[X86] Part 2 to fix x86-64 fp128 calling convention.
[oota-llvm.git] / utils / TableGen / X86RecognizableInstr.cpp
1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler Emitter.
11 // It contains the implementation of a single recognizable instruction.
12 // Documentation for the disassembler emitter in general can be found in
13 //  X86DisasemblerEmitter.h.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "X86RecognizableInstr.h"
18 #include "X86DisassemblerShared.h"
19 #include "X86ModRMFilters.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include <string>
22
23 using namespace llvm;
24
25 #define MRM_MAPPING     \
26   MAP(C0, 32)           \
27   MAP(C1, 33)           \
28   MAP(C2, 34)           \
29   MAP(C3, 35)           \
30   MAP(C4, 36)           \
31   MAP(C5, 37)           \
32   MAP(C6, 38)           \
33   MAP(C7, 39)           \
34   MAP(C8, 40)           \
35   MAP(C9, 41)           \
36   MAP(CA, 42)           \
37   MAP(CB, 43)           \
38   MAP(CC, 44)           \
39   MAP(CD, 45)           \
40   MAP(CE, 46)           \
41   MAP(CF, 47)           \
42   MAP(D0, 48)           \
43   MAP(D1, 49)           \
44   MAP(D2, 50)           \
45   MAP(D3, 51)           \
46   MAP(D4, 52)           \
47   MAP(D5, 53)           \
48   MAP(D6, 54)           \
49   MAP(D7, 55)           \
50   MAP(D8, 56)           \
51   MAP(D9, 57)           \
52   MAP(DA, 58)           \
53   MAP(DB, 59)           \
54   MAP(DC, 60)           \
55   MAP(DD, 61)           \
56   MAP(DE, 62)           \
57   MAP(DF, 63)           \
58   MAP(E0, 64)           \
59   MAP(E1, 65)           \
60   MAP(E2, 66)           \
61   MAP(E3, 67)           \
62   MAP(E4, 68)           \
63   MAP(E5, 69)           \
64   MAP(E6, 70)           \
65   MAP(E7, 71)           \
66   MAP(E8, 72)           \
67   MAP(E9, 73)           \
68   MAP(EA, 74)           \
69   MAP(EB, 75)           \
70   MAP(EC, 76)           \
71   MAP(ED, 77)           \
72   MAP(EE, 78)           \
73   MAP(EF, 79)           \
74   MAP(F0, 80)           \
75   MAP(F1, 81)           \
76   MAP(F2, 82)           \
77   MAP(F3, 83)           \
78   MAP(F4, 84)           \
79   MAP(F5, 85)           \
80   MAP(F6, 86)           \
81   MAP(F7, 87)           \
82   MAP(F8, 88)           \
83   MAP(F9, 89)           \
84   MAP(FA, 90)           \
85   MAP(FB, 91)           \
86   MAP(FC, 92)           \
87   MAP(FD, 93)           \
88   MAP(FE, 94)           \
89   MAP(FF, 95)
90
91 // A clone of X86 since we can't depend on something that is generated.
92 namespace X86Local {
93   enum {
94     Pseudo      = 0,
95     RawFrm      = 1,
96     AddRegFrm   = 2,
97     MRMDestReg  = 3,
98     MRMDestMem  = 4,
99     MRMSrcReg   = 5,
100     MRMSrcMem   = 6,
101     RawFrmMemOffs = 7,
102     RawFrmSrc   = 8,
103     RawFrmDst   = 9,
104     RawFrmDstSrc = 10,
105     RawFrmImm8  = 11,
106     RawFrmImm16 = 12,
107     MRMXr = 14, MRMXm = 15,
108     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
109     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
110     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
111     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
112 #define MAP(from, to) MRM_##from = to,
113     MRM_MAPPING
114 #undef MAP
115     lastMRM
116   };
117
118   enum {
119     OB = 0, TB = 1, T8 = 2, TA = 3, XOP8 = 4, XOP9 = 5, XOPA = 6
120   };
121
122   enum {
123     PS = 1, PD = 2, XS = 3, XD = 4
124   };
125
126   enum {
127     VEX = 1, XOP = 2, EVEX = 3
128   };
129
130   enum {
131     OpSize16 = 1, OpSize32 = 2
132   };
133
134   enum {
135     AdSize16 = 1, AdSize32 = 2, AdSize64 = 3
136   };
137 }
138
139 using namespace X86Disassembler;
140
141 /// isRegFormat - Indicates whether a particular form requires the Mod field of
142 ///   the ModR/M byte to be 0b11.
143 ///
144 /// @param form - The form of the instruction.
145 /// @return     - true if the form implies that Mod must be 0b11, false
146 ///               otherwise.
147 static bool isRegFormat(uint8_t form) {
148   return (form == X86Local::MRMDestReg ||
149           form == X86Local::MRMSrcReg  ||
150           form == X86Local::MRMXr ||
151           (form >= X86Local::MRM0r && form <= X86Local::MRM7r));
152 }
153
154 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
155 ///   Useful for switch statements and the like.
156 ///
157 /// @param init - A reference to the BitsInit to be decoded.
158 /// @return     - The field, with the first bit in the BitsInit as the lowest
159 ///               order bit.
160 static uint8_t byteFromBitsInit(BitsInit &init) {
161   int width = init.getNumBits();
162
163   assert(width <= 8 && "Field is too large for uint8_t!");
164
165   int     index;
166   uint8_t mask = 0x01;
167
168   uint8_t ret = 0;
169
170   for (index = 0; index < width; index++) {
171     if (static_cast<BitInit*>(init.getBit(index))->getValue())
172       ret |= mask;
173
174     mask <<= 1;
175   }
176
177   return ret;
178 }
179
180 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
181 ///   name of the field.
182 ///
183 /// @param rec  - The record from which to extract the value.
184 /// @param name - The name of the field in the record.
185 /// @return     - The field, as translated by byteFromBitsInit().
186 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
187   BitsInit* bits = rec->getValueAsBitsInit(name);
188   return byteFromBitsInit(*bits);
189 }
190
191 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
192                                      const CodeGenInstruction &insn,
193                                      InstrUID uid) {
194   UID = uid;
195
196   Rec = insn.TheDef;
197   Name = Rec->getName();
198   Spec = &tables.specForUID(UID);
199
200   if (!Rec->isSubClassOf("X86Inst")) {
201     ShouldBeEmitted = false;
202     return;
203   }
204
205   OpPrefix = byteFromRec(Rec, "OpPrefixBits");
206   OpMap    = byteFromRec(Rec, "OpMapBits");
207   Opcode   = byteFromRec(Rec, "Opcode");
208   Form     = byteFromRec(Rec, "FormBits");
209   Encoding = byteFromRec(Rec, "OpEncBits");
210
211   OpSize           = byteFromRec(Rec, "OpSizeBits");
212   AdSize           = byteFromRec(Rec, "AdSizeBits");
213   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
214   HasVEX_4V        = Rec->getValueAsBit("hasVEX_4V");
215   HasVEX_4VOp3     = Rec->getValueAsBit("hasVEX_4VOp3");
216   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
217   HasMemOp4Prefix  = Rec->getValueAsBit("hasMemOp4Prefix");
218   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
219   HasEVEX_L2Prefix = Rec->getValueAsBit("hasEVEX_L2");
220   HasEVEX_K        = Rec->getValueAsBit("hasEVEX_K");
221   HasEVEX_KZ       = Rec->getValueAsBit("hasEVEX_Z");
222   HasEVEX_B        = Rec->getValueAsBit("hasEVEX_B");
223   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
224   ForceDisassemble = Rec->getValueAsBit("ForceDisassemble");
225   CD8_Scale        = byteFromRec(Rec, "CD8_Scale");
226
227   Name      = Rec->getName();
228   AsmString = Rec->getValueAsString("AsmString");
229
230   Operands = &insn.Operands.OperandList;
231
232   HasVEX_LPrefix   = Rec->getValueAsBit("hasVEX_L");
233
234   // Check for 64-bit inst which does not require REX
235   Is32Bit = false;
236   Is64Bit = false;
237   // FIXME: Is there some better way to check for In64BitMode?
238   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
239   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
240     if (Predicates[i]->getName().find("Not64Bit") != Name.npos ||
241         Predicates[i]->getName().find("In32Bit") != Name.npos) {
242       Is32Bit = true;
243       break;
244     }
245     if (Predicates[i]->getName().find("In64Bit") != Name.npos) {
246       Is64Bit = true;
247       break;
248     }
249   }
250
251   if (Form == X86Local::Pseudo || (IsCodeGenOnly && !ForceDisassemble)) {
252     ShouldBeEmitted = false;
253     return;
254   }
255
256   // Special case since there is no attribute class for 64-bit and VEX
257   if (Name == "VMASKMOVDQU64") {
258     ShouldBeEmitted = false;
259     return;
260   }
261
262   ShouldBeEmitted  = true;
263 }
264
265 void RecognizableInstr::processInstr(DisassemblerTables &tables,
266                                      const CodeGenInstruction &insn,
267                                      InstrUID uid)
268 {
269   // Ignore "asm parser only" instructions.
270   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
271     return;
272
273   RecognizableInstr recogInstr(tables, insn, uid);
274
275   if (recogInstr.shouldBeEmitted()) {
276     recogInstr.emitInstructionSpecifier();
277     recogInstr.emitDecodePath(tables);
278   }
279 }
280
281 #define EVEX_KB(n) (HasEVEX_KZ && HasEVEX_B ? n##_KZ_B : \
282                     (HasEVEX_K && HasEVEX_B ? n##_K_B : \
283                     (HasEVEX_KZ ? n##_KZ : \
284                     (HasEVEX_K? n##_K : (HasEVEX_B ? n##_B : n)))))
285
286 InstructionContext RecognizableInstr::insnContext() const {
287   InstructionContext insnContext;
288
289   if (Encoding == X86Local::EVEX) {
290     if (HasVEX_LPrefix && HasEVEX_L2Prefix) {
291       errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n";
292       llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled");
293     }
294     // VEX_L & VEX_W
295     if (HasVEX_LPrefix && HasVEX_WPrefix) {
296       if (OpPrefix == X86Local::PD)
297         insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE);
298       else if (OpPrefix == X86Local::XS)
299         insnContext = EVEX_KB(IC_EVEX_L_W_XS);
300       else if (OpPrefix == X86Local::XD)
301         insnContext = EVEX_KB(IC_EVEX_L_W_XD);
302       else if (OpPrefix == X86Local::PS)
303         insnContext = EVEX_KB(IC_EVEX_L_W);
304       else {
305         errs() << "Instruction does not use a prefix: " << Name << "\n";
306         llvm_unreachable("Invalid prefix");
307       }
308     } else if (HasVEX_LPrefix) {
309       // VEX_L
310       if (OpPrefix == X86Local::PD)
311         insnContext = EVEX_KB(IC_EVEX_L_OPSIZE);
312       else if (OpPrefix == X86Local::XS)
313         insnContext = EVEX_KB(IC_EVEX_L_XS);
314       else if (OpPrefix == X86Local::XD)
315         insnContext = EVEX_KB(IC_EVEX_L_XD);
316       else if (OpPrefix == X86Local::PS)
317         insnContext = EVEX_KB(IC_EVEX_L);
318       else {
319         errs() << "Instruction does not use a prefix: " << Name << "\n";
320         llvm_unreachable("Invalid prefix");
321       }
322     }
323     else if (HasEVEX_L2Prefix && HasVEX_WPrefix) {
324       // EVEX_L2 & VEX_W
325       if (OpPrefix == X86Local::PD)
326         insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE);
327       else if (OpPrefix == X86Local::XS)
328         insnContext = EVEX_KB(IC_EVEX_L2_W_XS);
329       else if (OpPrefix == X86Local::XD)
330         insnContext = EVEX_KB(IC_EVEX_L2_W_XD);
331       else if (OpPrefix == X86Local::PS)
332         insnContext = EVEX_KB(IC_EVEX_L2_W);
333       else {
334         errs() << "Instruction does not use a prefix: " << Name << "\n";
335         llvm_unreachable("Invalid prefix");
336       }
337     } else if (HasEVEX_L2Prefix) {
338       // EVEX_L2
339       if (OpPrefix == X86Local::PD)
340         insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE);
341       else if (OpPrefix == X86Local::XD)
342         insnContext = EVEX_KB(IC_EVEX_L2_XD);
343       else if (OpPrefix == X86Local::XS)
344         insnContext = EVEX_KB(IC_EVEX_L2_XS);
345       else if (OpPrefix == X86Local::PS)
346         insnContext = EVEX_KB(IC_EVEX_L2);
347       else {
348         errs() << "Instruction does not use a prefix: " << Name << "\n";
349         llvm_unreachable("Invalid prefix");
350       }
351     }
352     else if (HasVEX_WPrefix) {
353       // VEX_W
354       if (OpPrefix == X86Local::PD)
355         insnContext = EVEX_KB(IC_EVEX_W_OPSIZE);
356       else if (OpPrefix == X86Local::XS)
357         insnContext = EVEX_KB(IC_EVEX_W_XS);
358       else if (OpPrefix == X86Local::XD)
359         insnContext = EVEX_KB(IC_EVEX_W_XD);
360       else if (OpPrefix == X86Local::PS)
361         insnContext = EVEX_KB(IC_EVEX_W);
362       else {
363         errs() << "Instruction does not use a prefix: " << Name << "\n";
364         llvm_unreachable("Invalid prefix");
365       }
366     }
367     // No L, no W
368     else if (OpPrefix == X86Local::PD)
369       insnContext = EVEX_KB(IC_EVEX_OPSIZE);
370     else if (OpPrefix == X86Local::XD)
371       insnContext = EVEX_KB(IC_EVEX_XD);
372     else if (OpPrefix == X86Local::XS)
373       insnContext = EVEX_KB(IC_EVEX_XS);
374     else
375       insnContext = EVEX_KB(IC_EVEX);
376     /// eof EVEX
377   } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) {
378     if (HasVEX_LPrefix && HasVEX_WPrefix) {
379       if (OpPrefix == X86Local::PD)
380         insnContext = IC_VEX_L_W_OPSIZE;
381       else if (OpPrefix == X86Local::XS)
382         insnContext = IC_VEX_L_W_XS;
383       else if (OpPrefix == X86Local::XD)
384         insnContext = IC_VEX_L_W_XD;
385       else if (OpPrefix == X86Local::PS)
386         insnContext = IC_VEX_L_W;
387       else {
388         errs() << "Instruction does not use a prefix: " << Name << "\n";
389         llvm_unreachable("Invalid prefix");
390       }
391     } else if (OpPrefix == X86Local::PD && HasVEX_LPrefix)
392       insnContext = IC_VEX_L_OPSIZE;
393     else if (OpPrefix == X86Local::PD && HasVEX_WPrefix)
394       insnContext = IC_VEX_W_OPSIZE;
395     else if (OpPrefix == X86Local::PD)
396       insnContext = IC_VEX_OPSIZE;
397     else if (HasVEX_LPrefix && OpPrefix == X86Local::XS)
398       insnContext = IC_VEX_L_XS;
399     else if (HasVEX_LPrefix && OpPrefix == X86Local::XD)
400       insnContext = IC_VEX_L_XD;
401     else if (HasVEX_WPrefix && OpPrefix == X86Local::XS)
402       insnContext = IC_VEX_W_XS;
403     else if (HasVEX_WPrefix && OpPrefix == X86Local::XD)
404       insnContext = IC_VEX_W_XD;
405     else if (HasVEX_WPrefix && OpPrefix == X86Local::PS)
406       insnContext = IC_VEX_W;
407     else if (HasVEX_LPrefix && OpPrefix == X86Local::PS)
408       insnContext = IC_VEX_L;
409     else if (OpPrefix == X86Local::XD)
410       insnContext = IC_VEX_XD;
411     else if (OpPrefix == X86Local::XS)
412       insnContext = IC_VEX_XS;
413     else if (OpPrefix == X86Local::PS)
414       insnContext = IC_VEX;
415     else {
416       errs() << "Instruction does not use a prefix: " << Name << "\n";
417       llvm_unreachable("Invalid prefix");
418     }
419   } else if (Is64Bit || HasREX_WPrefix || AdSize == X86Local::AdSize64) {
420     if (HasREX_WPrefix && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD))
421       insnContext = IC_64BIT_REXW_OPSIZE;
422     else if (HasREX_WPrefix && AdSize == X86Local::AdSize32)
423       insnContext = IC_64BIT_REXW_ADSIZE;
424     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
425       insnContext = IC_64BIT_XD_OPSIZE;
426     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
427       insnContext = IC_64BIT_XS_OPSIZE;
428     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32)
429       insnContext = IC_64BIT_OPSIZE_ADSIZE;
430     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
431       insnContext = IC_64BIT_OPSIZE;
432     else if (AdSize == X86Local::AdSize32)
433       insnContext = IC_64BIT_ADSIZE;
434     else if (HasREX_WPrefix && OpPrefix == X86Local::XS)
435       insnContext = IC_64BIT_REXW_XS;
436     else if (HasREX_WPrefix && OpPrefix == X86Local::XD)
437       insnContext = IC_64BIT_REXW_XD;
438     else if (OpPrefix == X86Local::XD)
439       insnContext = IC_64BIT_XD;
440     else if (OpPrefix == X86Local::XS)
441       insnContext = IC_64BIT_XS;
442     else if (HasREX_WPrefix)
443       insnContext = IC_64BIT_REXW;
444     else
445       insnContext = IC_64BIT;
446   } else {
447     if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD)
448       insnContext = IC_XD_OPSIZE;
449     else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS)
450       insnContext = IC_XS_OPSIZE;
451     else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16)
452       insnContext = IC_OPSIZE_ADSIZE;
453     else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)
454       insnContext = IC_OPSIZE;
455     else if (AdSize == X86Local::AdSize16)
456       insnContext = IC_ADSIZE;
457     else if (OpPrefix == X86Local::XD)
458       insnContext = IC_XD;
459     else if (OpPrefix == X86Local::XS)
460       insnContext = IC_XS;
461     else
462       insnContext = IC;
463   }
464
465   return insnContext;
466 }
467
468 void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) {
469   // The scaling factor for AVX512 compressed displacement encoding is an
470   // instruction attribute.  Adjust the ModRM encoding type to include the
471   // scale for compressed displacement.
472   if (encoding != ENCODING_RM || CD8_Scale == 0)
473     return;
474   encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale));
475   assert(encoding <= ENCODING_RM_CD64 && "Invalid CDisp scaling");
476 }
477
478 void RecognizableInstr::handleOperand(bool optional, unsigned &operandIndex,
479                                       unsigned &physicalOperandIndex,
480                                       unsigned &numPhysicalOperands,
481                                       const unsigned *operandMapping,
482                                       OperandEncoding (*encodingFromString)
483                                         (const std::string&,
484                                          uint8_t OpSize)) {
485   if (optional) {
486     if (physicalOperandIndex >= numPhysicalOperands)
487       return;
488   } else {
489     assert(physicalOperandIndex < numPhysicalOperands);
490   }
491
492   while (operandMapping[operandIndex] != operandIndex) {
493     Spec->operands[operandIndex].encoding = ENCODING_DUP;
494     Spec->operands[operandIndex].type =
495       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
496     ++operandIndex;
497   }
498
499   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
500
501   OperandEncoding encoding = encodingFromString(typeName, OpSize);
502   // Adjust the encoding type for an operand based on the instruction.
503   adjustOperandEncoding(encoding);
504   Spec->operands[operandIndex].encoding = encoding;
505   Spec->operands[operandIndex].type = typeFromString(typeName,
506                                                      HasREX_WPrefix, OpSize);
507
508   ++operandIndex;
509   ++physicalOperandIndex;
510 }
511
512 void RecognizableInstr::emitInstructionSpecifier() {
513   Spec->name       = Name;
514
515   Spec->insnContext = insnContext();
516
517   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
518
519   unsigned numOperands = OperandList.size();
520   unsigned numPhysicalOperands = 0;
521
522   // operandMapping maps from operands in OperandList to their originals.
523   // If operandMapping[i] != i, then the entry is a duplicate.
524   unsigned operandMapping[X86_MAX_OPERANDS];
525   assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
526
527   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
528     if (!OperandList[operandIndex].Constraints.empty()) {
529       const CGIOperandList::ConstraintInfo &Constraint =
530         OperandList[operandIndex].Constraints[0];
531       if (Constraint.isTied()) {
532         operandMapping[operandIndex] = operandIndex;
533         operandMapping[Constraint.getTiedOperand()] = operandIndex;
534       } else {
535         ++numPhysicalOperands;
536         operandMapping[operandIndex] = operandIndex;
537       }
538     } else {
539       ++numPhysicalOperands;
540       operandMapping[operandIndex] = operandIndex;
541     }
542   }
543
544 #define HANDLE_OPERAND(class)               \
545   handleOperand(false,                      \
546                 operandIndex,               \
547                 physicalOperandIndex,       \
548                 numPhysicalOperands,        \
549                 operandMapping,             \
550                 class##EncodingFromString);
551
552 #define HANDLE_OPTIONAL(class)              \
553   handleOperand(true,                       \
554                 operandIndex,               \
555                 physicalOperandIndex,       \
556                 numPhysicalOperands,        \
557                 operandMapping,             \
558                 class##EncodingFromString);
559
560   // operandIndex should always be < numOperands
561   unsigned operandIndex = 0;
562   // physicalOperandIndex should always be < numPhysicalOperands
563   unsigned physicalOperandIndex = 0;
564
565   // Given the set of prefix bits, how many additional operands does the
566   // instruction have?
567   unsigned additionalOperands = 0;
568   if (HasVEX_4V || HasVEX_4VOp3)
569     ++additionalOperands;
570   if (HasEVEX_K)
571     ++additionalOperands;
572
573   switch (Form) {
574   default: llvm_unreachable("Unhandled form");
575   case X86Local::RawFrmSrc:
576     HANDLE_OPERAND(relocation);
577     return;
578   case X86Local::RawFrmDst:
579     HANDLE_OPERAND(relocation);
580     return;
581   case X86Local::RawFrmDstSrc:
582     HANDLE_OPERAND(relocation);
583     HANDLE_OPERAND(relocation);
584     return;
585   case X86Local::RawFrm:
586     // Operand 1 (optional) is an address or immediate.
587     // Operand 2 (optional) is an immediate.
588     assert(numPhysicalOperands <= 2 &&
589            "Unexpected number of operands for RawFrm");
590     HANDLE_OPTIONAL(relocation)
591     HANDLE_OPTIONAL(immediate)
592     break;
593   case X86Local::RawFrmMemOffs:
594     // Operand 1 is an address.
595     HANDLE_OPERAND(relocation);
596     break;
597   case X86Local::AddRegFrm:
598     // Operand 1 is added to the opcode.
599     // Operand 2 (optional) is an address.
600     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
601            "Unexpected number of operands for AddRegFrm");
602     HANDLE_OPERAND(opcodeModifier)
603     HANDLE_OPTIONAL(relocation)
604     break;
605   case X86Local::MRMDestReg:
606     // Operand 1 is a register operand in the R/M field.
607     // - In AVX512 there may be a mask operand here -
608     // Operand 2 is a register operand in the Reg/Opcode field.
609     // - In AVX, there is a register operand in the VEX.vvvv field here -
610     // Operand 3 (optional) is an immediate.
611     assert(numPhysicalOperands >= 2 + additionalOperands &&
612            numPhysicalOperands <= 3 + additionalOperands &&
613            "Unexpected number of operands for MRMDestRegFrm");
614
615     HANDLE_OPERAND(rmRegister)
616     if (HasEVEX_K)
617       HANDLE_OPERAND(writemaskRegister)
618
619     if (HasVEX_4V)
620       // FIXME: In AVX, the register below becomes the one encoded
621       // in ModRMVEX and the one above the one in the VEX.VVVV field
622       HANDLE_OPERAND(vvvvRegister)
623
624     HANDLE_OPERAND(roRegister)
625     HANDLE_OPTIONAL(immediate)
626     break;
627   case X86Local::MRMDestMem:
628     // Operand 1 is a memory operand (possibly SIB-extended)
629     // Operand 2 is a register operand in the Reg/Opcode field.
630     // - In AVX, there is a register operand in the VEX.vvvv field here -
631     // Operand 3 (optional) is an immediate.
632     assert(numPhysicalOperands >= 2 + additionalOperands &&
633            numPhysicalOperands <= 3 + additionalOperands &&
634            "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
635
636     HANDLE_OPERAND(memory)
637
638     if (HasEVEX_K)
639       HANDLE_OPERAND(writemaskRegister)
640
641     if (HasVEX_4V)
642       // FIXME: In AVX, the register below becomes the one encoded
643       // in ModRMVEX and the one above the one in the VEX.VVVV field
644       HANDLE_OPERAND(vvvvRegister)
645
646     HANDLE_OPERAND(roRegister)
647     HANDLE_OPTIONAL(immediate)
648     break;
649   case X86Local::MRMSrcReg:
650     // Operand 1 is a register operand in the Reg/Opcode field.
651     // Operand 2 is a register operand in the R/M field.
652     // - In AVX, there is a register operand in the VEX.vvvv field here -
653     // Operand 3 (optional) is an immediate.
654     // Operand 4 (optional) is an immediate.
655
656     assert(numPhysicalOperands >= 2 + additionalOperands &&
657            numPhysicalOperands <= 4 + additionalOperands &&
658            "Unexpected number of operands for MRMSrcRegFrm");
659
660     HANDLE_OPERAND(roRegister)
661
662     if (HasEVEX_K)
663       HANDLE_OPERAND(writemaskRegister)
664
665     if (HasVEX_4V)
666       // FIXME: In AVX, the register below becomes the one encoded
667       // in ModRMVEX and the one above the one in the VEX.VVVV field
668       HANDLE_OPERAND(vvvvRegister)
669
670     if (HasMemOp4Prefix)
671       HANDLE_OPERAND(immediate)
672
673     HANDLE_OPERAND(rmRegister)
674
675     if (HasVEX_4VOp3)
676       HANDLE_OPERAND(vvvvRegister)
677
678     if (!HasMemOp4Prefix)
679       HANDLE_OPTIONAL(immediate)
680     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
681     HANDLE_OPTIONAL(immediate)
682     break;
683   case X86Local::MRMSrcMem:
684     // Operand 1 is a register operand in the Reg/Opcode field.
685     // Operand 2 is a memory operand (possibly SIB-extended)
686     // - In AVX, there is a register operand in the VEX.vvvv field here -
687     // Operand 3 (optional) is an immediate.
688
689     assert(numPhysicalOperands >= 2 + additionalOperands &&
690            numPhysicalOperands <= 4 + additionalOperands &&
691            "Unexpected number of operands for MRMSrcMemFrm");
692
693     HANDLE_OPERAND(roRegister)
694
695     if (HasEVEX_K)
696       HANDLE_OPERAND(writemaskRegister)
697
698     if (HasVEX_4V)
699       // FIXME: In AVX, the register below becomes the one encoded
700       // in ModRMVEX and the one above the one in the VEX.VVVV field
701       HANDLE_OPERAND(vvvvRegister)
702
703     if (HasMemOp4Prefix)
704       HANDLE_OPERAND(immediate)
705
706     HANDLE_OPERAND(memory)
707
708     if (HasVEX_4VOp3)
709       HANDLE_OPERAND(vvvvRegister)
710
711     if (!HasMemOp4Prefix)
712       HANDLE_OPTIONAL(immediate)
713     HANDLE_OPTIONAL(immediate) // above might be a register in 7:4
714     break;
715   case X86Local::MRMXr:
716   case X86Local::MRM0r:
717   case X86Local::MRM1r:
718   case X86Local::MRM2r:
719   case X86Local::MRM3r:
720   case X86Local::MRM4r:
721   case X86Local::MRM5r:
722   case X86Local::MRM6r:
723   case X86Local::MRM7r:
724     // Operand 1 is a register operand in the R/M field.
725     // Operand 2 (optional) is an immediate or relocation.
726     // Operand 3 (optional) is an immediate.
727     assert(numPhysicalOperands >= 0 + additionalOperands &&
728            numPhysicalOperands <= 3 + additionalOperands &&
729            "Unexpected number of operands for MRMnr");
730
731     if (HasVEX_4V)
732       HANDLE_OPERAND(vvvvRegister)
733
734     if (HasEVEX_K)
735       HANDLE_OPERAND(writemaskRegister)
736     HANDLE_OPTIONAL(rmRegister)
737     HANDLE_OPTIONAL(relocation)
738     HANDLE_OPTIONAL(immediate)
739     break;
740   case X86Local::MRMXm:
741   case X86Local::MRM0m:
742   case X86Local::MRM1m:
743   case X86Local::MRM2m:
744   case X86Local::MRM3m:
745   case X86Local::MRM4m:
746   case X86Local::MRM5m:
747   case X86Local::MRM6m:
748   case X86Local::MRM7m:
749     // Operand 1 is a memory operand (possibly SIB-extended)
750     // Operand 2 (optional) is an immediate or relocation.
751     assert(numPhysicalOperands >= 1 + additionalOperands &&
752            numPhysicalOperands <= 2 + additionalOperands &&
753            "Unexpected number of operands for MRMnm");
754
755     if (HasVEX_4V)
756       HANDLE_OPERAND(vvvvRegister)
757     if (HasEVEX_K)
758       HANDLE_OPERAND(writemaskRegister)
759     HANDLE_OPERAND(memory)
760     HANDLE_OPTIONAL(relocation)
761     break;
762   case X86Local::RawFrmImm8:
763     // operand 1 is a 16-bit immediate
764     // operand 2 is an 8-bit immediate
765     assert(numPhysicalOperands == 2 &&
766            "Unexpected number of operands for X86Local::RawFrmImm8");
767     HANDLE_OPERAND(immediate)
768     HANDLE_OPERAND(immediate)
769     break;
770   case X86Local::RawFrmImm16:
771     // operand 1 is a 16-bit immediate
772     // operand 2 is a 16-bit immediate
773     HANDLE_OPERAND(immediate)
774     HANDLE_OPERAND(immediate)
775     break;
776   case X86Local::MRM_F8:
777     if (Opcode == 0xc6) {
778       assert(numPhysicalOperands == 1 &&
779              "Unexpected number of operands for X86Local::MRM_F8");
780       HANDLE_OPERAND(immediate)
781     } else if (Opcode == 0xc7) {
782       assert(numPhysicalOperands == 1 &&
783              "Unexpected number of operands for X86Local::MRM_F8");
784       HANDLE_OPERAND(relocation)
785     }
786     break;
787   case X86Local::MRM_C0: case X86Local::MRM_C1: case X86Local::MRM_C2:
788   case X86Local::MRM_C3: case X86Local::MRM_C4: case X86Local::MRM_C8:
789   case X86Local::MRM_C9: case X86Local::MRM_CA: case X86Local::MRM_CB:
790   case X86Local::MRM_CF: case X86Local::MRM_D0: case X86Local::MRM_D1:
791   case X86Local::MRM_D4: case X86Local::MRM_D5: case X86Local::MRM_D6:
792   case X86Local::MRM_D7: case X86Local::MRM_D8: case X86Local::MRM_D9:
793   case X86Local::MRM_DA: case X86Local::MRM_DB: case X86Local::MRM_DC:
794   case X86Local::MRM_DD: case X86Local::MRM_DE: case X86Local::MRM_DF:
795   case X86Local::MRM_E0: case X86Local::MRM_E1: case X86Local::MRM_E2:
796   case X86Local::MRM_E3: case X86Local::MRM_E4: case X86Local::MRM_E5:
797   case X86Local::MRM_E8: case X86Local::MRM_E9: case X86Local::MRM_EA:
798   case X86Local::MRM_EB: case X86Local::MRM_EC: case X86Local::MRM_ED:
799   case X86Local::MRM_EE: case X86Local::MRM_F0: case X86Local::MRM_F1:
800   case X86Local::MRM_F2: case X86Local::MRM_F3: case X86Local::MRM_F4:
801   case X86Local::MRM_F5: case X86Local::MRM_F6: case X86Local::MRM_F7:
802   case X86Local::MRM_F9: case X86Local::MRM_FA: case X86Local::MRM_FB:
803   case X86Local::MRM_FC: case X86Local::MRM_FD: case X86Local::MRM_FE:
804   case X86Local::MRM_FF:
805     // Ignored.
806     break;
807   }
808
809   #undef HANDLE_OPERAND
810   #undef HANDLE_OPTIONAL
811 }
812
813 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
814   // Special cases where the LLVM tables are not complete
815
816 #define MAP(from, to)                     \
817   case X86Local::MRM_##from:
818
819   OpcodeType    opcodeType  = (OpcodeType)-1;
820
821   ModRMFilter*  filter      = nullptr;
822   uint8_t       opcodeToSet = 0;
823
824   switch (OpMap) {
825   default: llvm_unreachable("Invalid map!");
826   case X86Local::OB:
827   case X86Local::TB:
828   case X86Local::T8:
829   case X86Local::TA:
830   case X86Local::XOP8:
831   case X86Local::XOP9:
832   case X86Local::XOPA:
833     switch (OpMap) {
834     default: llvm_unreachable("Unexpected map!");
835     case X86Local::OB:   opcodeType = ONEBYTE;      break;
836     case X86Local::TB:   opcodeType = TWOBYTE;      break;
837     case X86Local::T8:   opcodeType = THREEBYTE_38; break;
838     case X86Local::TA:   opcodeType = THREEBYTE_3A; break;
839     case X86Local::XOP8: opcodeType = XOP8_MAP;     break;
840     case X86Local::XOP9: opcodeType = XOP9_MAP;     break;
841     case X86Local::XOPA: opcodeType = XOPA_MAP;     break;
842     }
843
844     switch (Form) {
845     default:
846       filter = new DumbFilter();
847       break;
848     case X86Local::MRMDestReg: case X86Local::MRMDestMem:
849     case X86Local::MRMSrcReg:  case X86Local::MRMSrcMem:
850     case X86Local::MRMXr:      case X86Local::MRMXm:
851       filter = new ModFilter(isRegFormat(Form));
852       break;
853     case X86Local::MRM0r:      case X86Local::MRM1r:
854     case X86Local::MRM2r:      case X86Local::MRM3r:
855     case X86Local::MRM4r:      case X86Local::MRM5r:
856     case X86Local::MRM6r:      case X86Local::MRM7r:
857       filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
858       break;
859     case X86Local::MRM0m:      case X86Local::MRM1m:
860     case X86Local::MRM2m:      case X86Local::MRM3m:
861     case X86Local::MRM4m:      case X86Local::MRM5m:
862     case X86Local::MRM6m:      case X86Local::MRM7m:
863       filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
864       break;
865     MRM_MAPPING
866       filter = new ExactFilter(0xC0 + Form - X86Local::MRM_C0);   \
867       break;
868     } // switch (Form)
869
870     opcodeToSet = Opcode;
871     break;
872   } // switch (OpMap)
873
874   unsigned AddressSize = 0;
875   switch (AdSize) {
876   case X86Local::AdSize16: AddressSize = 16; break;
877   case X86Local::AdSize32: AddressSize = 32; break;
878   case X86Local::AdSize64: AddressSize = 64; break;
879   }
880
881   assert(opcodeType != (OpcodeType)-1 &&
882          "Opcode type not set");
883   assert(filter && "Filter not set");
884
885   if (Form == X86Local::AddRegFrm) {
886     assert(((opcodeToSet & 7) == 0) &&
887            "ADDREG_FRM opcode not aligned");
888
889     uint8_t currentOpcode;
890
891     for (currentOpcode = opcodeToSet;
892          currentOpcode < opcodeToSet + 8;
893          ++currentOpcode)
894       tables.setTableFields(opcodeType,
895                             insnContext(),
896                             currentOpcode,
897                             *filter,
898                             UID, Is32Bit, IgnoresVEX_L, AddressSize);
899   } else {
900     tables.setTableFields(opcodeType,
901                           insnContext(),
902                           opcodeToSet,
903                           *filter,
904                           UID, Is32Bit, IgnoresVEX_L, AddressSize);
905   }
906
907   delete filter;
908
909 #undef MAP
910 }
911
912 #define TYPE(str, type) if (s == str) return type;
913 OperandType RecognizableInstr::typeFromString(const std::string &s,
914                                               bool hasREX_WPrefix,
915                                               uint8_t OpSize) {
916   if(hasREX_WPrefix) {
917     // For instructions with a REX_W prefix, a declared 32-bit register encoding
918     // is special.
919     TYPE("GR32",              TYPE_R32)
920   }
921   if(OpSize == X86Local::OpSize16) {
922     // For OpSize16 instructions, a declared 16-bit register or
923     // immediate encoding is special.
924     TYPE("GR16",              TYPE_Rv)
925     TYPE("i16imm",            TYPE_IMMv)
926   } else if(OpSize == X86Local::OpSize32) {
927     // For OpSize32 instructions, a declared 32-bit register or
928     // immediate encoding is special.
929     TYPE("GR32",              TYPE_Rv)
930   }
931   TYPE("i16mem",              TYPE_Mv)
932   TYPE("i16imm",              TYPE_IMM16)
933   TYPE("i16i8imm",            TYPE_IMMv)
934   TYPE("GR16",                TYPE_R16)
935   TYPE("i32mem",              TYPE_Mv)
936   TYPE("i32imm",              TYPE_IMMv)
937   TYPE("i32i8imm",            TYPE_IMM32)
938   TYPE("GR32",                TYPE_R32)
939   TYPE("GR32orGR64",          TYPE_R32)
940   TYPE("i64mem",              TYPE_Mv)
941   TYPE("i64i32imm",           TYPE_IMM64)
942   TYPE("i64i8imm",            TYPE_IMM64)
943   TYPE("GR64",                TYPE_R64)
944   TYPE("i8mem",               TYPE_M8)
945   TYPE("i8imm",               TYPE_IMM8)
946   TYPE("u8imm",               TYPE_UIMM8)
947   TYPE("i32u8imm",            TYPE_UIMM8)
948   TYPE("GR8",                 TYPE_R8)
949   TYPE("VR128",               TYPE_XMM128)
950   TYPE("VR128X",              TYPE_XMM128)
951   TYPE("f128mem",             TYPE_M128)
952   TYPE("f256mem",             TYPE_M256)
953   TYPE("f512mem",             TYPE_M512)
954   TYPE("FR128",               TYPE_XMM128)
955   TYPE("FR64",                TYPE_XMM64)
956   TYPE("FR64X",               TYPE_XMM64)
957   TYPE("f64mem",              TYPE_M64FP)
958   TYPE("sdmem",               TYPE_M64FP)
959   TYPE("FR32",                TYPE_XMM32)
960   TYPE("FR32X",               TYPE_XMM32)
961   TYPE("f32mem",              TYPE_M32FP)
962   TYPE("ssmem",               TYPE_M32FP)
963   TYPE("RST",                 TYPE_ST)
964   TYPE("i128mem",             TYPE_M128)
965   TYPE("i256mem",             TYPE_M256)
966   TYPE("i512mem",             TYPE_M512)
967   TYPE("i64i32imm_pcrel",     TYPE_REL64)
968   TYPE("i16imm_pcrel",        TYPE_REL16)
969   TYPE("i32imm_pcrel",        TYPE_REL32)
970   TYPE("SSECC",               TYPE_IMM3)
971   TYPE("XOPCC",               TYPE_IMM3)
972   TYPE("AVXCC",               TYPE_IMM5)
973   TYPE("AVX512ICC",           TYPE_AVX512ICC)
974   TYPE("AVX512RC",            TYPE_IMM32)
975   TYPE("brtarget32",          TYPE_RELv)
976   TYPE("brtarget16",          TYPE_RELv)
977   TYPE("brtarget8",           TYPE_REL8)
978   TYPE("f80mem",              TYPE_M80FP)
979   TYPE("lea64_32mem",         TYPE_LEA)
980   TYPE("lea64mem",            TYPE_LEA)
981   TYPE("VR64",                TYPE_MM64)
982   TYPE("i64imm",              TYPE_IMMv)
983   TYPE("anymem",              TYPE_M)
984   TYPE("opaque32mem",         TYPE_M1616)
985   TYPE("opaque48mem",         TYPE_M1632)
986   TYPE("opaque80mem",         TYPE_M1664)
987   TYPE("opaque512mem",        TYPE_M512)
988   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
989   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
990   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
991   TYPE("srcidx8",             TYPE_SRCIDX8)
992   TYPE("srcidx16",            TYPE_SRCIDX16)
993   TYPE("srcidx32",            TYPE_SRCIDX32)
994   TYPE("srcidx64",            TYPE_SRCIDX64)
995   TYPE("dstidx8",             TYPE_DSTIDX8)
996   TYPE("dstidx16",            TYPE_DSTIDX16)
997   TYPE("dstidx32",            TYPE_DSTIDX32)
998   TYPE("dstidx64",            TYPE_DSTIDX64)
999   TYPE("offset16_8",          TYPE_MOFFS8)
1000   TYPE("offset16_16",         TYPE_MOFFS16)
1001   TYPE("offset16_32",         TYPE_MOFFS32)
1002   TYPE("offset32_8",          TYPE_MOFFS8)
1003   TYPE("offset32_16",         TYPE_MOFFS16)
1004   TYPE("offset32_32",         TYPE_MOFFS32)
1005   TYPE("offset32_64",         TYPE_MOFFS64)
1006   TYPE("offset64_8",          TYPE_MOFFS8)
1007   TYPE("offset64_16",         TYPE_MOFFS16)
1008   TYPE("offset64_32",         TYPE_MOFFS32)
1009   TYPE("offset64_64",         TYPE_MOFFS64)
1010   TYPE("VR256",               TYPE_XMM256)
1011   TYPE("VR256X",              TYPE_XMM256)
1012   TYPE("VR512",               TYPE_XMM512)
1013   TYPE("VK1",                 TYPE_VK1)
1014   TYPE("VK1WM",               TYPE_VK1)
1015   TYPE("VK2",                 TYPE_VK2)
1016   TYPE("VK2WM",               TYPE_VK2)
1017   TYPE("VK4",                 TYPE_VK4)
1018   TYPE("VK4WM",               TYPE_VK4)
1019   TYPE("VK8",                 TYPE_VK8)
1020   TYPE("VK8WM",               TYPE_VK8)
1021   TYPE("VK16",                TYPE_VK16)
1022   TYPE("VK16WM",              TYPE_VK16)
1023   TYPE("VK32",                TYPE_VK32)
1024   TYPE("VK32WM",              TYPE_VK32)
1025   TYPE("VK64",                TYPE_VK64)
1026   TYPE("VK64WM",              TYPE_VK64)
1027   TYPE("GR16_NOAX",           TYPE_Rv)
1028   TYPE("GR32_NOAX",           TYPE_Rv)
1029   TYPE("GR64_NOAX",           TYPE_R64)
1030   TYPE("vx32mem",             TYPE_M32)
1031   TYPE("vx32xmem",            TYPE_M32)
1032   TYPE("vy32mem",             TYPE_M32)
1033   TYPE("vy32xmem",            TYPE_M32)
1034   TYPE("vz32mem",             TYPE_M32)
1035   TYPE("vx64mem",             TYPE_M64)
1036   TYPE("vx64xmem",            TYPE_M64)
1037   TYPE("vy64mem",             TYPE_M64)
1038   TYPE("vy64xmem",            TYPE_M64)
1039   TYPE("vz64mem",             TYPE_M64)
1040   TYPE("BNDR",                TYPE_BNDR)
1041   errs() << "Unhandled type string " << s << "\n";
1042   llvm_unreachable("Unhandled type string");
1043 }
1044 #undef TYPE
1045
1046 #define ENCODING(str, encoding) if (s == str) return encoding;
1047 OperandEncoding
1048 RecognizableInstr::immediateEncodingFromString(const std::string &s,
1049                                                uint8_t OpSize) {
1050   if(OpSize != X86Local::OpSize16) {
1051     // For instructions without an OpSize prefix, a declared 16-bit register or
1052     // immediate encoding is special.
1053     ENCODING("i16imm",        ENCODING_IW)
1054   }
1055   ENCODING("i32i8imm",        ENCODING_IB)
1056   ENCODING("SSECC",           ENCODING_IB)
1057   ENCODING("XOPCC",           ENCODING_IB)
1058   ENCODING("AVXCC",           ENCODING_IB)
1059   ENCODING("AVX512ICC",       ENCODING_IB)
1060   ENCODING("AVX512RC",        ENCODING_IB)
1061   ENCODING("i16imm",          ENCODING_Iv)
1062   ENCODING("i16i8imm",        ENCODING_IB)
1063   ENCODING("i32imm",          ENCODING_Iv)
1064   ENCODING("i64i32imm",       ENCODING_ID)
1065   ENCODING("i64i8imm",        ENCODING_IB)
1066   ENCODING("i8imm",           ENCODING_IB)
1067   ENCODING("u8imm",           ENCODING_IB)
1068   ENCODING("i32u8imm",        ENCODING_IB)
1069   // This is not a typo.  Instructions like BLENDVPD put
1070   // register IDs in 8-bit immediates nowadays.
1071   ENCODING("FR32",            ENCODING_IB)
1072   ENCODING("FR64",            ENCODING_IB)
1073   ENCODING("FR128",           ENCODING_IB)
1074   ENCODING("VR128",           ENCODING_IB)
1075   ENCODING("VR256",           ENCODING_IB)
1076   ENCODING("FR32X",           ENCODING_IB)
1077   ENCODING("FR64X",           ENCODING_IB)
1078   ENCODING("VR128X",          ENCODING_IB)
1079   ENCODING("VR256X",          ENCODING_IB)
1080   ENCODING("VR512",           ENCODING_IB)
1081   errs() << "Unhandled immediate encoding " << s << "\n";
1082   llvm_unreachable("Unhandled immediate encoding");
1083 }
1084
1085 OperandEncoding
1086 RecognizableInstr::rmRegisterEncodingFromString(const std::string &s,
1087                                                 uint8_t OpSize) {
1088   ENCODING("RST",             ENCODING_FP)
1089   ENCODING("GR16",            ENCODING_RM)
1090   ENCODING("GR32",            ENCODING_RM)
1091   ENCODING("GR32orGR64",      ENCODING_RM)
1092   ENCODING("GR64",            ENCODING_RM)
1093   ENCODING("GR8",             ENCODING_RM)
1094   ENCODING("VR128",           ENCODING_RM)
1095   ENCODING("VR128X",          ENCODING_RM)
1096   ENCODING("FR128",           ENCODING_RM)
1097   ENCODING("FR64",            ENCODING_RM)
1098   ENCODING("FR32",            ENCODING_RM)
1099   ENCODING("FR64X",           ENCODING_RM)
1100   ENCODING("FR32X",           ENCODING_RM)
1101   ENCODING("VR64",            ENCODING_RM)
1102   ENCODING("VR256",           ENCODING_RM)
1103   ENCODING("VR256X",          ENCODING_RM)
1104   ENCODING("VR512",           ENCODING_RM)
1105   ENCODING("VK1",             ENCODING_RM)
1106   ENCODING("VK2",             ENCODING_RM)
1107   ENCODING("VK4",             ENCODING_RM)
1108   ENCODING("VK8",             ENCODING_RM)
1109   ENCODING("VK16",            ENCODING_RM)
1110   ENCODING("VK32",            ENCODING_RM)
1111   ENCODING("VK64",            ENCODING_RM)
1112   ENCODING("BNDR",            ENCODING_RM)
1113   errs() << "Unhandled R/M register encoding " << s << "\n";
1114   llvm_unreachable("Unhandled R/M register encoding");
1115 }
1116
1117 OperandEncoding
1118 RecognizableInstr::roRegisterEncodingFromString(const std::string &s,
1119                                                 uint8_t OpSize) {
1120   ENCODING("GR16",            ENCODING_REG)
1121   ENCODING("GR32",            ENCODING_REG)
1122   ENCODING("GR32orGR64",      ENCODING_REG)
1123   ENCODING("GR64",            ENCODING_REG)
1124   ENCODING("GR8",             ENCODING_REG)
1125   ENCODING("VR128",           ENCODING_REG)
1126   ENCODING("FR128",           ENCODING_REG)
1127   ENCODING("FR64",            ENCODING_REG)
1128   ENCODING("FR32",            ENCODING_REG)
1129   ENCODING("VR64",            ENCODING_REG)
1130   ENCODING("SEGMENT_REG",     ENCODING_REG)
1131   ENCODING("DEBUG_REG",       ENCODING_REG)
1132   ENCODING("CONTROL_REG",     ENCODING_REG)
1133   ENCODING("VR256",           ENCODING_REG)
1134   ENCODING("VR256X",          ENCODING_REG)
1135   ENCODING("VR128X",          ENCODING_REG)
1136   ENCODING("FR64X",           ENCODING_REG)
1137   ENCODING("FR32X",           ENCODING_REG)
1138   ENCODING("VR512",           ENCODING_REG)
1139   ENCODING("VK1",             ENCODING_REG)
1140   ENCODING("VK2",             ENCODING_REG)
1141   ENCODING("VK4",             ENCODING_REG)
1142   ENCODING("VK8",             ENCODING_REG)
1143   ENCODING("VK16",            ENCODING_REG)
1144   ENCODING("VK32",            ENCODING_REG)
1145   ENCODING("VK64",            ENCODING_REG)
1146   ENCODING("VK1WM",           ENCODING_REG)
1147   ENCODING("VK2WM",           ENCODING_REG)
1148   ENCODING("VK4WM",           ENCODING_REG)
1149   ENCODING("VK8WM",           ENCODING_REG)
1150   ENCODING("VK16WM",          ENCODING_REG)
1151   ENCODING("VK32WM",          ENCODING_REG)
1152   ENCODING("VK64WM",          ENCODING_REG)
1153   ENCODING("BNDR",            ENCODING_REG)
1154   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
1155   llvm_unreachable("Unhandled reg/opcode register encoding");
1156 }
1157
1158 OperandEncoding
1159 RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s,
1160                                                   uint8_t OpSize) {
1161   ENCODING("GR32",            ENCODING_VVVV)
1162   ENCODING("GR64",            ENCODING_VVVV)
1163   ENCODING("FR32",            ENCODING_VVVV)
1164   ENCODING("FR128",           ENCODING_VVVV)
1165   ENCODING("FR64",            ENCODING_VVVV)
1166   ENCODING("VR128",           ENCODING_VVVV)
1167   ENCODING("VR256",           ENCODING_VVVV)
1168   ENCODING("FR32X",           ENCODING_VVVV)
1169   ENCODING("FR64X",           ENCODING_VVVV)
1170   ENCODING("VR128X",          ENCODING_VVVV)
1171   ENCODING("VR256X",          ENCODING_VVVV)
1172   ENCODING("VR512",           ENCODING_VVVV)
1173   ENCODING("VK1",             ENCODING_VVVV)
1174   ENCODING("VK2",             ENCODING_VVVV)
1175   ENCODING("VK4",             ENCODING_VVVV)
1176   ENCODING("VK8",             ENCODING_VVVV)
1177   ENCODING("VK16",            ENCODING_VVVV)
1178   ENCODING("VK32",            ENCODING_VVVV)
1179   ENCODING("VK64",            ENCODING_VVVV)
1180   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
1181   llvm_unreachable("Unhandled VEX.vvvv register encoding");
1182 }
1183
1184 OperandEncoding
1185 RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s,
1186                                                        uint8_t OpSize) {
1187   ENCODING("VK1WM",           ENCODING_WRITEMASK)
1188   ENCODING("VK2WM",           ENCODING_WRITEMASK)
1189   ENCODING("VK4WM",           ENCODING_WRITEMASK)
1190   ENCODING("VK8WM",           ENCODING_WRITEMASK)
1191   ENCODING("VK16WM",          ENCODING_WRITEMASK)
1192   ENCODING("VK32WM",          ENCODING_WRITEMASK)
1193   ENCODING("VK64WM",          ENCODING_WRITEMASK)
1194   errs() << "Unhandled mask register encoding " << s << "\n";
1195   llvm_unreachable("Unhandled mask register encoding");
1196 }
1197
1198 OperandEncoding
1199 RecognizableInstr::memoryEncodingFromString(const std::string &s,
1200                                             uint8_t OpSize) {
1201   ENCODING("i16mem",          ENCODING_RM)
1202   ENCODING("i32mem",          ENCODING_RM)
1203   ENCODING("i64mem",          ENCODING_RM)
1204   ENCODING("i8mem",           ENCODING_RM)
1205   ENCODING("ssmem",           ENCODING_RM)
1206   ENCODING("sdmem",           ENCODING_RM)
1207   ENCODING("f128mem",         ENCODING_RM)
1208   ENCODING("f256mem",         ENCODING_RM)
1209   ENCODING("f512mem",         ENCODING_RM)
1210   ENCODING("f64mem",          ENCODING_RM)
1211   ENCODING("f32mem",          ENCODING_RM)
1212   ENCODING("i128mem",         ENCODING_RM)
1213   ENCODING("i256mem",         ENCODING_RM)
1214   ENCODING("i512mem",         ENCODING_RM)
1215   ENCODING("f80mem",          ENCODING_RM)
1216   ENCODING("lea64_32mem",     ENCODING_RM)
1217   ENCODING("lea64mem",        ENCODING_RM)
1218   ENCODING("anymem",          ENCODING_RM)
1219   ENCODING("opaque32mem",     ENCODING_RM)
1220   ENCODING("opaque48mem",     ENCODING_RM)
1221   ENCODING("opaque80mem",     ENCODING_RM)
1222   ENCODING("opaque512mem",    ENCODING_RM)
1223   ENCODING("vx32mem",         ENCODING_RM)
1224   ENCODING("vx32xmem",        ENCODING_RM)
1225   ENCODING("vy32mem",         ENCODING_RM)
1226   ENCODING("vy32xmem",        ENCODING_RM)
1227   ENCODING("vz32mem",         ENCODING_RM)
1228   ENCODING("vx64mem",         ENCODING_RM)
1229   ENCODING("vx64xmem",        ENCODING_RM)
1230   ENCODING("vy64mem",         ENCODING_RM)
1231   ENCODING("vy64xmem",        ENCODING_RM)
1232   ENCODING("vz64mem",         ENCODING_RM)
1233   errs() << "Unhandled memory encoding " << s << "\n";
1234   llvm_unreachable("Unhandled memory encoding");
1235 }
1236
1237 OperandEncoding
1238 RecognizableInstr::relocationEncodingFromString(const std::string &s,
1239                                                 uint8_t OpSize) {
1240   if(OpSize != X86Local::OpSize16) {
1241     // For instructions without an OpSize prefix, a declared 16-bit register or
1242     // immediate encoding is special.
1243     ENCODING("i16imm",        ENCODING_IW)
1244   }
1245   ENCODING("i16imm",          ENCODING_Iv)
1246   ENCODING("i16i8imm",        ENCODING_IB)
1247   ENCODING("i32imm",          ENCODING_Iv)
1248   ENCODING("i32i8imm",        ENCODING_IB)
1249   ENCODING("i64i32imm",       ENCODING_ID)
1250   ENCODING("i64i8imm",        ENCODING_IB)
1251   ENCODING("i8imm",           ENCODING_IB)
1252   ENCODING("u8imm",           ENCODING_IB)
1253   ENCODING("i32u8imm",        ENCODING_IB)
1254   ENCODING("i64i32imm_pcrel", ENCODING_ID)
1255   ENCODING("i16imm_pcrel",    ENCODING_IW)
1256   ENCODING("i32imm_pcrel",    ENCODING_ID)
1257   ENCODING("brtarget32",      ENCODING_Iv)
1258   ENCODING("brtarget16",      ENCODING_Iv)
1259   ENCODING("brtarget8",       ENCODING_IB)
1260   ENCODING("i64imm",          ENCODING_IO)
1261   ENCODING("offset16_8",      ENCODING_Ia)
1262   ENCODING("offset16_16",     ENCODING_Ia)
1263   ENCODING("offset16_32",     ENCODING_Ia)
1264   ENCODING("offset32_8",      ENCODING_Ia)
1265   ENCODING("offset32_16",     ENCODING_Ia)
1266   ENCODING("offset32_32",     ENCODING_Ia)
1267   ENCODING("offset32_64",     ENCODING_Ia)
1268   ENCODING("offset64_8",      ENCODING_Ia)
1269   ENCODING("offset64_16",     ENCODING_Ia)
1270   ENCODING("offset64_32",     ENCODING_Ia)
1271   ENCODING("offset64_64",     ENCODING_Ia)
1272   ENCODING("srcidx8",         ENCODING_SI)
1273   ENCODING("srcidx16",        ENCODING_SI)
1274   ENCODING("srcidx32",        ENCODING_SI)
1275   ENCODING("srcidx64",        ENCODING_SI)
1276   ENCODING("dstidx8",         ENCODING_DI)
1277   ENCODING("dstidx16",        ENCODING_DI)
1278   ENCODING("dstidx32",        ENCODING_DI)
1279   ENCODING("dstidx64",        ENCODING_DI)
1280   errs() << "Unhandled relocation encoding " << s << "\n";
1281   llvm_unreachable("Unhandled relocation encoding");
1282 }
1283
1284 OperandEncoding
1285 RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s,
1286                                                     uint8_t OpSize) {
1287   ENCODING("GR32",            ENCODING_Rv)
1288   ENCODING("GR64",            ENCODING_RO)
1289   ENCODING("GR16",            ENCODING_Rv)
1290   ENCODING("GR8",             ENCODING_RB)
1291   ENCODING("GR16_NOAX",       ENCODING_Rv)
1292   ENCODING("GR32_NOAX",       ENCODING_Rv)
1293   ENCODING("GR64_NOAX",       ENCODING_RO)
1294   errs() << "Unhandled opcode modifier encoding " << s << "\n";
1295   llvm_unreachable("Unhandled opcode modifier encoding");
1296 }
1297 #undef ENCODING