[Orc] Move some code up into the JITCompileCallbackManager base class. NFC.
[oota-llvm.git] / unittests / ExecutionEngine / MCJIT / MCJITMemoryManagerTest.cpp
1 //===- MCJITMemoryManagerTest.cpp - Unit tests for the JIT memory manager -===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
11 #include "gtest/gtest.h"
12
13 using namespace llvm;
14
15 namespace {
16
17 TEST(MCJITMemoryManagerTest, BasicAllocations) {
18   std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
19
20   uint8_t *code1 = MemMgr->allocateCodeSection(256, 0, 1, "");
21   uint8_t *data1 = MemMgr->allocateDataSection(256, 0, 2, "", true);
22   uint8_t *code2 = MemMgr->allocateCodeSection(256, 0, 3, "");
23   uint8_t *data2 = MemMgr->allocateDataSection(256, 0, 4, "", false);
24
25   EXPECT_NE((uint8_t*)nullptr, code1);
26   EXPECT_NE((uint8_t*)nullptr, code2);
27   EXPECT_NE((uint8_t*)nullptr, data1);
28   EXPECT_NE((uint8_t*)nullptr, data2);
29
30   // Initialize the data
31   for (unsigned i = 0; i < 256; ++i) {
32     code1[i] = 1;
33     code2[i] = 2;
34     data1[i] = 3;
35     data2[i] = 4;
36   }
37
38   // Verify the data (this is checking for overlaps in the addresses)
39   for (unsigned i = 0; i < 256; ++i) {
40     EXPECT_EQ(1, code1[i]);
41     EXPECT_EQ(2, code2[i]);
42     EXPECT_EQ(3, data1[i]);
43     EXPECT_EQ(4, data2[i]);
44   }
45
46   std::string Error;
47   EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
48 }
49
50 TEST(MCJITMemoryManagerTest, LargeAllocations) {
51   std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
52
53   uint8_t *code1 = MemMgr->allocateCodeSection(0x100000, 0, 1, "");
54   uint8_t *data1 = MemMgr->allocateDataSection(0x100000, 0, 2, "", true);
55   uint8_t *code2 = MemMgr->allocateCodeSection(0x100000, 0, 3, "");
56   uint8_t *data2 = MemMgr->allocateDataSection(0x100000, 0, 4, "", false);
57
58   EXPECT_NE((uint8_t*)nullptr, code1);
59   EXPECT_NE((uint8_t*)nullptr, code2);
60   EXPECT_NE((uint8_t*)nullptr, data1);
61   EXPECT_NE((uint8_t*)nullptr, data2);
62
63   // Initialize the data
64   for (unsigned i = 0; i < 0x100000; ++i) {
65     code1[i] = 1;
66     code2[i] = 2;
67     data1[i] = 3;
68     data2[i] = 4;
69   }
70
71   // Verify the data (this is checking for overlaps in the addresses)
72   for (unsigned i = 0; i < 0x100000; ++i) {
73     EXPECT_EQ(1, code1[i]);
74     EXPECT_EQ(2, code2[i]);
75     EXPECT_EQ(3, data1[i]);
76     EXPECT_EQ(4, data2[i]);
77   }
78
79   std::string Error;
80   EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
81 }
82
83 TEST(MCJITMemoryManagerTest, ManyAllocations) {
84   std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
85
86   uint8_t* code[10000];
87   uint8_t* data[10000];
88
89   for (unsigned i = 0; i < 10000; ++i) {
90     const bool isReadOnly = i % 2 == 0;
91
92     code[i] = MemMgr->allocateCodeSection(32, 0, 1, "");
93     data[i] = MemMgr->allocateDataSection(32, 0, 2, "", isReadOnly);
94
95     for (unsigned j = 0; j < 32; j++) {
96       code[i][j] = 1 + (i % 254);
97       data[i][j] = 2 + (i % 254);
98     }
99
100     EXPECT_NE((uint8_t *)nullptr, code[i]);
101     EXPECT_NE((uint8_t *)nullptr, data[i]);
102   }
103
104   // Verify the data (this is checking for overlaps in the addresses)
105   for (unsigned i = 0; i < 10000; ++i) {
106     for (unsigned j = 0; j < 32;j++ ) {
107       uint8_t ExpectedCode = 1 + (i % 254);
108       uint8_t ExpectedData = 2 + (i % 254);
109       EXPECT_EQ(ExpectedCode, code[i][j]);
110       EXPECT_EQ(ExpectedData, data[i][j]);
111     }
112   }
113
114   std::string Error;
115   EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
116 }
117
118 TEST(MCJITMemoryManagerTest, ManyVariedAllocations) {
119   std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
120
121   uint8_t* code[10000];
122   uint8_t* data[10000];
123
124   for (unsigned i = 0; i < 10000; ++i) {
125     uintptr_t CodeSize = i % 16 + 1;
126     uintptr_t DataSize = i % 8 + 1;
127
128     bool isReadOnly = i % 3 == 0;
129     unsigned Align = 8 << (i % 4);
130
131     code[i] = MemMgr->allocateCodeSection(CodeSize, Align, i, "");
132     data[i] = MemMgr->allocateDataSection(DataSize, Align, i + 10000, "",
133                                           isReadOnly);
134
135     for (unsigned j = 0; j < CodeSize; j++) {
136       code[i][j] = 1 + (i % 254);
137     }
138
139     for (unsigned j = 0; j < DataSize; j++) {
140       data[i][j] = 2 + (i % 254);
141     }
142
143     EXPECT_NE((uint8_t *)nullptr, code[i]);
144     EXPECT_NE((uint8_t *)nullptr, data[i]);
145
146     uintptr_t CodeAlign = Align ? (uintptr_t)code[i] % Align : 0;
147     uintptr_t DataAlign = Align ? (uintptr_t)data[i] % Align : 0;
148
149     EXPECT_EQ((uintptr_t)0, CodeAlign);
150     EXPECT_EQ((uintptr_t)0, DataAlign);
151   }
152
153   for (unsigned i = 0; i < 10000; ++i) {
154     uintptr_t CodeSize = i % 16 + 1;
155     uintptr_t DataSize = i % 8 + 1;
156
157     for (unsigned j = 0; j < CodeSize; j++) {
158       uint8_t ExpectedCode = 1 + (i % 254);
159       EXPECT_EQ(ExpectedCode, code[i][j]);
160     }
161
162     for (unsigned j = 0; j < DataSize; j++) {
163       uint8_t ExpectedData = 2 + (i % 254);
164       EXPECT_EQ(ExpectedData, data[i][j]); 
165     }
166   }
167 }
168
169 } // Namespace
170