[SROA] Don't de-atomic volatile loads and stores
[oota-llvm.git] / test / Transforms / SROA / basictest.ll
1 ; RUN: opt < %s -sroa -S | FileCheck %s
2 ; RUN: opt < %s -sroa -force-ssa-updater -S | FileCheck %s
3
4 target datalayout = "e-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
5
6 declare void @llvm.lifetime.start(i64, i8* nocapture)
7 declare void @llvm.lifetime.end(i64, i8* nocapture)
8
9 define i32 @test0() {
10 ; CHECK-LABEL: @test0(
11 ; CHECK-NOT: alloca
12 ; CHECK: ret i32
13
14 entry:
15   %a1 = alloca i32
16   %a2 = alloca float
17
18   %a1.i8 = bitcast i32* %a1 to i8*
19   call void @llvm.lifetime.start(i64 4, i8* %a1.i8)
20
21   store i32 0, i32* %a1
22   %v1 = load i32, i32* %a1
23
24   call void @llvm.lifetime.end(i64 4, i8* %a1.i8)
25
26   %a2.i8 = bitcast float* %a2 to i8*
27   call void @llvm.lifetime.start(i64 4, i8* %a2.i8)
28
29   store float 0.0, float* %a2
30   %v2 = load float , float * %a2
31   %v2.int = bitcast float %v2 to i32
32   %sum1 = add i32 %v1, %v2.int
33
34   call void @llvm.lifetime.end(i64 4, i8* %a2.i8)
35
36   ret i32 %sum1
37 }
38
39 define i32 @test1() {
40 ; CHECK-LABEL: @test1(
41 ; CHECK-NOT: alloca
42 ; CHECK: ret i32 0
43
44 entry:
45   %X = alloca { i32, float }
46   %Y = getelementptr { i32, float }, { i32, float }* %X, i64 0, i32 0
47   store i32 0, i32* %Y
48   %Z = load i32, i32* %Y
49   ret i32 %Z
50 }
51
52 define i64 @test2(i64 %X) {
53 ; CHECK-LABEL: @test2(
54 ; CHECK-NOT: alloca
55 ; CHECK: ret i64 %X
56
57 entry:
58   %A = alloca [8 x i8]
59   %B = bitcast [8 x i8]* %A to i64*
60   store i64 %X, i64* %B
61   br label %L2
62
63 L2:
64   %Z = load i64, i64* %B
65   ret i64 %Z
66 }
67
68 define void @test3(i8* %dst, i8* %src) {
69 ; CHECK-LABEL: @test3(
70
71 entry:
72   %a = alloca [300 x i8]
73 ; CHECK-NOT:  alloca
74 ; CHECK:      %[[test3_a1:.*]] = alloca [42 x i8]
75 ; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8]
76 ; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8]
77 ; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8]
78 ; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8]
79 ; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8]
80 ; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8]
81
82   %b = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 0
83   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 300, i32 1, i1 false)
84 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
85 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 42
86 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
87 ; CHECK-NEXT: %[[test3_r1:.*]] = load i8, i8* %[[gep]]
88 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
89 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
90 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
91 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 142
92 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
93 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
94 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 158
95 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
96 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
97 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 200
98 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
99 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
100 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 207
101 ; CHECK-NEXT: %[[test3_r2:.*]] = load i8, i8* %[[gep]]
102 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 208
103 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
104 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
105 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 215
106 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
107 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
108
109   ; Clobber a single element of the array, this should be promotable.
110   %c = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 42
111   store i8 0, i8* %c
112
113   ; Make a sequence of overlapping stores to the array. These overlap both in
114   ; forward strides and in shrinking accesses.
115   %overlap.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 142
116   %overlap.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 143
117   %overlap.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 144
118   %overlap.4.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 145
119   %overlap.5.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 146
120   %overlap.6.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 147
121   %overlap.7.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 148
122   %overlap.8.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 149
123   %overlap.9.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 150
124   %overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16*
125   %overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32*
126   %overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64*
127   %overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64*
128   %overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64*
129   %overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64*
130   %overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64*
131   %overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64*
132   %overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64*
133   %overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64*
134   %overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64*
135   store i8 1, i8* %overlap.1.i8
136 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
137 ; CHECK-NEXT: store i8 1, i8* %[[gep]]
138   store i16 1, i16* %overlap.1.i16
139 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16*
140 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
141   store i32 1, i32* %overlap.1.i32
142 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32*
143 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
144   store i64 1, i64* %overlap.1.i64
145 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64*
146 ; CHECK-NEXT: store i64 1, i64* %[[bitcast]]
147   store i64 2, i64* %overlap.2.i64
148 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 1
149 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
150 ; CHECK-NEXT: store i64 2, i64* %[[bitcast]]
151   store i64 3, i64* %overlap.3.i64
152 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 2
153 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
154 ; CHECK-NEXT: store i64 3, i64* %[[bitcast]]
155   store i64 4, i64* %overlap.4.i64
156 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 3
157 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
158 ; CHECK-NEXT: store i64 4, i64* %[[bitcast]]
159   store i64 5, i64* %overlap.5.i64
160 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 4
161 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
162 ; CHECK-NEXT: store i64 5, i64* %[[bitcast]]
163   store i64 6, i64* %overlap.6.i64
164 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 5
165 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
166 ; CHECK-NEXT: store i64 6, i64* %[[bitcast]]
167   store i64 7, i64* %overlap.7.i64
168 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 6
169 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
170 ; CHECK-NEXT: store i64 7, i64* %[[bitcast]]
171   store i64 8, i64* %overlap.8.i64
172 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 7
173 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
174 ; CHECK-NEXT: store i64 8, i64* %[[bitcast]]
175   store i64 9, i64* %overlap.9.i64
176 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 8
177 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
178 ; CHECK-NEXT: store i64 9, i64* %[[bitcast]]
179
180   ; Make two sequences of overlapping stores with more gaps and irregularities.
181   %overlap2.1.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 200
182   %overlap2.1.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 201
183   %overlap2.1.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 202
184   %overlap2.1.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 203
185
186   %overlap2.2.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 208
187   %overlap2.2.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 209
188   %overlap2.2.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 210
189   %overlap2.2.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 211
190
191   %overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16*
192   %overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32*
193   %overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32*
194   %overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32*
195   %overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32*
196   store i8 1,  i8*  %overlap2.1.0.i8
197 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
198 ; CHECK-NEXT: store i8 1, i8* %[[gep]]
199   store i16 1, i16* %overlap2.1.0.i16
200 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16*
201 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
202   store i32 1, i32* %overlap2.1.0.i32
203 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32*
204 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
205   store i32 2, i32* %overlap2.1.1.i32
206 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 1
207 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
208 ; CHECK-NEXT: store i32 2, i32* %[[bitcast]]
209   store i32 3, i32* %overlap2.1.2.i32
210 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
211 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
212 ; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
213   store i32 4, i32* %overlap2.1.3.i32
214 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 3
215 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
216 ; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
217
218   %overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32*
219   %overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16*
220   %overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32*
221   %overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32*
222   %overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32*
223   store i32 1, i32* %overlap2.2.0.i32
224 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32*
225 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
226   store i8 1,  i8*  %overlap2.2.1.i8
227 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
228 ; CHECK-NEXT: store i8 1, i8* %[[gep]]
229   store i16 1, i16* %overlap2.2.1.i16
230 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
231 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
232 ; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
233   store i32 1, i32* %overlap2.2.1.i32
234 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
235 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
236 ; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
237   store i32 3, i32* %overlap2.2.2.i32
238 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
239 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
240 ; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
241   store i32 4, i32* %overlap2.2.3.i32
242 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 3
243 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
244 ; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
245
246   %overlap2.prefix = getelementptr i8, i8* %overlap2.1.1.i8, i64 -4
247   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i32 1, i1 false)
248 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 39
249 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 3
250 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 3
251 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
252 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 5
253
254   ; Bridge between the overlapping areas
255   call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i32 1, i1 false)
256 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
257 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 5
258 ; ...promoted i8 store...
259 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
260 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 2
261
262   ; Entirely within the second overlap.
263   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i32 1, i1 false)
264 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
265 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
266
267   ; Trailing past the second overlap.
268   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i32 1, i1 false)
269 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
270 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
271 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 5
272 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
273 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 3
274
275   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i32 1, i1 false)
276 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
277 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 42
278 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
279 ; CHECK-NEXT: store i8 0, i8* %[[gep]]
280 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
281 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
282 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
283 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 142
284 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
285 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
286 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 158
287 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
288 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
289 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 200
290 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
291 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
292 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 207
293 ; CHECK-NEXT: store i8 42, i8* %[[gep]]
294 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 208
295 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
296 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
297 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 215
298 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
299 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
300
301   ret void
302 }
303
304 define void @test4(i8* %dst, i8* %src) {
305 ; CHECK-LABEL: @test4(
306
307 entry:
308   %a = alloca [100 x i8]
309 ; CHECK-NOT:  alloca
310 ; CHECK:      %[[test4_a1:.*]] = alloca [20 x i8]
311 ; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8]
312 ; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8]
313 ; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8]
314 ; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8]
315 ; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8]
316
317   %b = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 0
318   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i32 1, i1 false)
319 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
320 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 20
321 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 20
322 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
323 ; CHECK-NEXT: %[[test4_r1:.*]] = load i16, i16* %[[bitcast]]
324 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 22
325 ; CHECK-NEXT: %[[test4_r2:.*]] = load i8, i8* %[[gep]]
326 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 23
327 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
328 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
329 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 30
330 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
331 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
332 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 40
333 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
334 ; CHECK-NEXT: %[[test4_r3:.*]] = load i16, i16* %[[bitcast]]
335 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
336 ; CHECK-NEXT: %[[test4_r4:.*]] = load i8, i8* %[[gep]]
337 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
338 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
339 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
340 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 50
341 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
342 ; CHECK-NEXT: %[[test4_r5:.*]] = load i16, i16* %[[bitcast]]
343 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 52
344 ; CHECK-NEXT: %[[test4_r6:.*]] = load i8, i8* %[[gep]]
345 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 53
346 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
347 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
348 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 60
349 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
350 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
351
352   %a.src.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 20
353   %a.dst.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 40
354   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i32 1, i1 false)
355 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
356 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
357 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
358
359   ; Clobber a single element of the array, this should be promotable, and be deleted.
360   %c = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 42
361   store i8 0, i8* %c
362
363   %a.src.2 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 50
364   call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i32 1, i1 false)
365 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
366 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
367 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
368
369   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i32 1, i1 false)
370 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
371 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 20
372 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 20
373 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
374 ; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]]
375 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 22
376 ; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]]
377 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 23
378 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
379 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
380 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 30
381 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
382 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
383 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 40
384 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
385 ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
386 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
387 ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
388 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
389 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
390 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
391 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 50
392 ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
393 ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
394 ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 52
395 ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
396 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 53
397 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
398 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
399 ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 60
400 ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
401 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
402
403   ret void
404 }
405
406 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
407 declare void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* nocapture, i8* nocapture, i32, i32, i1) nounwind
408 declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
409 declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1) nounwind
410
411 define i16 @test5() {
412 ; CHECK-LABEL: @test5(
413 ; CHECK-NOT: alloca float
414 ; CHECK:      %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
415 ; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
416 ; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
417 ; CHECK-NEXT: ret i16 %[[trunc]]
418
419 entry:
420   %a = alloca [4 x i8]
421   %fptr = bitcast [4 x i8]* %a to float*
422   store float 0.0, float* %fptr
423   %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 2
424   %iptr = bitcast i8* %ptr to i16*
425   %val = load i16, i16* %iptr
426   ret i16 %val
427 }
428
429 define i32 @test6() {
430 ; CHECK-LABEL: @test6(
431 ; CHECK: alloca i32
432 ; CHECK-NEXT: store volatile i32
433 ; CHECK-NEXT: load i32, i32*
434 ; CHECK-NEXT: ret i32
435
436 entry:
437   %a = alloca [4 x i8]
438   %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
439   call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i32 1, i1 true)
440   %iptr = bitcast i8* %ptr to i32*
441   %val = load i32, i32* %iptr
442   ret i32 %val
443 }
444
445 define void @test7(i8* %src, i8* %dst) {
446 ; CHECK-LABEL: @test7(
447 ; CHECK: alloca i32
448 ; CHECK-NEXT: bitcast i8* %src to i32*
449 ; CHECK-NEXT: load volatile i32, i32*
450 ; CHECK-NEXT: store volatile i32
451 ; CHECK-NEXT: bitcast i8* %dst to i32*
452 ; CHECK-NEXT: load volatile i32, i32*
453 ; CHECK-NEXT: store volatile i32
454 ; CHECK-NEXT: ret
455
456 entry:
457   %a = alloca [4 x i8]
458   %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
459   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
460   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
461   ret void
462 }
463
464
465 %S1 = type { i32, i32, [16 x i8] }
466 %S2 = type { %S1*, %S2* }
467
468 define %S2 @test8(%S2* %s2) {
469 ; CHECK-LABEL: @test8(
470 entry:
471   %new = alloca %S2
472 ; CHECK-NOT: alloca
473
474   %s2.next.ptr = getelementptr %S2, %S2* %s2, i64 0, i32 1
475   %s2.next = load %S2*, %S2** %s2.next.ptr
476 ; CHECK:      %[[gep:.*]] = getelementptr %S2, %S2* %s2, i64 0, i32 1
477 ; CHECK-NEXT: %[[next:.*]] = load %S2*, %S2** %[[gep]]
478
479   %s2.next.s1.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 0
480   %s2.next.s1 = load %S1*, %S1** %s2.next.s1.ptr
481   %new.s1.ptr = getelementptr %S2, %S2* %new, i64 0, i32 0
482   store %S1* %s2.next.s1, %S1** %new.s1.ptr
483   %s2.next.next.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 1
484   %s2.next.next = load %S2*, %S2** %s2.next.next.ptr
485   %new.next.ptr = getelementptr %S2, %S2* %new, i64 0, i32 1
486   store %S2* %s2.next.next, %S2** %new.next.ptr
487 ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 0
488 ; CHECK-NEXT: %[[next_s1:.*]] = load %S1*, %S1** %[[gep]]
489 ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 1
490 ; CHECK-NEXT: %[[next_next:.*]] = load %S2*, %S2** %[[gep]]
491
492   %new.s1 = load %S1*, %S1** %new.s1.ptr
493   %result1 = insertvalue %S2 undef, %S1* %new.s1, 0
494 ; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0
495   %new.next = load %S2*, %S2** %new.next.ptr
496   %result2 = insertvalue %S2 %result1, %S2* %new.next, 1
497 ; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1
498   ret %S2 %result2
499 ; CHECK-NEXT: ret %S2 %[[result2]]
500 }
501
502 define i64 @test9() {
503 ; Ensure we can handle loads off the end of an alloca even when wrapped in
504 ; weird bit casts and types. This is valid IR due to the alignment and masking
505 ; off the bits past the end of the alloca.
506 ;
507 ; CHECK-LABEL: @test9(
508 ; CHECK-NOT: alloca
509 ; CHECK:      %[[b2:.*]] = zext i8 26 to i64
510 ; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16
511 ; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681
512 ; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]]
513 ; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64
514 ; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8
515 ; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281
516 ; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]]
517 ; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64
518 ; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256
519 ; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]]
520 ; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215
521 ; CHECK-NEXT: ret i64 %[[result]]
522
523 entry:
524   %a = alloca { [3 x i8] }, align 8
525   %gep1 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 0
526   store i8 0, i8* %gep1, align 1
527   %gep2 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 1
528   store i8 0, i8* %gep2, align 1
529   %gep3 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 2
530   store i8 26, i8* %gep3, align 1
531   %cast = bitcast { [3 x i8] }* %a to { i64 }*
532   %elt = getelementptr inbounds { i64 }, { i64 }* %cast, i32 0, i32 0
533   %load = load i64, i64* %elt
534   %result = and i64 %load, 16777215
535   ret i64 %result
536 }
537
538 define %S2* @test10() {
539 ; CHECK-LABEL: @test10(
540 ; CHECK-NOT: alloca %S2*
541 ; CHECK: ret %S2* null
542
543 entry:
544   %a = alloca [8 x i8]
545   %ptr = getelementptr [8 x i8], [8 x i8]* %a, i32 0, i32 0
546   call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i32 1, i1 false)
547   %s2ptrptr = bitcast i8* %ptr to %S2**
548   %s2ptr = load %S2*, %S2** %s2ptrptr
549   ret %S2* %s2ptr
550 }
551
552 define i32 @test11() {
553 ; CHECK-LABEL: @test11(
554 ; CHECK-NOT: alloca
555 ; CHECK: ret i32 0
556
557 entry:
558   %X = alloca i32
559   br i1 undef, label %good, label %bad
560
561 good:
562   %Y = getelementptr i32, i32* %X, i64 0
563   store i32 0, i32* %Y
564   %Z = load i32, i32* %Y
565   ret i32 %Z
566
567 bad:
568   %Y2 = getelementptr i32, i32* %X, i64 1
569   store i32 0, i32* %Y2
570   %Z2 = load i32, i32* %Y2
571   ret i32 %Z2
572 }
573
574 define i8 @test12() {
575 ; We fully promote these to the i24 load or store size, resulting in just masks
576 ; and other operations that instcombine will fold, but no alloca.
577 ;
578 ; CHECK-LABEL: @test12(
579
580 entry:
581   %a = alloca [3 x i8]
582   %b = alloca [3 x i8]
583 ; CHECK-NOT: alloca
584
585   %a0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
586   store i8 0, i8* %a0ptr
587   %a1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
588   store i8 0, i8* %a1ptr
589   %a2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
590   store i8 0, i8* %a2ptr
591   %aiptr = bitcast [3 x i8]* %a to i24*
592   %ai = load i24, i24* %aiptr
593 ; CHECK-NOT: store
594 ; CHECK-NOT: load
595 ; CHECK:      %[[ext2:.*]] = zext i8 0 to i24
596 ; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16
597 ; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535
598 ; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]]
599 ; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
600 ; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
601 ; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
602 ; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
603 ; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
604 ; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256
605 ; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]]
606
607   %biptr = bitcast [3 x i8]* %b to i24*
608   store i24 %ai, i24* %biptr
609   %b0ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 0
610   %b0 = load i8, i8* %b0ptr
611   %b1ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 1
612   %b1 = load i8, i8* %b1ptr
613   %b2ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 2
614   %b2 = load i8, i8* %b2ptr
615 ; CHECK-NOT: store
616 ; CHECK-NOT: load
617 ; CHECK:      %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8
618 ; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
619 ; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
620 ; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16
621 ; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8
622
623   %bsum0 = add i8 %b0, %b1
624   %bsum1 = add i8 %bsum0, %b2
625   ret i8 %bsum1
626 ; CHECK:      %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
627 ; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
628 ; CHECK-NEXT: ret i8 %[[sum1]]
629 }
630
631 define i32 @test13() {
632 ; Ensure we don't crash and handle undefined loads that straddle the end of the
633 ; allocation.
634 ; CHECK-LABEL: @test13(
635 ; CHECK:      %[[value:.*]] = zext i8 0 to i16
636 ; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32
637 ; CHECK-NEXT: ret i32 %[[ret]]
638
639 entry:
640   %a = alloca [3 x i8], align 2
641   %b0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
642   store i8 0, i8* %b0ptr
643   %b1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
644   store i8 0, i8* %b1ptr
645   %b2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
646   store i8 0, i8* %b2ptr
647   %iptrcast = bitcast [3 x i8]* %a to i16*
648   %iptrgep = getelementptr i16, i16* %iptrcast, i64 1
649   %i = load i16, i16* %iptrgep
650   %ret = zext i16 %i to i32
651   ret i32 %ret
652 }
653
654 %test14.struct = type { [3 x i32] }
655
656 define void @test14(...) nounwind uwtable {
657 ; This is a strange case where we split allocas into promotable partitions, but
658 ; also gain enough data to prove they must be dead allocas due to GEPs that walk
659 ; across two adjacent allocas. Test that we don't try to promote or otherwise
660 ; do bad things to these dead allocas, they should just be removed.
661 ; CHECK-LABEL: @test14(
662 ; CHECK-NEXT: entry:
663 ; CHECK-NEXT: ret void
664
665 entry:
666   %a = alloca %test14.struct
667   %p = alloca %test14.struct*
668   %0 = bitcast %test14.struct* %a to i8*
669   %1 = getelementptr i8, i8* %0, i64 12
670   %2 = bitcast i8* %1 to %test14.struct*
671   %3 = getelementptr inbounds %test14.struct, %test14.struct* %2, i32 0, i32 0
672   %4 = getelementptr inbounds %test14.struct, %test14.struct* %a, i32 0, i32 0
673   %5 = bitcast [3 x i32]* %3 to i32*
674   %6 = bitcast [3 x i32]* %4 to i32*
675   %7 = load i32, i32* %6, align 4
676   store i32 %7, i32* %5, align 4
677   %8 = getelementptr inbounds i32, i32* %5, i32 1
678   %9 = getelementptr inbounds i32, i32* %6, i32 1
679   %10 = load i32, i32* %9, align 4
680   store i32 %10, i32* %8, align 4
681   %11 = getelementptr inbounds i32, i32* %5, i32 2
682   %12 = getelementptr inbounds i32, i32* %6, i32 2
683   %13 = load i32, i32* %12, align 4
684   store i32 %13, i32* %11, align 4
685   ret void
686 }
687
688 define i32 @test15(i1 %flag) nounwind uwtable {
689 ; Ensure that when there are dead instructions using an alloca that are not
690 ; loads or stores we still delete them during partitioning and rewriting.
691 ; Otherwise we'll go to promote them while thy still have unpromotable uses.
692 ; CHECK-LABEL: @test15(
693 ; CHECK-NEXT: entry:
694 ; CHECK-NEXT:   br label %loop
695 ; CHECK:      loop:
696 ; CHECK-NEXT:   br label %loop
697
698 entry:
699   %l0 = alloca i64
700   %l1 = alloca i64
701   %l2 = alloca i64
702   %l3 = alloca i64
703   br label %loop
704
705 loop:
706   %dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ]
707
708   store i64 1879048192, i64* %l0, align 8
709   %bc0 = bitcast i64* %l0 to i8*
710   %gep0 = getelementptr i8, i8* %bc0, i64 3
711   %dead0 = bitcast i8* %gep0 to i64*
712
713   store i64 1879048192, i64* %l1, align 8
714   %bc1 = bitcast i64* %l1 to i8*
715   %gep1 = getelementptr i8, i8* %bc1, i64 3
716   %dead1 = getelementptr i8, i8* %gep1, i64 1
717
718   store i64 1879048192, i64* %l2, align 8
719   %bc2 = bitcast i64* %l2 to i8*
720   %gep2.1 = getelementptr i8, i8* %bc2, i64 1
721   %gep2.2 = getelementptr i8, i8* %bc2, i64 3
722   ; Note that this select should get visited multiple times due to using two
723   ; different GEPs off the same alloca. We should only delete it once.
724   %dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2
725
726   store i64 1879048192, i64* %l3, align 8
727   %bc3 = bitcast i64* %l3 to i8*
728   %gep3 = getelementptr i8, i8* %bc3, i64 3
729
730   br label %loop
731 }
732
733 define void @test16(i8* %src, i8* %dst) {
734 ; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value.
735 ; CHECK-LABEL: @test16(
736 ; CHECK-NOT: alloca
737 ; CHECK:      %[[srccast:.*]] = bitcast i8* %src to i24*
738 ; CHECK-NEXT: load i24, i24* %[[srccast]]
739 ; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24*
740 ; CHECK-NEXT: store i24 0, i24* %[[dstcast]]
741 ; CHECK-NEXT: ret void
742
743 entry:
744   %a = alloca [3 x i8]
745   %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
746   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 false)
747   %cast = bitcast i8* %ptr to i24*
748   store i24 0, i24* %cast
749   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 false)
750   ret void
751 }
752
753 define void @test17(i8* %src, i8* %dst) {
754 ; Ensure that we can rewrite unpromotable memcpys which extend past the end of
755 ; the alloca.
756 ; CHECK-LABEL: @test17(
757 ; CHECK:      %[[a:.*]] = alloca [3 x i8]
758 ; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8], [3 x i8]* %[[a]], i32 0, i32 0
759 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src,
760 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]],
761 ; CHECK-NEXT: ret void
762
763 entry:
764   %a = alloca [3 x i8]
765   %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
766   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
767   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
768   ret void
769 }
770
771 define void @test18(i8* %src, i8* %dst, i32 %size) {
772 ; Preserve transfer instrinsics with a variable size, even if they overlap with
773 ; fixed size operations. Further, continue to split and promote allocas preceding
774 ; the variable sized intrinsic.
775 ; CHECK-LABEL: @test18(
776 ; CHECK:      %[[a:.*]] = alloca [34 x i8]
777 ; CHECK:      %[[srcgep1:.*]] = getelementptr inbounds i8, i8* %src, i64 4
778 ; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32*
779 ; CHECK-NEXT: %[[srcload:.*]] = load i32, i32* %[[srccast1]]
780 ; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
781 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[agep1]], i8* %src, i32 %size,
782 ; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
783 ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[agep2]], i8 42, i32 %size,
784 ; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32*
785 ; CHECK-NEXT: store i32 42, i32* %[[dstcast1]]
786 ; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8, i8* %dst, i64 4
787 ; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32*
788 ; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]]
789 ; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
790 ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[agep3]], i32 %size,
791 ; CHECK-NEXT: ret void
792
793 entry:
794   %a = alloca [42 x i8]
795   %ptr = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 0
796   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 false)
797   %ptr2 = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 8
798   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i32 1, i1 false)
799   call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i32 1, i1 false)
800   %cast = bitcast i8* %ptr to i32*
801   store i32 42, i32* %cast
802   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 false)
803   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i32 1, i1 false)
804   ret void
805 }
806
807 %opaque = type opaque
808
809 define i32 @test19(%opaque* %x) {
810 ; This input will cause us to try to compute a natural GEP when rewriting
811 ; pointers in such a way that we try to GEP through the opaque type. Previously,
812 ; a check for an unsized type was missing and this crashed. Ensure it behaves
813 ; reasonably now.
814 ; CHECK-LABEL: @test19(
815 ; CHECK-NOT: alloca
816 ; CHECK: ret i32 undef
817
818 entry:
819   %a = alloca { i64, i8* }
820   %cast1 = bitcast %opaque* %x to i8*
821   %cast2 = bitcast { i64, i8* }* %a to i8*
822   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i32 1, i1 false)
823   %gep = getelementptr inbounds { i64, i8* }, { i64, i8* }* %a, i32 0, i32 0
824   %val = load i64, i64* %gep
825   ret i32 undef
826 }
827
828 define i32 @test20() {
829 ; Ensure we can track negative offsets (before the beginning of the alloca) and
830 ; negative relative offsets from offsets starting past the end of the alloca.
831 ; CHECK-LABEL: @test20(
832 ; CHECK-NOT: alloca
833 ; CHECK: %[[sum1:.*]] = add i32 1, 2
834 ; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3
835 ; CHECK: ret i32 %[[sum2]]
836
837 entry:
838   %a = alloca [3 x i32]
839   %gep1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 0
840   store i32 1, i32* %gep1
841   %gep2.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 -2
842   %gep2.2 = getelementptr i32, i32* %gep2.1, i32 3
843   store i32 2, i32* %gep2.2
844   %gep3.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 14
845   %gep3.2 = getelementptr i32, i32* %gep3.1, i32 -12
846   store i32 3, i32* %gep3.2
847
848   %load1 = load i32, i32* %gep1
849   %load2 = load i32, i32* %gep2.2
850   %load3 = load i32, i32* %gep3.2
851   %sum1 = add i32 %load1, %load2
852   %sum2 = add i32 %sum1, %load3
853   ret i32 %sum2
854 }
855
856 declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind
857
858 define i8 @test21() {
859 ; Test allocations and offsets which border on overflow of the int64_t used
860 ; internally. This is really awkward to really test as LLVM doesn't really
861 ; support such extreme constructs cleanly.
862 ; CHECK-LABEL: @test21(
863 ; CHECK-NOT: alloca
864 ; CHECK: or i8 -1, -1
865
866 entry:
867   %a = alloca [2305843009213693951 x i8]
868   %gep0 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949
869   store i8 255, i8* %gep0
870   %gep1 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807
871   %gep2 = getelementptr i8, i8* %gep1, i64 -1
872   call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i32 1, i1 false)
873   %gep3 = getelementptr i8, i8* %gep1, i64 9223372036854775807
874   %gep4 = getelementptr i8, i8* %gep3, i64 9223372036854775807
875   %gep5 = getelementptr i8, i8* %gep4, i64 -6917529027641081857
876   store i8 255, i8* %gep5
877   %cast1 = bitcast i8* %gep4 to i32*
878   store i32 0, i32* %cast1
879   %load = load i8, i8* %gep0
880   %gep6 = getelementptr i8, i8* %gep0, i32 1
881   %load2 = load i8, i8* %gep6
882   %result = or i8 %load, %load2
883   ret i8 %result
884 }
885
886 %PR13916.struct = type { i8 }
887
888 define void @PR13916.1() {
889 ; Ensure that we handle overlapping memcpy intrinsics correctly, especially in
890 ; the case where there is a directly identical value for both source and dest.
891 ; CHECK: @PR13916.1
892 ; CHECK-NOT: alloca
893 ; CHECK: ret void
894
895 entry:
896   %a = alloca i8
897   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i32 1, i1 false)
898   %tmp2 = load i8, i8* %a
899   ret void
900 }
901
902 define void @PR13916.2() {
903 ; Check whether we continue to handle them correctly when they start off with
904 ; different pointer value chains, but during rewriting we coalesce them into the
905 ; same value.
906 ; CHECK: @PR13916.2
907 ; CHECK-NOT: alloca
908 ; CHECK: ret void
909
910 entry:
911   %a = alloca %PR13916.struct, align 1
912   br i1 undef, label %if.then, label %if.end
913
914 if.then:
915   %tmp0 = bitcast %PR13916.struct* %a to i8*
916   %tmp1 = bitcast %PR13916.struct* %a to i8*
917   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i32 1, i1 false)
918   br label %if.end
919
920 if.end:
921   %gep = getelementptr %PR13916.struct, %PR13916.struct* %a, i32 0, i32 0
922   %tmp2 = load i8, i8* %gep
923   ret void
924 }
925
926 define void @PR13990() {
927 ; Ensure we can handle cases where processing one alloca causes the other
928 ; alloca to become dead and get deleted. This might crash or fail under
929 ; Valgrind if we regress.
930 ; CHECK-LABEL: @PR13990(
931 ; CHECK-NOT: alloca
932 ; CHECK: unreachable
933 ; CHECK: unreachable
934
935 entry:
936   %tmp1 = alloca i8*
937   %tmp2 = alloca i8*
938   br i1 undef, label %bb1, label %bb2
939
940 bb1:
941   store i8* undef, i8** %tmp2
942   br i1 undef, label %bb2, label %bb3
943
944 bb2:
945   %tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1
946   br i1 undef, label %bb3, label %bb4
947
948 bb3:
949   unreachable
950
951 bb4:
952   unreachable
953 }
954
955 define double @PR13969(double %x) {
956 ; Check that we detect when promotion will un-escape an alloca and iterate to
957 ; re-try running SROA over that alloca. Without that, the two allocas that are
958 ; stored into a dead alloca don't get rewritten and promoted.
959 ; CHECK-LABEL: @PR13969(
960
961 entry:
962   %a = alloca double
963   %b = alloca double*
964   %c = alloca double
965 ; CHECK-NOT: alloca
966
967   store double %x, double* %a
968   store double* %c, double** %b
969   store double* %a, double** %b
970   store double %x, double* %c
971   %ret = load double, double* %a
972 ; CHECK-NOT: store
973 ; CHECK-NOT: load
974
975   ret double %ret
976 ; CHECK: ret double %x
977 }
978
979 %PR14034.struct = type { { {} }, i32, %PR14034.list }
980 %PR14034.list = type { %PR14034.list*, %PR14034.list* }
981
982 define void @PR14034() {
983 ; This test case tries to form GEPs into the empty leading struct members, and
984 ; subsequently crashed (under valgrind) before we fixed the PR. The important
985 ; thing is to handle empty structs gracefully.
986 ; CHECK-LABEL: @PR14034(
987
988 entry:
989   %a = alloca %PR14034.struct
990   %list = getelementptr %PR14034.struct, %PR14034.struct* %a, i32 0, i32 2
991   %prev = getelementptr %PR14034.list, %PR14034.list* %list, i32 0, i32 1
992   store %PR14034.list* undef, %PR14034.list** %prev
993   %cast0 = bitcast %PR14034.struct* undef to i8*
994   %cast1 = bitcast %PR14034.struct* %a to i8*
995   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i32 0, i1 false)
996   ret void
997 }
998
999 define i32 @test22(i32 %x) {
1000 ; Test that SROA and promotion is not confused by a grab bax mixture of pointer
1001 ; types involving wrapper aggregates and zero-length aggregate members.
1002 ; CHECK-LABEL: @test22(
1003
1004 entry:
1005   %a1 = alloca { { [1 x { i32 }] } }
1006   %a2 = alloca { {}, { float }, [0 x i8] }
1007   %a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }
1008 ; CHECK-NOT: alloca
1009
1010   %wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0
1011   %gep1 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0
1012   store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1
1013
1014   %gep2 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0
1015   %ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }*
1016   %load1 = load { [1 x { float }] }, { [1 x { float }] }* %ptrcast1
1017   %unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0
1018
1019   %wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1
1020   store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2
1021
1022   %gep3 = getelementptr { {}, { float }, [0 x i8] }, { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0
1023   %ptrcast2 = bitcast float* %gep3 to <4 x i8>*
1024   %load3 = load <4 x i8>, <4 x i8>* %ptrcast2
1025   %valcast1 = bitcast <4 x i8> %load3 to i32
1026
1027   %wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0
1028   %wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0
1029   %gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1
1030   %ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }*
1031   store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3
1032
1033   %gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0
1034   %ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }*
1035   %load4 = load { {}, float, {} }, { {}, float, {} }* %ptrcast4
1036   %unwrap2 = extractvalue { {}, float, {} } %load4, 1
1037   %valcast2 = bitcast float %unwrap2 to i32
1038
1039   ret i32 %valcast2
1040 ; CHECK: ret i32
1041 }
1042
1043 define void @PR14059.1(double* %d) {
1044 ; In PR14059 a peculiar construct was identified as something that is used
1045 ; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct
1046 ; of doubles via an array of i32 in order to place the data into integer
1047 ; registers. This in turn was missed as an optimization by SROA due to the
1048 ; partial loads and stores of integers to the double alloca we were trying to
1049 ; form and promote. The solution is to widen the integer operations to be
1050 ; whole-alloca operations, and perform the appropriate bitcasting on the
1051 ; *values* rather than the pointers. When this works, partial reads and writes
1052 ; via integers can be promoted away.
1053 ; CHECK: @PR14059.1
1054 ; CHECK-NOT: alloca
1055 ; CHECK: ret void
1056
1057 entry:
1058   %X.sroa.0.i = alloca double, align 8
1059   %0 = bitcast double* %X.sroa.0.i to i8*
1060   call void @llvm.lifetime.start(i64 -1, i8* %0)
1061
1062   ; Store to the low 32-bits...
1063   %X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32*
1064   store i32 0, i32* %X.sroa.0.0.cast2.i, align 8
1065
1066   ; Also use a memset to the middle 32-bits for fun.
1067   %X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8, i8* %0, i32 2
1068   call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i32 1, i1 false)
1069
1070   ; Or a memset of the whole thing.
1071   call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i32 1, i1 false)
1072
1073   ; Write to the high 32-bits with a memcpy.
1074   %X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8, i8* %0, i32 4
1075   %d.raw = bitcast double* %d to i8*
1076   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i32 1, i1 false)
1077
1078   ; Store to the high 32-bits...
1079   %X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32*
1080   store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4
1081
1082   ; Do the actual math...
1083   %X.sroa.0.0.load1.i = load double, double* %X.sroa.0.i, align 8
1084   %accum.real.i = load double, double* %d, align 8
1085   %add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i
1086   store double %add.r.i, double* %d, align 8
1087   call void @llvm.lifetime.end(i64 -1, i8* %0)
1088   ret void
1089 }
1090
1091 define i64 @PR14059.2({ float, float }* %phi) {
1092 ; Check that SROA can split up alloca-wide integer loads and stores where the
1093 ; underlying alloca has smaller components that are accessed independently. This
1094 ; shows up particularly with ABI lowering patterns coming out of Clang that rely
1095 ; on the particular register placement of a single large integer return value.
1096 ; CHECK: @PR14059.2
1097
1098 entry:
1099   %retval = alloca { float, float }, align 4
1100   ; CHECK-NOT: alloca
1101
1102   %0 = bitcast { float, float }* %retval to i64*
1103   store i64 0, i64* %0
1104   ; CHECK-NOT: store
1105
1106   %phi.realp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
1107   %phi.real = load float, float* %phi.realp
1108   %phi.imagp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
1109   %phi.imag = load float, float* %phi.imagp
1110   ; CHECK:      %[[realp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
1111   ; CHECK-NEXT: %[[real:.*]] = load float, float* %[[realp]]
1112   ; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
1113   ; CHECK-NEXT: %[[imag:.*]] = load float, float* %[[imagp]]
1114
1115   %real = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 0
1116   %imag = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 1
1117   store float %phi.real, float* %real
1118   store float %phi.imag, float* %imag
1119   ; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32
1120   ; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32
1121   ; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64
1122   ; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32
1123   ; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295
1124   ; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]]
1125   ; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64
1126   ; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296
1127   ; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]]
1128
1129   %1 = load i64, i64* %0, align 1
1130   ret i64 %1
1131   ; CHECK-NEXT: ret i64 %[[real_insert]]
1132 }
1133
1134 define void @PR14105({ [16 x i8] }* %ptr) {
1135 ; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is
1136 ; sign as negative. We use a volatile memcpy to ensure promotion never actually
1137 ; occurs.
1138 ; CHECK-LABEL: @PR14105(
1139
1140 entry:
1141   %a = alloca { [16 x i8] }, align 8
1142 ; CHECK: alloca [16 x i8], align 8
1143
1144   %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1
1145 ; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0
1146
1147   %cast1 = bitcast { [16 x i8 ] }* %gep to i8*
1148   %cast2 = bitcast { [16 x i8 ] }* %a to i8*
1149   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast2, i32 16, i32 8, i1 true)
1150   ret void
1151 ; CHECK: ret
1152 }
1153
1154 define void @PR14105_as1({ [16 x i8] } addrspace(1)* %ptr) {
1155 ; Make sure this the right address space pointer is used for type check.
1156 ; CHECK-LABEL: @PR14105_as1(
1157
1158 entry:
1159   %a = alloca { [16 x i8] }, align 8
1160 ; CHECK: alloca [16 x i8], align 8
1161
1162   %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i64 -1
1163 ; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i16 -1, i32 0, i16 0
1164
1165   %cast1 = bitcast { [16 x i8 ] } addrspace(1)* %gep to i8 addrspace(1)*
1166   %cast2 = bitcast { [16 x i8 ] }* %a to i8*
1167   call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* %cast1, i8* %cast2, i32 16, i32 8, i1 true)
1168   ret void
1169 ; CHECK: ret
1170 }
1171
1172 define void @PR14465() {
1173 ; Ensure that we don't crash when analyzing a alloca larger than the maximum
1174 ; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1).
1175 ; CHECK-LABEL: @PR14465(
1176
1177   %stack = alloca [1048576 x i32], align 16
1178 ; CHECK: alloca [1048576 x i32]
1179   %cast = bitcast [1048576 x i32]* %stack to i8*
1180   call void @llvm.memset.p0i8.i64(i8* %cast, i8 -2, i64 4194304, i32 16, i1 false)
1181   ret void
1182 ; CHECK: ret
1183 }
1184
1185 define void @PR14548(i1 %x) {
1186 ; Handle a mixture of i1 and i8 loads and stores to allocas. This particular
1187 ; pattern caused crashes and invalid output in the PR, and its nature will
1188 ; trigger a mixture in several permutations as we resolve each alloca
1189 ; iteratively.
1190 ; Note that we don't do a particularly good *job* of handling these mixtures,
1191 ; but the hope is that this is very rare.
1192 ; CHECK-LABEL: @PR14548(
1193
1194 entry:
1195   %a = alloca <{ i1 }>, align 8
1196   %b = alloca <{ i1 }>, align 8
1197 ; CHECK:      %[[a:.*]] = alloca i8, align 8
1198
1199   %b.i1 = bitcast <{ i1 }>* %b to i1*
1200   store i1 %x, i1* %b.i1, align 8
1201   %b.i8 = bitcast <{ i1 }>* %b to i8*
1202   %foo = load i8, i8* %b.i8, align 1
1203 ; CHECK-NEXT: %[[ext:.*]] = zext i1 %x to i8
1204 ; CHECK-NEXT: store i8 %[[ext]], i8* %[[a]], align 8
1205 ; CHECK-NEXT: {{.*}} = load i8, i8* %[[a]], align 8
1206
1207   %a.i8 = bitcast <{ i1 }>* %a to i8*
1208   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i32 1, i1 false) nounwind
1209   %bar = load i8, i8* %a.i8, align 1
1210   %a.i1 = getelementptr inbounds <{ i1 }>, <{ i1 }>* %a, i32 0, i32 0
1211   %baz = load i1, i1* %a.i1, align 1
1212 ; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1*
1213 ; CHECK-NEXT: {{.*}} = load i1, i1* %[[a_cast]], align 8
1214
1215   ret void
1216 }
1217
1218 define <3 x i8> @PR14572.1(i32 %x) {
1219 ; Ensure that a split integer store which is wider than the type size of the
1220 ; alloca (relying on the alloc size padding) doesn't trigger an assert.
1221 ; CHECK: @PR14572.1
1222
1223 entry:
1224   %a = alloca <3 x i8>, align 4
1225 ; CHECK-NOT: alloca
1226
1227   %cast = bitcast <3 x i8>* %a to i32*
1228   store i32 %x, i32* %cast, align 1
1229   %y = load <3 x i8>, <3 x i8>* %a, align 4
1230   ret <3 x i8> %y
1231 ; CHECK: ret <3 x i8>
1232 }
1233
1234 define i32 @PR14572.2(<3 x i8> %x) {
1235 ; Ensure that a split integer load which is wider than the type size of the
1236 ; alloca (relying on the alloc size padding) doesn't trigger an assert.
1237 ; CHECK: @PR14572.2
1238
1239 entry:
1240   %a = alloca <3 x i8>, align 4
1241 ; CHECK-NOT: alloca
1242
1243   store <3 x i8> %x, <3 x i8>* %a, align 1
1244   %cast = bitcast <3 x i8>* %a to i32*
1245   %y = load i32, i32* %cast, align 4
1246   ret i32 %y
1247 ; CHECK: ret i32
1248 }
1249
1250 define i32 @PR14601(i32 %x) {
1251 ; Don't try to form a promotable integer alloca when there is a variable length
1252 ; memory intrinsic.
1253 ; CHECK-LABEL: @PR14601(
1254
1255 entry:
1256   %a = alloca i32
1257 ; CHECK: alloca
1258
1259   %a.i8 = bitcast i32* %a to i8*
1260   call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i32 1, i1 false)
1261   %v = load i32, i32* %a
1262   ret i32 %v
1263 }
1264
1265 define void @PR15674(i8* %data, i8* %src, i32 %size) {
1266 ; Arrange (via control flow) to have unmerged stores of a particular width to
1267 ; an alloca where we incrementally store from the end of the array toward the
1268 ; beginning of the array. Ensure that the final integer store, despite being
1269 ; convertable to the integer type that we end up promoting this alloca toward,
1270 ; doesn't get widened to a full alloca store.
1271 ; CHECK-LABEL: @PR15674(
1272
1273 entry:
1274   %tmp = alloca [4 x i8], align 1
1275 ; CHECK: alloca i32
1276
1277   switch i32 %size, label %end [
1278     i32 4, label %bb4
1279     i32 3, label %bb3
1280     i32 2, label %bb2
1281     i32 1, label %bb1
1282   ]
1283
1284 bb4:
1285   %src.gep3 = getelementptr inbounds i8, i8* %src, i32 3
1286   %src.3 = load i8, i8* %src.gep3
1287   %tmp.gep3 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 3
1288   store i8 %src.3, i8* %tmp.gep3
1289 ; CHECK: store i8
1290
1291   br label %bb3
1292
1293 bb3:
1294   %src.gep2 = getelementptr inbounds i8, i8* %src, i32 2
1295   %src.2 = load i8, i8* %src.gep2
1296   %tmp.gep2 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 2
1297   store i8 %src.2, i8* %tmp.gep2
1298 ; CHECK: store i8
1299
1300   br label %bb2
1301
1302 bb2:
1303   %src.gep1 = getelementptr inbounds i8, i8* %src, i32 1
1304   %src.1 = load i8, i8* %src.gep1
1305   %tmp.gep1 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 1
1306   store i8 %src.1, i8* %tmp.gep1
1307 ; CHECK: store i8
1308
1309   br label %bb1
1310
1311 bb1:
1312   %src.gep0 = getelementptr inbounds i8, i8* %src, i32 0
1313   %src.0 = load i8, i8* %src.gep0
1314   %tmp.gep0 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 0
1315   store i8 %src.0, i8* %tmp.gep0
1316 ; CHECK: store i8
1317
1318   br label %end
1319
1320 end:
1321   %tmp.raw = bitcast [4 x i8]* %tmp to i8*
1322   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %data, i8* %tmp.raw, i32 %size, i32 1, i1 false)
1323   ret void
1324 ; CHECK: ret void
1325 }
1326
1327 define void @PR15805(i1 %a, i1 %b) {
1328 ; CHECK-LABEL: @PR15805(
1329 ; CHECK-NOT: alloca
1330 ; CHECK: ret void
1331
1332   %c = alloca i64, align 8
1333   %p.0.c = select i1 undef, i64* %c, i64* %c
1334   %cond.in = select i1 undef, i64* %p.0.c, i64* %c
1335   %cond = load i64, i64* %cond.in, align 8
1336   ret void
1337 }
1338
1339 define void @PR15805.1(i1 %a, i1 %b) {
1340 ; Same as the normal PR15805, but rigged to place the use before the def inside
1341 ; of looping unreachable code. This helps ensure that we aren't sensitive to the
1342 ; order in which the uses of the alloca are visited.
1343 ;
1344 ; CHECK-LABEL: @PR15805.1(
1345 ; CHECK-NOT: alloca
1346 ; CHECK: ret void
1347
1348   %c = alloca i64, align 8
1349   br label %exit
1350
1351 loop:
1352   %cond.in = select i1 undef, i64* %c, i64* %p.0.c
1353   %p.0.c = select i1 undef, i64* %c, i64* %c
1354   %cond = load i64, i64* %cond.in, align 8
1355   br i1 undef, label %loop, label %exit
1356
1357 exit:
1358   ret void
1359 }
1360
1361 define void @PR16651.1(i8* %a) {
1362 ; This test case caused a crash due to the volatile memcpy in combination with
1363 ; lowering to integer loads and stores of a width other than that of the original
1364 ; memcpy.
1365 ;
1366 ; CHECK-LABEL: @PR16651.1(
1367 ; CHECK: alloca i16
1368 ; CHECK: alloca i8
1369 ; CHECK: alloca i8
1370 ; CHECK: unreachable
1371
1372 entry:
1373   %b = alloca i32, align 4
1374   %b.cast = bitcast i32* %b to i8*
1375   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b.cast, i8* %a, i32 4, i32 4, i1 true)
1376   %b.gep = getelementptr inbounds i8, i8* %b.cast, i32 2
1377   load i8, i8* %b.gep, align 2
1378   unreachable
1379 }
1380
1381 define void @PR16651.2() {
1382 ; This test case caused a crash due to failing to promote given a select that
1383 ; can't be speculated. It shouldn't be promoted, but we missed that fact when
1384 ; analyzing whether we could form a vector promotion because that code didn't
1385 ; bail on select instructions.
1386 ;
1387 ; CHECK-LABEL: @PR16651.2(
1388 ; CHECK: alloca <2 x float>
1389 ; CHECK: ret void
1390
1391 entry:
1392   %tv1 = alloca { <2 x float>, <2 x float> }, align 8
1393   %0 = getelementptr { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1
1394   store <2 x float> undef, <2 x float>* %0, align 8
1395   %1 = getelementptr inbounds { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1, i64 0
1396   %cond105.in.i.i = select i1 undef, float* null, float* %1
1397   %cond105.i.i = load float, float* %cond105.in.i.i, align 8
1398   ret void
1399 }
1400
1401 define void @test23(i32 %x) {
1402 ; CHECK-LABEL: @test23(
1403 ; CHECK-NOT: alloca
1404 ; CHECK: ret void
1405 entry:
1406   %a = alloca i32, align 4
1407   store i32 %x, i32* %a, align 4
1408   %gep1 = getelementptr inbounds i32, i32* %a, i32 1
1409   %gep0 = getelementptr inbounds i32, i32* %a, i32 0
1410   %cast1 = bitcast i32* %gep1 to i8*
1411   %cast0 = bitcast i32* %gep0 to i8*
1412   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast0, i32 4, i32 1, i1 false)
1413   ret void
1414 }
1415
1416 define void @PR18615() {
1417 ; CHECK-LABEL: @PR18615(
1418 ; CHECK-NOT: alloca
1419 ; CHECK: ret void
1420 entry:
1421   %f = alloca i8
1422   %gep = getelementptr i8, i8* %f, i64 -1
1423   call void @llvm.memcpy.p0i8.p0i8.i32(i8* undef, i8* %gep, i32 1, i32 1, i1 false)
1424   ret void
1425 }
1426
1427 define void @test24(i8* %src, i8* %dst) {
1428 ; CHECK-LABEL: @test24(
1429 ; CHECK: alloca i64, align 16
1430 ; CHECK: load volatile i64, i64* %{{[^,]*}}, align 1
1431 ; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 16
1432 ; CHECK: load volatile i64, i64* %{{[^,]*}}, align 16
1433 ; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 1
1434
1435 entry:
1436   %a = alloca i64, align 16
1437   %ptr = bitcast i64* %a to i8*
1438   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 true)
1439   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 true)
1440   ret void
1441 }
1442
1443 define float @test25() {
1444 ; Check that we split up stores in order to promote the smaller SSA values.. These types
1445 ; of patterns can arise because LLVM maps small memcpy's to integer load and
1446 ; stores. If we get a memcpy of an aggregate (such as C and C++ frontends would
1447 ; produce, but so might any language frontend), this will in many cases turn into
1448 ; an integer load and store. SROA needs to be extremely powerful to correctly
1449 ; handle these cases and form splitable and promotable SSA values.
1450 ;
1451 ; CHECK-LABEL: @test25(
1452 ; CHECK-NOT: alloca
1453 ; CHECK: %[[F1:.*]] = bitcast i32 0 to float
1454 ; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
1455 ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
1456 ; CHECK: ret float %[[SUM]]
1457
1458 entry:
1459   %a = alloca i64
1460   %b = alloca i64
1461   %a.cast = bitcast i64* %a to [2 x float]*
1462   %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
1463   %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
1464   %b.cast = bitcast i64* %b to [2 x float]*
1465   %b.gep1 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 0
1466   %b.gep2 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 1
1467   store float 0.0, float* %a.gep1
1468   store float 1.0, float* %a.gep2
1469   %v = load i64, i64* %a
1470   store i64 %v, i64* %b
1471   %f1 = load float, float* %b.gep1
1472   %f2 = load float, float* %b.gep2
1473   %ret = fadd float %f1, %f2
1474   ret float %ret
1475 }
1476
1477 @complex1 = external global [2 x float]
1478 @complex2 = external global [2 x float]
1479
1480 define void @test26() {
1481 ; Test a case of splitting up loads and stores against a globals.
1482 ;
1483 ; CHECK-LABEL: @test26(
1484 ; CHECK-NOT: alloca
1485 ; CHECK: %[[L1:.*]] = load i32, i32* bitcast
1486 ; CHECK: %[[L2:.*]] = load i32, i32* bitcast
1487 ; CHECK: %[[F1:.*]] = bitcast i32 %[[L1]] to float
1488 ; CHECK: %[[F2:.*]] = bitcast i32 %[[L2]] to float
1489 ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
1490 ; CHECK: %[[C1:.*]] = bitcast float %[[SUM]] to i32
1491 ; CHECK: %[[C2:.*]] = bitcast float %[[SUM]] to i32
1492 ; CHECK: store i32 %[[C1]], i32* bitcast
1493 ; CHECK: store i32 %[[C2]], i32* bitcast
1494 ; CHECK: ret void
1495
1496 entry:
1497   %a = alloca i64
1498   %a.cast = bitcast i64* %a to [2 x float]*
1499   %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
1500   %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
1501   %v1 = load i64, i64* bitcast ([2 x float]* @complex1 to i64*)
1502   store i64 %v1, i64* %a
1503   %f1 = load float, float* %a.gep1
1504   %f2 = load float, float* %a.gep2
1505   %sum = fadd float %f1, %f2
1506   store float %sum, float* %a.gep1
1507   store float %sum, float* %a.gep2
1508   %v2 = load i64, i64* %a
1509   store i64 %v2, i64* bitcast ([2 x float]* @complex2 to i64*)
1510   ret void
1511 }
1512
1513 define float @test27() {
1514 ; Another, more complex case of splittable i64 loads and stores. This example
1515 ; is a particularly challenging one because the load and store both point into
1516 ; the alloca SROA is processing, and they overlap but at an offset.
1517 ;
1518 ; CHECK-LABEL: @test27(
1519 ; CHECK-NOT: alloca
1520 ; CHECK: %[[F1:.*]] = bitcast i32 0 to float
1521 ; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
1522 ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
1523 ; CHECK: ret float %[[SUM]]
1524
1525 entry:
1526   %a = alloca [12 x i8]
1527   %gep1 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 0
1528   %gep2 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 4
1529   %gep3 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 8
1530   %iptr1 = bitcast i8* %gep1 to i64*
1531   %iptr2 = bitcast i8* %gep2 to i64*
1532   %fptr1 = bitcast i8* %gep1 to float*
1533   %fptr2 = bitcast i8* %gep2 to float*
1534   %fptr3 = bitcast i8* %gep3 to float*
1535   store float 0.0, float* %fptr1
1536   store float 1.0, float* %fptr2
1537   %v = load i64, i64* %iptr1
1538   store i64 %v, i64* %iptr2
1539   %f1 = load float, float* %fptr2
1540   %f2 = load float, float* %fptr3
1541   %ret = fadd float %f1, %f2
1542   ret float %ret
1543 }
1544
1545 define i32 @PR22093() {
1546 ; Test that we don't try to pre-split a splittable store of a splittable but
1547 ; not pre-splittable load over the same alloca. We "handle" this case when the
1548 ; load is unsplittable but unrelated to this alloca by just generating extra
1549 ; loads without touching the original, but when the original load was out of
1550 ; this alloca we need to handle it specially to ensure the splits line up
1551 ; properly for rewriting.
1552 ;
1553 ; CHECK-LABEL: @PR22093(
1554 ; CHECK-NOT: alloca
1555 ; CHECK: alloca i16
1556 ; CHECK-NOT: alloca
1557 ; CHECK: store volatile i16
1558
1559 entry:
1560   %a = alloca i32
1561   %a.cast = bitcast i32* %a to i16*
1562   store volatile i16 42, i16* %a.cast
1563   %load = load i32, i32* %a
1564   store i32 %load, i32* %a
1565   ret i32 %load
1566 }
1567
1568 define void @PR22093.2() {
1569 ; Another way that we end up being unable to split a particular set of loads
1570 ; and stores can even have ordering importance. Here we have a load which is
1571 ; pre-splittable by itself, and the first store is also compatible. But the
1572 ; second store of the load makes the load unsplittable because of a mismatch of
1573 ; splits. Because this makes the load unsplittable, we also have to go back and
1574 ; remove the first store from the presplit candidates as its load won't be
1575 ; presplit.
1576 ;
1577 ; CHECK-LABEL: @PR22093.2(
1578 ; CHECK-NOT: alloca
1579 ; CHECK: alloca i16
1580 ; CHECK-NEXT: alloca i8
1581 ; CHECK-NOT: alloca
1582 ; CHECK: store volatile i16
1583 ; CHECK: store volatile i8
1584
1585 entry:
1586   %a = alloca i64
1587   %a.cast1 = bitcast i64* %a to i32*
1588   %a.cast2 = bitcast i64* %a to i16*
1589   store volatile i16 42, i16* %a.cast2
1590   %load = load i32, i32* %a.cast1
1591   store i32 %load, i32* %a.cast1
1592   %a.gep1 = getelementptr i32, i32* %a.cast1, i32 1
1593   %a.cast3 = bitcast i32* %a.gep1 to i8*
1594   store volatile i8 13, i8* %a.cast3
1595   store i32 %load, i32* %a.gep1
1596   ret void
1597 }
1598
1599 define void @PR23737() {
1600 ; CHECK-LABEL: @PR23737(
1601 ; CHECK: store atomic volatile {{.*}} seq_cst
1602 ; CHECK: load atomic volatile {{.*}} seq_cst
1603 entry:
1604   %ptr = alloca i64, align 8
1605   store atomic volatile i64 0, i64* %ptr seq_cst, align 8
1606   %load = load atomic volatile i64, i64* %ptr seq_cst, align 8
1607   ret void
1608 }