathWithStatus::getFileStatus(bool update, std::string *ErrStr) const { if (!fsIsValid || update) { struct stat buf; if (0 != stat(path.c_str(), &buf)) { MakeErrMsg(ErrStr, path + ": can't get status of file"); return 0; } status.fileSize = buf.st_size; status.modTime.fromEpochTime(buf.st_mtime); status.mode = buf.st_mode; status.user = buf.st_uid; status.group = buf.st_gid; status.uniqueID = uint64_t(buf.st_ino); status.isDir = S_ISDIR(buf.st_mode); status.isFile = S_ISREG(buf.st_mode); fsIsValid = true; } return &status; } static bool AddPermissionBits(const Path &File, int bits) { // Get the umask value from the operating system. We want to use it // when changing the file's permissions. Since calling umask() sets // the umask and returns its old value, we must call it a second // time to reset it to the user's preference. int mask = umask(0777); // The arg. to umask is arbitrary. umask(mask); // Restore the umask. // Get the file's current mode. struct stat buf; if (0 != stat(File.c_str(), &buf)) return false; // Change the file to have whichever permissions bits from 'bits' // that the umask would not disable. if ((chmod(File.c_str(), (buf.st_mode | (bits & ~mask)))) == -1) return false; return true; } bool Path::makeReadableOnDisk(std::string* ErrMsg) { if (!AddPermissionBits(*this, 0444)) return MakeErrMsg(ErrMsg, path + ": can't make file readable"); return false; } bool Path::makeWriteableOnDisk(std::string* ErrMsg) { if (!AddPermissionBits(*this, 0222)) return MakeErrMsg(ErrMsg, path + ": can't make file writable"); return false; } bool Path::makeExecutableOnDisk(std::string* ErrMsg) { if (!AddPermissionBits(*this, 0111)) return MakeErrMsg(ErrMsg, path + ": can't make file executable"); return false; } bool Path::getDirectoryContents(std::set& result, std::string* ErrMsg) const { DIR* direntries = ::opendir(path.c_str()); if (direntries == 0) return MakeErrMsg(ErrMsg, path + ": can't open directory"); std::string dirPath = path; if (!lastIsSlash(dirPath)) dirPath += '/'; result.clear(); struct dirent* de = ::readdir(direntries); for ( ; de != 0; de = ::readdir(direntries)) { if (de->d_name[0] != '.') { Path aPath(dirPath + (const char*)de->d_name); struct stat st; if (0 != lstat(aPath.path.c_str(), &st)) { if (S_ISLNK(st.st_mode)) continue; // dangling symlink -- ignore return MakeErrMsg(ErrMsg, aPath.path + ": can't determine file object type"); } result.insert(aPath); } } closedir(direntries); return false; } bool Path::set(StringRef a_path) { if (a_path.empty()) return false; path = a_path; return true; } bool Path::appendComponent(StringRef name) { if (name.empty()) return false; if (!lastIsSlash(path)) path += '/'; path += name; return true; } bool Path::eraseComponent() { size_t slashpos = path.rfind('/',path.size()); if (slashpos == 0 || slashpos == std::string::npos) { path.erase(); return true; } if (slashpos == path.size() - 1) slashpos = path.rfind('/',slashpos-1); if (slashpos == std::string::npos) { path.erase(); return true; } path.erase(slashpos); return true; } bool Path::eraseSuffix() { size_t dotpos = path.rfind('.',path.size()); size_t slashpos = path.rfind('/',path.size()); if (dotpos != std::string::npos) { if (slashpos == std::string::npos || dotpos > slashpos+1) { path.erase(dotpos, path.size()-dotpos); return true; } } return false; } static bool createDirectoryHelper(char* beg, char* end, bool create_parents) { if (access(beg, R_OK | W_OK) == 0) return false; if (create_parents) { char* c = end; for (; c != beg; --c) if (*c == '/') { // Recurse to handling the parent directory. *c = '\0'; bool x = createDirectoryHelper(beg, c, create_parents); *c = '/'; // Return if we encountered an error. if (x) return true; break; } } return mkdir(beg, S_IRWXU | S_IRWXG) != 0; } bool Path::createDirectoryOnDisk( bool create_parents, std::string* ErrMsg ) { // Get a writeable copy of the path name std::string pathname(path); // Null-terminate the last component size_t lastchar = path.length() - 1 ; if (pathname[lastchar] != '/') ++lastchar; pathname[lastchar] = '\0'; if (createDirectoryHelper(&pathname[0], &pathname[lastchar], create_parents)) return MakeErrMsg(ErrMsg, pathname + ": can't create directory"); return false; } bool Path::createFileOnDisk(std::string* ErrMsg) { // Create the file int fd = ::creat(path.c_str(), S_IRUSR | S_IWUSR); if (fd < 0) return MakeErrMsg(ErrMsg, path + ": can't create file"); ::close(fd); return false; } bool Path::createTemporaryFileOnDisk(bool reuse_current, std::string* ErrMsg) { // Make this into a unique file name if (makeUnique( reuse_current, ErrMsg )) return true; // create the file int fd = ::open(path.c_str(), O_WRONLY|O_CREAT|O_TRUNC, 0666); if (fd < 0) return MakeErrMsg(ErrMsg, path + ": can't create temporary file"); ::close(fd); return false; } bool Path::eraseFromDisk(bool remove_contents, std::string *ErrStr) const { // Get the status so we can determine if it's a file or directory. struct stat buf; if (0 != stat(path.c_str(), &buf)) { MakeErrMsg(ErrStr, path + ": can't get status of file"); return true; } // Note: this check catches strange situations. In all cases, LLVM should // only be involved in the creation and deletion of regular files. This // check ensures that what we're trying to erase is a regular file. It // effectively prevents LLVM from erasing things like /dev/null, any block // special file, or other things that aren't "regular" files. if (S_ISREG(buf.st_mode)) { if (unlink(path.c_str()) != 0) return MakeErrMsg(ErrStr, path + ": can't destroy file"); return false; } if (!S_ISDIR(buf.st_mode)) { if (ErrStr) *ErrStr = "not a file or directory"; return true; } if (remove_contents) { // Recursively descend the directory to remove its contents. std::string cmd = "/bin/rm -rf " + path; if (system(cmd.c_str()) != 0) { MakeErrMsg(ErrStr, path + ": failed to recursively remove directory."); return true; } return false; } // Otherwise, try to just remove the one directory. std::string pathname(path); size_t lastchar = path.length() - 1; if (pathname[lastchar] == '/') pathname[lastchar] = '\0'; else pathname[lastchar+1] = '\0'; if (rmdir(pathname.c_str()) != 0) return MakeErrMsg(ErrStr, pathname + ": can't erase directory"); return false; } bool Path::renamePathOnDisk(const Path& newName, std::string* ErrMsg) { if (0 != ::rename(path.c_str(), newName.c_str())) return MakeErrMsg(ErrMsg, std::string("can't rename '") + path + "' as '" + newName.str() + "'"); return false; } bool Path::setStatusInfoOnDisk(const FileStatus &si, std::string *ErrStr) const { struct utimbuf utb; utb.actime = si.modTime.toPosixTime(); utb.modtime = utb.actime; if (0 != ::utime(path.c_str(),&utb)) return MakeErrMsg(ErrStr, path + ": can't set file modification time"); if (0 != ::chmod(path.c_str(),si.mode)) return MakeErrMsg(ErrStr, path + ": can't set mode"); return false; } bool sys::CopyFile(const sys::Path &Dest, const sys::Path &Src, std::string* ErrMsg){ int inFile = -1; int outFile = -1; inFile = ::open(Src.c_str(), O_RDONLY); if (inFile == -1) return MakeErrMsg(ErrMsg, Src.str() + ": can't open source file to copy"); outFile = ::open(Dest.c_str(), O_WRONLY|O_CREAT, 0666); if (outFile == -1) { ::close(inFile); return MakeErrMsg(ErrMsg, Dest.str() + ": can't create destination file for copy"); } char Buffer[16*1024]; while (ssize_t Amt = ::read(inFile, Buffer, 16*1024)) { if (Amt == -1) { if (errno != EINTR && errno != EAGAIN) { ::close(inFile); ::close(outFile); return MakeErrMsg(ErrMsg, Src.str()+": can't read source file"); } } else { char *BufPtr = Buffer; while (Amt) { ssize_t AmtWritten = ::write(outFile, BufPtr, Amt); if (AmtWritten == -1) { if (errno != EINTR && errno != EAGAIN) { ::close(inFile); ::close(outFile); return MakeErrMsg(ErrMsg, Dest.str() + ": can't write destination file"); } } else { Amt -= AmtWritten; BufPtr += AmtWritten; } } } } ::close(inFile); ::close(outFile); return false; } bool Path::makeUnique(bool reuse_current, std::string* ErrMsg) { bool Exists; if (reuse_current && (fs::exists(path, Exists) || !Exists)) return false; // File doesn't exist already, just use it! // Append an XXXXXX pattern to the end of the file for use with mkstemp, // mktemp or our own implementation. // This uses std::vector instead of SmallVector to avoid a dependence on // libSupport. And performance isn't critical here. std::vector Buf; Buf.resize(path.size()+8); char *FNBuffer = &Buf[0]; path.copy(FNBuffer,path.size()); bool isdir; if (!fs::is_directory(path, isdir) && isdir) strcpy(FNBuffer+path.size(), "/XXXXXX"); else strcpy(FNBuffer+path.size(), "-XXXXXX"); #if defined(HAVE_MKSTEMP) int TempFD; if ((TempFD = mkstemp(FNBuffer)) == -1) return MakeErrMsg(ErrMsg, path + ": can't make unique filename"); // We don't need to hold the temp file descriptor... we will trust that no one // will overwrite/delete the file before we can open it again. close(TempFD); // Save the name path = FNBuffer; // By default mkstemp sets the mode to 0600, so update mode bits now. AddPermissionBits (*this, 0666); #elif defined(HAVE_MKTEMP) // If we don't have mkstemp, use the old and obsolete mktemp function. if (mktemp(FNBuffer) == 0) return MakeErrMsg(ErrMsg, path + ": can't make unique filename"); // Save the name path = FNBuffer; #else // Okay, looks like we have to do it all by our lonesome. static unsigned FCounter = 0; // Try to initialize with unique value. if (FCounter == 0) FCounter = ((unsigned)getpid() & 0xFFFF) << 8; char* pos = strstr(FNBuffer, "XXXXXX"); do { if (++FCounter > 0xFFFFFF) { return MakeErrMsg(ErrMsg, path + ": can't make unique filename: too many files"); } sprintf(pos, "%06X", FCounter); path = FNBuffer; } while (exists()); // POSSIBLE SECURITY BUG: An attacker can easily guess the name and exploit // LLVM. #endif return false; } const char *Path::MapInFilePages(int FD, size_t FileSize, off_t Offset) { int Flags = MAP_PRIVATE; #ifdef MAP_FILE Flags |= MAP_FILE; #endif void *BasePtr = ::mmap(0, FileSize, PROT_READ, Flags, FD, Offset); if (BasePtr == MAP_FAILED) return 0; return (const char*)BasePtr; } void Path::UnMapFilePages(const char *BasePtr, size_t FileSize) { ::munmap((void*)BasePtr, FileSize); } } // end llvm namespace