a94bf28421fb4e363874b588d4b7fb76b11a5406
[oota-llvm.git] / utils / unittest / googletest / include / gtest / internal / gtest-internal.h
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test.  They are subject to change without notice.
36
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40 #include "gtest/internal/gtest-port.h"
41
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif  // GTEST_OS_LINUX
48
49 #include <ctype.h>
50 #include <string.h>
51 #include <iomanip>
52 #include <limits>
53 #include <set>
54
55 #include "gtest/internal/gtest-string.h"
56 #include "gtest/internal/gtest-filepath.h"
57 #include "gtest/internal/gtest-type-util.h"
58
59 #if !GTEST_NO_LLVM_RAW_OSTREAM
60 #include "llvm/Support/raw_os_ostream.h"
61 #endif
62
63 // Due to C++ preprocessor weirdness, we need double indirection to
64 // concatenate two tokens when one of them is __LINE__.  Writing
65 //
66 //   foo ## __LINE__
67 //
68 // will result in the token foo__LINE__, instead of foo followed by
69 // the current line number.  For more details, see
70 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
71 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
72 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
73
74 // Google Test defines the testing::Message class to allow construction of
75 // test messages via the << operator.  The idea is that anything
76 // streamable to std::ostream can be streamed to a testing::Message.
77 // This allows a user to use his own types in Google Test assertions by
78 // overloading the << operator.
79 //
80 // util/gtl/stl_logging-inl.h overloads << for STL containers.  These
81 // overloads cannot be defined in the std namespace, as that will be
82 // undefined behavior.  Therefore, they are defined in the global
83 // namespace instead.
84 //
85 // C++'s symbol lookup rule (i.e. Koenig lookup) says that these
86 // overloads are visible in either the std namespace or the global
87 // namespace, but not other namespaces, including the testing
88 // namespace which Google Test's Message class is in.
89 //
90 // To allow STL containers (and other types that has a << operator
91 // defined in the global namespace) to be used in Google Test assertions,
92 // testing::Message must access the custom << operator from the global
93 // namespace.  Hence this helper function.
94 //
95 // Note: Jeffrey Yasskin suggested an alternative fix by "using
96 // ::operator<<;" in the definition of Message's operator<<.  That fix
97 // doesn't require a helper function, but unfortunately doesn't
98 // compile with MSVC.
99
100 // LLVM INTERNAL CHANGE: To allow operator<< to work with both
101 // std::ostreams and LLVM's raw_ostreams, we define a special
102 // std::ostream with an implicit conversion to raw_ostream& and stream
103 // to that.  This causes the compiler to prefer std::ostream overloads
104 // but still find raw_ostream& overloads.
105 #if !GTEST_NO_LLVM_RAW_OSTREAM
106 namespace llvm {
107 class convertible_fwd_ostream : public std::ostream {
108   raw_os_ostream ros_;
109
110 public:
111   convertible_fwd_ostream(std::ostream& os)
112     : std::ostream(os.rdbuf()), ros_(*this) {}
113   operator raw_ostream&() { return ros_; }
114 };
115 }
116 template <typename T>
117 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
118   llvm::convertible_fwd_ostream cos(*os);
119   cos << val;
120 }
121 #else
122 template <typename T>
123 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
124   *os << val;
125 }
126 #endif
127
128 class ProtocolMessage;
129 namespace proto2 { class Message; }
130
131 namespace testing {
132
133 // Forward declarations.
134
135 class AssertionResult;                 // Result of an assertion.
136 class Message;                         // Represents a failure message.
137 class Test;                            // Represents a test.
138 class TestInfo;                        // Information about a test.
139 class TestPartResult;                  // Result of a test part.
140 class UnitTest;                        // A collection of test cases.
141
142 template <typename T>
143 ::std::string PrintToString(const T& value);
144
145 namespace internal {
146
147 struct TraceInfo;                      // Information about a trace point.
148 class ScopedTrace;                     // Implements scoped trace.
149 class TestInfoImpl;                    // Opaque implementation of TestInfo
150 class UnitTestImpl;                    // Opaque implementation of UnitTest
151
152 // How many times InitGoogleTest() has been called.
153 extern int g_init_gtest_count;
154
155 // The text used in failure messages to indicate the start of the
156 // stack trace.
157 GTEST_API_ extern const char kStackTraceMarker[];
158
159 // A secret type that Google Test users don't know about.  It has no
160 // definition on purpose.  Therefore it's impossible to create a
161 // Secret object, which is what we want.
162 class Secret;
163
164 // Two overloaded helpers for checking at compile time whether an
165 // expression is a null pointer literal (i.e. NULL or any 0-valued
166 // compile-time integral constant).  Their return values have
167 // different sizes, so we can use sizeof() to test which version is
168 // picked by the compiler.  These helpers have no implementations, as
169 // we only need their signatures.
170 //
171 // Given IsNullLiteralHelper(x), the compiler will pick the first
172 // version if x can be implicitly converted to Secret*, and pick the
173 // second version otherwise.  Since Secret is a secret and incomplete
174 // type, the only expression a user can write that has type Secret* is
175 // a null pointer literal.  Therefore, we know that x is a null
176 // pointer literal if and only if the first version is picked by the
177 // compiler.
178 char IsNullLiteralHelper(Secret* p);
179 char (&IsNullLiteralHelper(...))[2];  // NOLINT
180
181 // A compile-time bool constant that is true if and only if x is a
182 // null pointer literal (i.e. NULL or any 0-valued compile-time
183 // integral constant).
184 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
185 // We lose support for NULL detection where the compiler doesn't like
186 // passing non-POD classes through ellipsis (...).
187 # define GTEST_IS_NULL_LITERAL_(x) false
188 #else
189 # define GTEST_IS_NULL_LITERAL_(x) \
190     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
191 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
192
193 // Appends the user-supplied message to the Google-Test-generated message.
194 GTEST_API_ String AppendUserMessage(const String& gtest_msg,
195                                     const Message& user_msg);
196
197 // A helper class for creating scoped traces in user programs.
198 class GTEST_API_ ScopedTrace {
199  public:
200   // The c'tor pushes the given source file location and message onto
201   // a trace stack maintained by Google Test.
202   ScopedTrace(const char* file, int line, const Message& message);
203
204   // The d'tor pops the info pushed by the c'tor.
205   //
206   // Note that the d'tor is not virtual in order to be efficient.
207   // Don't inherit from ScopedTrace!
208   ~ScopedTrace();
209
210  private:
211   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
212 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
213                             // c'tor and d'tor.  Therefore it doesn't
214                             // need to be used otherwise.
215
216 // Converts a streamable value to a String.  A NULL pointer is
217 // converted to "(null)".  When the input value is a ::string,
218 // ::std::string, ::wstring, or ::std::wstring object, each NUL
219 // character in it is replaced with "\\0".
220 // Declared here but defined in gtest.h, so that it has access
221 // to the definition of the Message class, required by the ARM
222 // compiler.
223 template <typename T>
224 String StreamableToString(const T& streamable);
225
226 // The Symbian compiler has a bug that prevents it from selecting the
227 // correct overload of FormatForComparisonFailureMessage (see below)
228 // unless we pass the first argument by reference.  If we do that,
229 // however, Visual Age C++ 10.1 generates a compiler error.  Therefore
230 // we only apply the work-around for Symbian.
231 #if defined(__SYMBIAN32__)
232 # define GTEST_CREF_WORKAROUND_ const&
233 #else
234 # define GTEST_CREF_WORKAROUND_
235 #endif
236
237 // When this operand is a const char* or char*, if the other operand
238 // is a ::std::string or ::string, we print this operand as a C string
239 // rather than a pointer (we do the same for wide strings); otherwise
240 // we print it as a pointer to be safe.
241
242 // This internal macro is used to avoid duplicated code.
243 #define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
244 inline String FormatForComparisonFailureMessage(\
245     operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
246     const operand2_type& /*operand2*/) {\
247   return operand1_printer(str);\
248 }\
249 inline String FormatForComparisonFailureMessage(\
250     const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
251     const operand2_type& /*operand2*/) {\
252   return operand1_printer(str);\
253 }
254
255 GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
256 #if GTEST_HAS_STD_WSTRING
257 GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
258 #endif  // GTEST_HAS_STD_WSTRING
259
260 #if GTEST_HAS_GLOBAL_STRING
261 GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
262 #endif  // GTEST_HAS_GLOBAL_STRING
263 #if GTEST_HAS_GLOBAL_WSTRING
264 GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
265 #endif  // GTEST_HAS_GLOBAL_WSTRING
266
267 #undef GTEST_FORMAT_IMPL_
268
269 // The next four overloads handle the case where the operand being
270 // printed is a char/wchar_t pointer and the other operand is not a
271 // string/wstring object.  In such cases, we just print the operand as
272 // a pointer to be safe.
273 #define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \
274   template <typename T>                                             \
275   String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \
276                                            const T&) { \
277     return PrintToString(static_cast<const void*>(p));              \
278   }
279
280 GTEST_FORMAT_CHAR_PTR_IMPL_(char)
281 GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
282 GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
283 GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
284
285 #undef GTEST_FORMAT_CHAR_PTR_IMPL_
286
287 // Constructs and returns the message for an equality assertion
288 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
289 //
290 // The first four parameters are the expressions used in the assertion
291 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
292 // where foo is 5 and bar is 6, we have:
293 //
294 //   expected_expression: "foo"
295 //   actual_expression:   "bar"
296 //   expected_value:      "5"
297 //   actual_value:        "6"
298 //
299 // The ignoring_case parameter is true iff the assertion is a
300 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
301 // be inserted into the message.
302 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
303                                      const char* actual_expression,
304                                      const String& expected_value,
305                                      const String& actual_value,
306                                      bool ignoring_case);
307
308 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
309 GTEST_API_ String GetBoolAssertionFailureMessage(
310     const AssertionResult& assertion_result,
311     const char* expression_text,
312     const char* actual_predicate_value,
313     const char* expected_predicate_value);
314
315 // This template class represents an IEEE floating-point number
316 // (either single-precision or double-precision, depending on the
317 // template parameters).
318 //
319 // The purpose of this class is to do more sophisticated number
320 // comparison.  (Due to round-off error, etc, it's very unlikely that
321 // two floating-points will be equal exactly.  Hence a naive
322 // comparison by the == operation often doesn't work.)
323 //
324 // Format of IEEE floating-point:
325 //
326 //   The most-significant bit being the leftmost, an IEEE
327 //   floating-point looks like
328 //
329 //     sign_bit exponent_bits fraction_bits
330 //
331 //   Here, sign_bit is a single bit that designates the sign of the
332 //   number.
333 //
334 //   For float, there are 8 exponent bits and 23 fraction bits.
335 //
336 //   For double, there are 11 exponent bits and 52 fraction bits.
337 //
338 //   More details can be found at
339 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
340 //
341 // Template parameter:
342 //
343 //   RawType: the raw floating-point type (either float or double)
344 template <typename RawType>
345 class FloatingPoint {
346  public:
347   // Defines the unsigned integer type that has the same size as the
348   // floating point number.
349   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
350
351   // Constants.
352
353   // # of bits in a number.
354   static const size_t kBitCount = 8*sizeof(RawType);
355
356   // # of fraction bits in a number.
357   static const size_t kFractionBitCount =
358     std::numeric_limits<RawType>::digits - 1;
359
360   // # of exponent bits in a number.
361   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
362
363   // The mask for the sign bit.
364   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
365
366   // The mask for the fraction bits.
367   static const Bits kFractionBitMask =
368     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
369
370   // The mask for the exponent bits.
371   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
372
373   // How many ULP's (Units in the Last Place) we want to tolerate when
374   // comparing two numbers.  The larger the value, the more error we
375   // allow.  A 0 value means that two numbers must be exactly the same
376   // to be considered equal.
377   //
378   // The maximum error of a single floating-point operation is 0.5
379   // units in the last place.  On Intel CPU's, all floating-point
380   // calculations are done with 80-bit precision, while double has 64
381   // bits.  Therefore, 4 should be enough for ordinary use.
382   //
383   // See the following article for more details on ULP:
384   // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
385   static const size_t kMaxUlps = 4;
386
387   // Constructs a FloatingPoint from a raw floating-point number.
388   //
389   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
390   // around may change its bits, although the new value is guaranteed
391   // to be also a NAN.  Therefore, don't expect this constructor to
392   // preserve the bits in x when x is a NAN.
393   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
394
395   // Static methods
396
397   // Reinterprets a bit pattern as a floating-point number.
398   //
399   // This function is needed to test the AlmostEquals() method.
400   static RawType ReinterpretBits(const Bits bits) {
401     FloatingPoint fp(0);
402     fp.u_.bits_ = bits;
403     return fp.u_.value_;
404   }
405
406   // Returns the floating-point number that represent positive infinity.
407   static RawType Infinity() {
408     return ReinterpretBits(kExponentBitMask);
409   }
410
411   // Non-static methods
412
413   // Returns the bits that represents this number.
414   const Bits &bits() const { return u_.bits_; }
415
416   // Returns the exponent bits of this number.
417   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
418
419   // Returns the fraction bits of this number.
420   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
421
422   // Returns the sign bit of this number.
423   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
424
425   // Returns true iff this is NAN (not a number).
426   bool is_nan() const {
427     // It's a NAN if the exponent bits are all ones and the fraction
428     // bits are not entirely zeros.
429     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
430   }
431
432   // Returns true iff this number is at most kMaxUlps ULP's away from
433   // rhs.  In particular, this function:
434   //
435   //   - returns false if either number is (or both are) NAN.
436   //   - treats really large numbers as almost equal to infinity.
437   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
438   bool AlmostEquals(const FloatingPoint& rhs) const {
439     // The IEEE standard says that any comparison operation involving
440     // a NAN must return false.
441     if (is_nan() || rhs.is_nan()) return false;
442
443     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
444         <= kMaxUlps;
445   }
446
447  private:
448   // The data type used to store the actual floating-point number.
449   union FloatingPointUnion {
450     RawType value_;  // The raw floating-point number.
451     Bits bits_;      // The bits that represent the number.
452   };
453
454   // Converts an integer from the sign-and-magnitude representation to
455   // the biased representation.  More precisely, let N be 2 to the
456   // power of (kBitCount - 1), an integer x is represented by the
457   // unsigned number x + N.
458   //
459   // For instance,
460   //
461   //   -N + 1 (the most negative number representable using
462   //          sign-and-magnitude) is represented by 1;
463   //   0      is represented by N; and
464   //   N - 1  (the biggest number representable using
465   //          sign-and-magnitude) is represented by 2N - 1.
466   //
467   // Read http://en.wikipedia.org/wiki/Signed_number_representations
468   // for more details on signed number representations.
469   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
470     if (kSignBitMask & sam) {
471       // sam represents a negative number.
472       return ~sam + 1;
473     } else {
474       // sam represents a positive number.
475       return kSignBitMask | sam;
476     }
477   }
478
479   // Given two numbers in the sign-and-magnitude representation,
480   // returns the distance between them as an unsigned number.
481   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
482                                                      const Bits &sam2) {
483     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
484     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
485     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
486   }
487
488   FloatingPointUnion u_;
489 };
490
491 // Typedefs the instances of the FloatingPoint template class that we
492 // care to use.
493 typedef FloatingPoint<float> Float;
494 typedef FloatingPoint<double> Double;
495
496 // In order to catch the mistake of putting tests that use different
497 // test fixture classes in the same test case, we need to assign
498 // unique IDs to fixture classes and compare them.  The TypeId type is
499 // used to hold such IDs.  The user should treat TypeId as an opaque
500 // type: the only operation allowed on TypeId values is to compare
501 // them for equality using the == operator.
502 typedef const void* TypeId;
503
504 template <typename T>
505 class TypeIdHelper {
506  public:
507   // dummy_ must not have a const type.  Otherwise an overly eager
508   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
509   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
510   static bool dummy_;
511 };
512
513 template <typename T>
514 bool TypeIdHelper<T>::dummy_ = false;
515
516 // GetTypeId<T>() returns the ID of type T.  Different values will be
517 // returned for different types.  Calling the function twice with the
518 // same type argument is guaranteed to return the same ID.
519 template <typename T>
520 TypeId GetTypeId() {
521   // The compiler is required to allocate a different
522   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
523   // the template.  Therefore, the address of dummy_ is guaranteed to
524   // be unique.
525   return &(TypeIdHelper<T>::dummy_);
526 }
527
528 // Returns the type ID of ::testing::Test.  Always call this instead
529 // of GetTypeId< ::testing::Test>() to get the type ID of
530 // ::testing::Test, as the latter may give the wrong result due to a
531 // suspected linker bug when compiling Google Test as a Mac OS X
532 // framework.
533 GTEST_API_ TypeId GetTestTypeId();
534
535 // Defines the abstract factory interface that creates instances
536 // of a Test object.
537 class TestFactoryBase {
538  public:
539   virtual ~TestFactoryBase() {}
540
541   // Creates a test instance to run. The instance is both created and destroyed
542   // within TestInfoImpl::Run()
543   virtual Test* CreateTest() = 0;
544
545  protected:
546   TestFactoryBase() {}
547
548  private:
549   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
550 };
551
552 // This class provides implementation of TeastFactoryBase interface.
553 // It is used in TEST and TEST_F macros.
554 template <class TestClass>
555 class TestFactoryImpl : public TestFactoryBase {
556  public:
557   virtual Test* CreateTest() { return new TestClass; }
558 };
559
560 #if GTEST_OS_WINDOWS
561
562 // Predicate-formatters for implementing the HRESULT checking macros
563 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
564 // We pass a long instead of HRESULT to avoid causing an
565 // include dependency for the HRESULT type.
566 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
567                                             long hr);  // NOLINT
568 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
569                                             long hr);  // NOLINT
570
571 #endif  // GTEST_OS_WINDOWS
572
573 // Types of SetUpTestCase() and TearDownTestCase() functions.
574 typedef void (*SetUpTestCaseFunc)();
575 typedef void (*TearDownTestCaseFunc)();
576
577 // Creates a new TestInfo object and registers it with Google Test;
578 // returns the created object.
579 //
580 // Arguments:
581 //
582 //   test_case_name:   name of the test case
583 //   name:             name of the test
584 //   type_param        the name of the test's type parameter, or NULL if
585 //                     this is not  a typed or a type-parameterized test.
586 //   value_param       text representation of the test's value parameter,
587 //                     or NULL if this is not a type-parameterized test.
588 //   fixture_class_id: ID of the test fixture class
589 //   set_up_tc:        pointer to the function that sets up the test case
590 //   tear_down_tc:     pointer to the function that tears down the test case
591 //   factory:          pointer to the factory that creates a test object.
592 //                     The newly created TestInfo instance will assume
593 //                     ownership of the factory object.
594 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
595     const char* test_case_name, const char* name,
596     const char* type_param,
597     const char* value_param,
598     TypeId fixture_class_id,
599     SetUpTestCaseFunc set_up_tc,
600     TearDownTestCaseFunc tear_down_tc,
601     TestFactoryBase* factory);
602
603 // If *pstr starts with the given prefix, modifies *pstr to be right
604 // past the prefix and returns true; otherwise leaves *pstr unchanged
605 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
606 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
607
608 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
609
610 // State of the definition of a type-parameterized test case.
611 class GTEST_API_ TypedTestCasePState {
612  public:
613   TypedTestCasePState() : registered_(false) {}
614
615   // Adds the given test name to defined_test_names_ and return true
616   // if the test case hasn't been registered; otherwise aborts the
617   // program.
618   bool AddTestName(const char* file, int line, const char* case_name,
619                    const char* test_name) {
620     if (registered_) {
621       fprintf(stderr, "%s Test %s must be defined before "
622               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
623               FormatFileLocation(file, line).c_str(), test_name, case_name);
624       fflush(stderr);
625       posix::Abort();
626     }
627     defined_test_names_.insert(test_name);
628     return true;
629   }
630
631   // Verifies that registered_tests match the test names in
632   // defined_test_names_; returns registered_tests if successful, or
633   // aborts the program otherwise.
634   const char* VerifyRegisteredTestNames(
635       const char* file, int line, const char* registered_tests);
636
637  private:
638   bool registered_;
639   ::std::set<const char*> defined_test_names_;
640 };
641
642 // Skips to the first non-space char after the first comma in 'str';
643 // returns NULL if no comma is found in 'str'.
644 inline const char* SkipComma(const char* str) {
645   const char* comma = strchr(str, ',');
646   if (comma == NULL) {
647     return NULL;
648   }
649   while (IsSpace(*(++comma))) {}
650   return comma;
651 }
652
653 // Returns the prefix of 'str' before the first comma in it; returns
654 // the entire string if it contains no comma.
655 inline String GetPrefixUntilComma(const char* str) {
656   const char* comma = strchr(str, ',');
657   return comma == NULL ? String(str) : String(str, comma - str);
658 }
659
660 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
661 // registers a list of type-parameterized tests with Google Test.  The
662 // return value is insignificant - we just need to return something
663 // such that we can call this function in a namespace scope.
664 //
665 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
666 // template parameter.  It's defined in gtest-type-util.h.
667 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
668 class TypeParameterizedTest {
669  public:
670   // 'index' is the index of the test in the type list 'Types'
671   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
672   // Types).  Valid values for 'index' are [0, N - 1] where N is the
673   // length of Types.
674   static bool Register(const char* prefix, const char* case_name,
675                        const char* test_names, int index) {
676     typedef typename Types::Head Type;
677     typedef Fixture<Type> FixtureClass;
678     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
679
680     // First, registers the first type-parameterized test in the type
681     // list.
682     MakeAndRegisterTestInfo(
683         String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
684                        case_name, index).c_str(),
685         GetPrefixUntilComma(test_names).c_str(),
686         GetTypeName<Type>().c_str(),
687         NULL,  // No value parameter.
688         GetTypeId<FixtureClass>(),
689         TestClass::SetUpTestCase,
690         TestClass::TearDownTestCase,
691         new TestFactoryImpl<TestClass>);
692
693     // Next, recurses (at compile time) with the tail of the type list.
694     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
695         ::Register(prefix, case_name, test_names, index + 1);
696   }
697 };
698
699 // The base case for the compile time recursion.
700 template <GTEST_TEMPLATE_ Fixture, class TestSel>
701 class TypeParameterizedTest<Fixture, TestSel, Types0> {
702  public:
703   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
704                        const char* /*test_names*/, int /*index*/) {
705     return true;
706   }
707 };
708
709 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
710 // registers *all combinations* of 'Tests' and 'Types' with Google
711 // Test.  The return value is insignificant - we just need to return
712 // something such that we can call this function in a namespace scope.
713 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
714 class TypeParameterizedTestCase {
715  public:
716   static bool Register(const char* prefix, const char* case_name,
717                        const char* test_names) {
718     typedef typename Tests::Head Head;
719
720     // First, register the first test in 'Test' for each type in 'Types'.
721     TypeParameterizedTest<Fixture, Head, Types>::Register(
722         prefix, case_name, test_names, 0);
723
724     // Next, recurses (at compile time) with the tail of the test list.
725     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
726         ::Register(prefix, case_name, SkipComma(test_names));
727   }
728 };
729
730 // The base case for the compile time recursion.
731 template <GTEST_TEMPLATE_ Fixture, typename Types>
732 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
733  public:
734   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
735                        const char* /*test_names*/) {
736     return true;
737   }
738 };
739
740 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
741
742 // Returns the current OS stack trace as a String.
743 //
744 // The maximum number of stack frames to be included is specified by
745 // the gtest_stack_trace_depth flag.  The skip_count parameter
746 // specifies the number of top frames to be skipped, which doesn't
747 // count against the number of frames to be included.
748 //
749 // For example, if Foo() calls Bar(), which in turn calls
750 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
751 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
752 GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
753                                                   int skip_count);
754
755 // Helpers for suppressing warnings on unreachable code or constant
756 // condition.
757
758 // Always returns true.
759 GTEST_API_ bool AlwaysTrue();
760
761 // Always returns false.
762 inline bool AlwaysFalse() { return !AlwaysTrue(); }
763
764 // Helper for suppressing false warning from Clang on a const char*
765 // variable declared in a conditional expression always being NULL in
766 // the else branch.
767 struct GTEST_API_ ConstCharPtr {
768   ConstCharPtr(const char* str) : value(str) {}
769   operator bool() const { return true; }
770   const char* value;
771 };
772
773 // A simple Linear Congruential Generator for generating random
774 // numbers with a uniform distribution.  Unlike rand() and srand(), it
775 // doesn't use global state (and therefore can't interfere with user
776 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
777 // but it's good enough for our purposes.
778 class GTEST_API_ Random {
779  public:
780   static const UInt32 kMaxRange = 1u << 31;
781
782   explicit Random(UInt32 seed) : state_(seed) {}
783
784   void Reseed(UInt32 seed) { state_ = seed; }
785
786   // Generates a random number from [0, range).  Crashes if 'range' is
787   // 0 or greater than kMaxRange.
788   UInt32 Generate(UInt32 range);
789
790  private:
791   UInt32 state_;
792   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
793 };
794
795 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
796 // compiler error iff T1 and T2 are different types.
797 template <typename T1, typename T2>
798 struct CompileAssertTypesEqual;
799
800 template <typename T>
801 struct CompileAssertTypesEqual<T, T> {
802 };
803
804 // Removes the reference from a type if it is a reference type,
805 // otherwise leaves it unchanged.  This is the same as
806 // tr1::remove_reference, which is not widely available yet.
807 template <typename T>
808 struct RemoveReference { typedef T type; };  // NOLINT
809 template <typename T>
810 struct RemoveReference<T&> { typedef T type; };  // NOLINT
811
812 // A handy wrapper around RemoveReference that works when the argument
813 // T depends on template parameters.
814 #define GTEST_REMOVE_REFERENCE_(T) \
815     typename ::testing::internal::RemoveReference<T>::type
816
817 // Removes const from a type if it is a const type, otherwise leaves
818 // it unchanged.  This is the same as tr1::remove_const, which is not
819 // widely available yet.
820 template <typename T>
821 struct RemoveConst { typedef T type; };  // NOLINT
822 template <typename T>
823 struct RemoveConst<const T> { typedef T type; };  // NOLINT
824
825 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
826 // definition to fail to remove the const in 'const int[3]' and 'const
827 // char[3][4]'.  The following specialization works around the bug.
828 // However, it causes trouble with GCC and thus needs to be
829 // conditionally compiled.
830 #if defined(_MSC_VER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
831 template <typename T, size_t N>
832 struct RemoveConst<const T[N]> {
833   typedef typename RemoveConst<T>::type type[N];
834 };
835 #endif
836
837 // A handy wrapper around RemoveConst that works when the argument
838 // T depends on template parameters.
839 #define GTEST_REMOVE_CONST_(T) \
840     typename ::testing::internal::RemoveConst<T>::type
841
842 // Turns const U&, U&, const U, and U all into U.
843 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
844     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
845
846 // Adds reference to a type if it is not a reference type,
847 // otherwise leaves it unchanged.  This is the same as
848 // tr1::add_reference, which is not widely available yet.
849 template <typename T>
850 struct AddReference { typedef T& type; };  // NOLINT
851 template <typename T>
852 struct AddReference<T&> { typedef T& type; };  // NOLINT
853
854 // A handy wrapper around AddReference that works when the argument T
855 // depends on template parameters.
856 #define GTEST_ADD_REFERENCE_(T) \
857     typename ::testing::internal::AddReference<T>::type
858
859 // Adds a reference to const on top of T as necessary.  For example,
860 // it transforms
861 //
862 //   char         ==> const char&
863 //   const char   ==> const char&
864 //   char&        ==> const char&
865 //   const char&  ==> const char&
866 //
867 // The argument T must depend on some template parameters.
868 #define GTEST_REFERENCE_TO_CONST_(T) \
869     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
870
871 // ImplicitlyConvertible<From, To>::value is a compile-time bool
872 // constant that's true iff type From can be implicitly converted to
873 // type To.
874 template <typename From, typename To>
875 class ImplicitlyConvertible {
876  private:
877   // We need the following helper functions only for their types.
878   // They have no implementations.
879
880   // MakeFrom() is an expression whose type is From.  We cannot simply
881   // use From(), as the type From may not have a public default
882   // constructor.
883   static From MakeFrom();
884
885   // These two functions are overloaded.  Given an expression
886   // Helper(x), the compiler will pick the first version if x can be
887   // implicitly converted to type To; otherwise it will pick the
888   // second version.
889   //
890   // The first version returns a value of size 1, and the second
891   // version returns a value of size 2.  Therefore, by checking the
892   // size of Helper(x), which can be done at compile time, we can tell
893   // which version of Helper() is used, and hence whether x can be
894   // implicitly converted to type To.
895   static char Helper(To);
896   static char (&Helper(...))[2];  // NOLINT
897
898   // We have to put the 'public' section after the 'private' section,
899   // or MSVC refuses to compile the code.
900  public:
901   // MSVC warns about implicitly converting from double to int for
902   // possible loss of data, so we need to temporarily disable the
903   // warning.
904 #ifdef _MSC_VER
905 # pragma warning(push)          // Saves the current warning state.
906 # pragma warning(disable:4244)  // Temporarily disables warning 4244.
907
908   static const bool value =
909       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
910 # pragma warning(pop)           // Restores the warning state.
911 #elif defined(__BORLANDC__)
912   // C++Builder cannot use member overload resolution during template
913   // instantiation.  The simplest workaround is to use its C++0x type traits
914   // functions (C++Builder 2009 and above only).
915   static const bool value = __is_convertible(From, To);
916 #else
917   static const bool value =
918       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
919 #endif  // _MSV_VER
920 };
921 template <typename From, typename To>
922 const bool ImplicitlyConvertible<From, To>::value;
923
924 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
925 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
926 // of those.
927 template <typename T>
928 struct IsAProtocolMessage
929     : public bool_constant<
930   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
931   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
932 };
933
934 // When the compiler sees expression IsContainerTest<C>(0), if C is an
935 // STL-style container class, the first overload of IsContainerTest
936 // will be viable (since both C::iterator* and C::const_iterator* are
937 // valid types and NULL can be implicitly converted to them).  It will
938 // be picked over the second overload as 'int' is a perfect match for
939 // the type of argument 0.  If C::iterator or C::const_iterator is not
940 // a valid type, the first overload is not viable, and the second
941 // overload will be picked.  Therefore, we can determine whether C is
942 // a container class by checking the type of IsContainerTest<C>(0).
943 // The value of the expression is insignificant.
944 //
945 // Note that we look for both C::iterator and C::const_iterator.  The
946 // reason is that C++ injects the name of a class as a member of the
947 // class itself (e.g. you can refer to class iterator as either
948 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
949 // only, for example, we would mistakenly think that a class named
950 // iterator is an STL container.
951 //
952 // Also note that the simpler approach of overloading
953 // IsContainerTest(typename C::const_iterator*) and
954 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
955 typedef int IsContainer;
956 template <class C>
957 IsContainer IsContainerTest(int /* dummy */,
958                             typename C::iterator* /* it */ = NULL,
959                             typename C::const_iterator* /* const_it */ = NULL) {
960   return 0;
961 }
962
963 typedef char IsNotContainer;
964 template <class C>
965 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
966
967 // EnableIf<condition>::type is void when 'Cond' is true, and
968 // undefined when 'Cond' is false.  To use SFINAE to make a function
969 // overload only apply when a particular expression is true, add
970 // "typename EnableIf<expression>::type* = 0" as the last parameter.
971 template<bool> struct EnableIf;
972 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
973
974 // Utilities for native arrays.
975
976 // ArrayEq() compares two k-dimensional native arrays using the
977 // elements' operator==, where k can be any integer >= 0.  When k is
978 // 0, ArrayEq() degenerates into comparing a single pair of values.
979
980 template <typename T, typename U>
981 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
982
983 // This generic version is used when k is 0.
984 template <typename T, typename U>
985 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
986
987 // This overload is used when k >= 1.
988 template <typename T, typename U, size_t N>
989 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
990   return internal::ArrayEq(lhs, N, rhs);
991 }
992
993 // This helper reduces code bloat.  If we instead put its logic inside
994 // the previous ArrayEq() function, arrays with different sizes would
995 // lead to different copies of the template code.
996 template <typename T, typename U>
997 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
998   for (size_t i = 0; i != size; i++) {
999     if (!internal::ArrayEq(lhs[i], rhs[i]))
1000       return false;
1001   }
1002   return true;
1003 }
1004
1005 // Finds the first element in the iterator range [begin, end) that
1006 // equals elem.  Element may be a native array type itself.
1007 template <typename Iter, typename Element>
1008 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1009   for (Iter it = begin; it != end; ++it) {
1010     if (internal::ArrayEq(*it, elem))
1011       return it;
1012   }
1013   return end;
1014 }
1015
1016 // CopyArray() copies a k-dimensional native array using the elements'
1017 // operator=, where k can be any integer >= 0.  When k is 0,
1018 // CopyArray() degenerates into copying a single value.
1019
1020 template <typename T, typename U>
1021 void CopyArray(const T* from, size_t size, U* to);
1022
1023 // This generic version is used when k is 0.
1024 template <typename T, typename U>
1025 inline void CopyArray(const T& from, U* to) { *to = from; }
1026
1027 // This overload is used when k >= 1.
1028 template <typename T, typename U, size_t N>
1029 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1030   internal::CopyArray(from, N, *to);
1031 }
1032
1033 // This helper reduces code bloat.  If we instead put its logic inside
1034 // the previous CopyArray() function, arrays with different sizes
1035 // would lead to different copies of the template code.
1036 template <typename T, typename U>
1037 void CopyArray(const T* from, size_t size, U* to) {
1038   for (size_t i = 0; i != size; i++) {
1039     internal::CopyArray(from[i], to + i);
1040   }
1041 }
1042
1043 // The relation between an NativeArray object (see below) and the
1044 // native array it represents.
1045 enum RelationToSource {
1046   kReference,  // The NativeArray references the native array.
1047   kCopy        // The NativeArray makes a copy of the native array and
1048                // owns the copy.
1049 };
1050
1051 // Adapts a native array to a read-only STL-style container.  Instead
1052 // of the complete STL container concept, this adaptor only implements
1053 // members useful for Google Mock's container matchers.  New members
1054 // should be added as needed.  To simplify the implementation, we only
1055 // support Element being a raw type (i.e. having no top-level const or
1056 // reference modifier).  It's the client's responsibility to satisfy
1057 // this requirement.  Element can be an array type itself (hence
1058 // multi-dimensional arrays are supported).
1059 template <typename Element>
1060 class NativeArray {
1061  public:
1062   // STL-style container typedefs.
1063   typedef Element value_type;
1064   typedef Element* iterator;
1065   typedef const Element* const_iterator;
1066
1067   // Constructs from a native array.
1068   NativeArray(const Element* array, size_t count, RelationToSource relation) {
1069     Init(array, count, relation);
1070   }
1071
1072   // Copy constructor.
1073   NativeArray(const NativeArray& rhs) {
1074     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
1075   }
1076
1077   ~NativeArray() {
1078     // Ensures that the user doesn't instantiate NativeArray with a
1079     // const or reference type.
1080     static_cast<void>(StaticAssertTypeEqHelper<Element,
1081         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
1082     if (relation_to_source_ == kCopy)
1083       delete[] array_;
1084   }
1085
1086   // STL-style container methods.
1087   size_t size() const { return size_; }
1088   const_iterator begin() const { return array_; }
1089   const_iterator end() const { return array_ + size_; }
1090   bool operator==(const NativeArray& rhs) const {
1091     return size() == rhs.size() &&
1092         ArrayEq(begin(), size(), rhs.begin());
1093   }
1094
1095  private:
1096   // Initializes this object; makes a copy of the input array if
1097   // 'relation' is kCopy.
1098   void Init(const Element* array, size_t a_size, RelationToSource relation) {
1099     if (relation == kReference) {
1100       array_ = array;
1101     } else {
1102       Element* const copy = new Element[a_size];
1103       CopyArray(array, a_size, copy);
1104       array_ = copy;
1105     }
1106     size_ = a_size;
1107     relation_to_source_ = relation;
1108   }
1109
1110   const Element* array_;
1111   size_t size_;
1112   RelationToSource relation_to_source_;
1113
1114   GTEST_DISALLOW_ASSIGN_(NativeArray);
1115 };
1116
1117 }  // namespace internal
1118 }  // namespace testing
1119
1120 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1121   ::testing::internal::AssertHelper(result_type, file, line, message) \
1122     = ::testing::Message()
1123
1124 #define GTEST_MESSAGE_(message, result_type) \
1125   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1126
1127 #define GTEST_FATAL_FAILURE_(message) \
1128   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1129
1130 #define GTEST_NONFATAL_FAILURE_(message) \
1131   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1132
1133 #define GTEST_SUCCESS_(message) \
1134   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1135
1136 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
1137 // statement if it returns or throws (or doesn't return or throw in some
1138 // situations).
1139 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1140   if (::testing::internal::AlwaysTrue()) { statement; }
1141
1142 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1143   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1144   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1145     bool gtest_caught_expected = false; \
1146     try { \
1147       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1148     } \
1149     catch (expected_exception const&) { \
1150       gtest_caught_expected = true; \
1151     } \
1152     catch (...) { \
1153       gtest_msg.value = \
1154           "Expected: " #statement " throws an exception of type " \
1155           #expected_exception ".\n  Actual: it throws a different type."; \
1156       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1157     } \
1158     if (!gtest_caught_expected) { \
1159       gtest_msg.value = \
1160           "Expected: " #statement " throws an exception of type " \
1161           #expected_exception ".\n  Actual: it throws nothing."; \
1162       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1163     } \
1164   } else \
1165     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1166       fail(gtest_msg.value)
1167
1168 #define GTEST_TEST_NO_THROW_(statement, fail) \
1169   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1170   if (::testing::internal::AlwaysTrue()) { \
1171     try { \
1172       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1173     } \
1174     catch (...) { \
1175       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1176     } \
1177   } else \
1178     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1179       fail("Expected: " #statement " doesn't throw an exception.\n" \
1180            "  Actual: it throws.")
1181
1182 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1183   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1184   if (::testing::internal::AlwaysTrue()) { \
1185     bool gtest_caught_any = false; \
1186     try { \
1187       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1188     } \
1189     catch (...) { \
1190       gtest_caught_any = true; \
1191     } \
1192     if (!gtest_caught_any) { \
1193       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1194     } \
1195   } else \
1196     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1197       fail("Expected: " #statement " throws an exception.\n" \
1198            "  Actual: it doesn't.")
1199
1200
1201 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1202 // either a boolean expression or an AssertionResult. text is a textual
1203 // represenation of expression as it was passed into the EXPECT_TRUE.
1204 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1205   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1206   if (const ::testing::AssertionResult gtest_ar_ = \
1207       ::testing::AssertionResult(expression)) \
1208     ; \
1209   else \
1210     fail(::testing::internal::GetBoolAssertionFailureMessage(\
1211         gtest_ar_, text, #actual, #expected).c_str())
1212
1213 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1214   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1215   if (::testing::internal::AlwaysTrue()) { \
1216     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1217     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1218     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1219       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1220     } \
1221   } else \
1222     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1223       fail("Expected: " #statement " doesn't generate new fatal " \
1224            "failures in the current thread.\n" \
1225            "  Actual: it does.")
1226
1227 // Expands to the name of the class that implements the given test.
1228 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1229   test_case_name##_##test_name##_Test
1230
1231 // Helper macro for defining tests.
1232 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1233 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1234  public:\
1235   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1236  private:\
1237   virtual void TestBody();\
1238   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1239   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1240       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1241 };\
1242 \
1243 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1244   ::test_info_ =\
1245     ::testing::internal::MakeAndRegisterTestInfo(\
1246         #test_case_name, #test_name, NULL, NULL, \
1247         (parent_id), \
1248         parent_class::SetUpTestCase, \
1249         parent_class::TearDownTestCase, \
1250         new ::testing::internal::TestFactoryImpl<\
1251             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1252 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1253
1254 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_