Merge r261331: avoid out of bounds loads for interleaved access vectorization
[oota-llvm.git] / lib / Transforms / Vectorize / LoopVectorize.cpp
1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 //    of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 //    widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 //    of vectorization. It decides on the optimal vector width, which
27 //    can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // The interleaved access vectorization is based on the paper:
38 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
39 //  Data for SIMD
40 //
41 // Other ideas/concepts are from:
42 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
43 //
44 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
45 //  Vectorizing Compilers.
46 //
47 //===----------------------------------------------------------------------===//
48
49 #include "llvm/Transforms/Vectorize.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/Hashing.h"
52 #include "llvm/ADT/MapVector.h"
53 #include "llvm/ADT/SetVector.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/Analysis/AliasAnalysis.h"
60 #include "llvm/Analysis/BasicAliasAnalysis.h"
61 #include "llvm/Analysis/AliasSetTracker.h"
62 #include "llvm/Analysis/AssumptionCache.h"
63 #include "llvm/Analysis/BlockFrequencyInfo.h"
64 #include "llvm/Analysis/CodeMetrics.h"
65 #include "llvm/Analysis/DemandedBits.h"
66 #include "llvm/Analysis/GlobalsModRef.h"
67 #include "llvm/Analysis/LoopAccessAnalysis.h"
68 #include "llvm/Analysis/LoopInfo.h"
69 #include "llvm/Analysis/LoopIterator.h"
70 #include "llvm/Analysis/LoopPass.h"
71 #include "llvm/Analysis/ScalarEvolution.h"
72 #include "llvm/Analysis/ScalarEvolutionExpander.h"
73 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
74 #include "llvm/Analysis/TargetTransformInfo.h"
75 #include "llvm/Analysis/ValueTracking.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfo.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/DiagnosticInfo.h"
81 #include "llvm/IR/Dominators.h"
82 #include "llvm/IR/Function.h"
83 #include "llvm/IR/IRBuilder.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Module.h"
88 #include "llvm/IR/PatternMatch.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/IR/Verifier.h"
93 #include "llvm/Pass.h"
94 #include "llvm/Support/BranchProbability.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/raw_ostream.h"
98 #include "llvm/Transforms/Scalar.h"
99 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
100 #include "llvm/Transforms/Utils/Local.h"
101 #include "llvm/Analysis/VectorUtils.h"
102 #include "llvm/Transforms/Utils/LoopUtils.h"
103 #include <algorithm>
104 #include <functional>
105 #include <map>
106 #include <tuple>
107
108 using namespace llvm;
109 using namespace llvm::PatternMatch;
110
111 #define LV_NAME "loop-vectorize"
112 #define DEBUG_TYPE LV_NAME
113
114 STATISTIC(LoopsVectorized, "Number of loops vectorized");
115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
116
117 static cl::opt<bool>
118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
119                    cl::desc("Enable if-conversion during vectorization."));
120
121 /// We don't vectorize loops with a known constant trip count below this number.
122 static cl::opt<unsigned>
123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
124                              cl::Hidden,
125                              cl::desc("Don't vectorize loops with a constant "
126                                       "trip count that is smaller than this "
127                                       "value."));
128
129 static cl::opt<bool> MaximizeBandwidth(
130     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
131     cl::desc("Maximize bandwidth when selecting vectorization factor which "
132              "will be determined by the smallest type in loop."));
133
134 /// This enables versioning on the strides of symbolically striding memory
135 /// accesses in code like the following.
136 ///   for (i = 0; i < N; ++i)
137 ///     A[i * Stride1] += B[i * Stride2] ...
138 ///
139 /// Will be roughly translated to
140 ///    if (Stride1 == 1 && Stride2 == 1) {
141 ///      for (i = 0; i < N; i+=4)
142 ///       A[i:i+3] += ...
143 ///    } else
144 ///      ...
145 static cl::opt<bool> EnableMemAccessVersioning(
146     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
147     cl::desc("Enable symbolic stride memory access versioning"));
148
149 static cl::opt<bool> EnableInterleavedMemAccesses(
150     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
151     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
152
153 /// Maximum factor for an interleaved memory access.
154 static cl::opt<unsigned> MaxInterleaveGroupFactor(
155     "max-interleave-group-factor", cl::Hidden,
156     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
157     cl::init(8));
158
159 /// We don't interleave loops with a known constant trip count below this
160 /// number.
161 static const unsigned TinyTripCountInterleaveThreshold = 128;
162
163 static cl::opt<unsigned> ForceTargetNumScalarRegs(
164     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
165     cl::desc("A flag that overrides the target's number of scalar registers."));
166
167 static cl::opt<unsigned> ForceTargetNumVectorRegs(
168     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
169     cl::desc("A flag that overrides the target's number of vector registers."));
170
171 /// Maximum vectorization interleave count.
172 static const unsigned MaxInterleaveFactor = 16;
173
174 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
175     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
176     cl::desc("A flag that overrides the target's max interleave factor for "
177              "scalar loops."));
178
179 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
180     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
181     cl::desc("A flag that overrides the target's max interleave factor for "
182              "vectorized loops."));
183
184 static cl::opt<unsigned> ForceTargetInstructionCost(
185     "force-target-instruction-cost", cl::init(0), cl::Hidden,
186     cl::desc("A flag that overrides the target's expected cost for "
187              "an instruction to a single constant value. Mostly "
188              "useful for getting consistent testing."));
189
190 static cl::opt<unsigned> SmallLoopCost(
191     "small-loop-cost", cl::init(20), cl::Hidden,
192     cl::desc(
193         "The cost of a loop that is considered 'small' by the interleaver."));
194
195 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
196     "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
197     cl::desc("Enable the use of the block frequency analysis to access PGO "
198              "heuristics minimizing code growth in cold regions and being more "
199              "aggressive in hot regions."));
200
201 // Runtime interleave loops for load/store throughput.
202 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
203     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
204     cl::desc(
205         "Enable runtime interleaving until load/store ports are saturated"));
206
207 /// The number of stores in a loop that are allowed to need predication.
208 static cl::opt<unsigned> NumberOfStoresToPredicate(
209     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
210     cl::desc("Max number of stores to be predicated behind an if."));
211
212 static cl::opt<bool> EnableIndVarRegisterHeur(
213     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
214     cl::desc("Count the induction variable only once when interleaving"));
215
216 static cl::opt<bool> EnableCondStoresVectorization(
217     "enable-cond-stores-vec", cl::init(false), cl::Hidden,
218     cl::desc("Enable if predication of stores during vectorization."));
219
220 static cl::opt<unsigned> MaxNestedScalarReductionIC(
221     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
222     cl::desc("The maximum interleave count to use when interleaving a scalar "
223              "reduction in a nested loop."));
224
225 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
226     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
227     cl::desc("The maximum allowed number of runtime memory checks with a "
228              "vectorize(enable) pragma."));
229
230 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
231     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
232     cl::desc("The maximum number of SCEV checks allowed."));
233
234 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
235     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
236     cl::desc("The maximum number of SCEV checks allowed with a "
237              "vectorize(enable) pragma"));
238
239 namespace {
240
241 // Forward declarations.
242 class LoopVectorizeHints;
243 class LoopVectorizationLegality;
244 class LoopVectorizationCostModel;
245 class LoopVectorizationRequirements;
246
247 /// \brief This modifies LoopAccessReport to initialize message with
248 /// loop-vectorizer-specific part.
249 class VectorizationReport : public LoopAccessReport {
250 public:
251   VectorizationReport(Instruction *I = nullptr)
252       : LoopAccessReport("loop not vectorized: ", I) {}
253
254   /// \brief This allows promotion of the loop-access analysis report into the
255   /// loop-vectorizer report.  It modifies the message to add the
256   /// loop-vectorizer-specific part of the message.
257   explicit VectorizationReport(const LoopAccessReport &R)
258       : LoopAccessReport(Twine("loop not vectorized: ") + R.str(),
259                          R.getInstr()) {}
260 };
261
262 /// A helper function for converting Scalar types to vector types.
263 /// If the incoming type is void, we return void. If the VF is 1, we return
264 /// the scalar type.
265 static Type* ToVectorTy(Type *Scalar, unsigned VF) {
266   if (Scalar->isVoidTy() || VF == 1)
267     return Scalar;
268   return VectorType::get(Scalar, VF);
269 }
270
271 /// A helper function that returns GEP instruction and knows to skip a
272 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination
273 /// pointee types of the 'bitcast' have the same size.
274 /// For example:
275 ///   bitcast double** %var to i64* - can be skipped
276 ///   bitcast double** %var to i8*  - can not
277 static GetElementPtrInst *getGEPInstruction(Value *Ptr) {
278
279   if (isa<GetElementPtrInst>(Ptr))
280     return cast<GetElementPtrInst>(Ptr);
281
282   if (isa<BitCastInst>(Ptr) &&
283       isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) {
284     Type *BitcastTy = Ptr->getType();
285     Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy();
286     if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy))
287       return nullptr;
288     Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType();
289     Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType();
290     const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout();
291     if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty))
292       return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0));
293   }
294   return nullptr;
295 }
296
297 /// InnerLoopVectorizer vectorizes loops which contain only one basic
298 /// block to a specified vectorization factor (VF).
299 /// This class performs the widening of scalars into vectors, or multiple
300 /// scalars. This class also implements the following features:
301 /// * It inserts an epilogue loop for handling loops that don't have iteration
302 ///   counts that are known to be a multiple of the vectorization factor.
303 /// * It handles the code generation for reduction variables.
304 /// * Scalarization (implementation using scalars) of un-vectorizable
305 ///   instructions.
306 /// InnerLoopVectorizer does not perform any vectorization-legality
307 /// checks, and relies on the caller to check for the different legality
308 /// aspects. The InnerLoopVectorizer relies on the
309 /// LoopVectorizationLegality class to provide information about the induction
310 /// and reduction variables that were found to a given vectorization factor.
311 class InnerLoopVectorizer {
312 public:
313   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
314                       LoopInfo *LI, DominatorTree *DT,
315                       const TargetLibraryInfo *TLI,
316                       const TargetTransformInfo *TTI, unsigned VecWidth,
317                       unsigned UnrollFactor)
318       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
319         VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
320         Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
321         TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr),
322         AddedSafetyChecks(false) {}
323
324   // Perform the actual loop widening (vectorization).
325   // MinimumBitWidths maps scalar integer values to the smallest bitwidth they
326   // can be validly truncated to. The cost model has assumed this truncation
327   // will happen when vectorizing.
328   void vectorize(LoopVectorizationLegality *L,
329                  MapVector<Instruction*,uint64_t> MinimumBitWidths) {
330     MinBWs = MinimumBitWidths;
331     Legal = L;
332     // Create a new empty loop. Unlink the old loop and connect the new one.
333     createEmptyLoop();
334     // Widen each instruction in the old loop to a new one in the new loop.
335     // Use the Legality module to find the induction and reduction variables.
336     vectorizeLoop();
337   }
338
339   // Return true if any runtime check is added.
340   bool IsSafetyChecksAdded() {
341     return AddedSafetyChecks;
342   }
343
344   virtual ~InnerLoopVectorizer() {}
345
346 protected:
347   /// A small list of PHINodes.
348   typedef SmallVector<PHINode*, 4> PhiVector;
349   /// When we unroll loops we have multiple vector values for each scalar.
350   /// This data structure holds the unrolled and vectorized values that
351   /// originated from one scalar instruction.
352   typedef SmallVector<Value*, 2> VectorParts;
353
354   // When we if-convert we need to create edge masks. We have to cache values
355   // so that we don't end up with exponential recursion/IR.
356   typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
357                    VectorParts> EdgeMaskCache;
358
359   /// Create an empty loop, based on the loop ranges of the old loop.
360   void createEmptyLoop();
361   /// Create a new induction variable inside L.
362   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
363                                    Value *Step, Instruction *DL);
364   /// Copy and widen the instructions from the old loop.
365   virtual void vectorizeLoop();
366
367   /// \brief The Loop exit block may have single value PHI nodes where the
368   /// incoming value is 'Undef'. While vectorizing we only handled real values
369   /// that were defined inside the loop. Here we fix the 'undef case'.
370   /// See PR14725.
371   void fixLCSSAPHIs();
372
373   /// Shrinks vector element sizes based on information in "MinBWs".
374   void truncateToMinimalBitwidths();
375   
376   /// A helper function that computes the predicate of the block BB, assuming
377   /// that the header block of the loop is set to True. It returns the *entry*
378   /// mask for the block BB.
379   VectorParts createBlockInMask(BasicBlock *BB);
380   /// A helper function that computes the predicate of the edge between SRC
381   /// and DST.
382   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
383
384   /// A helper function to vectorize a single BB within the innermost loop.
385   void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
386   
387   /// Vectorize a single PHINode in a block. This method handles the induction
388   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
389   /// arbitrary length vectors.
390   void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
391                            unsigned UF, unsigned VF, PhiVector *PV);
392
393   /// Insert the new loop to the loop hierarchy and pass manager
394   /// and update the analysis passes.
395   void updateAnalysis();
396
397   /// This instruction is un-vectorizable. Implement it as a sequence
398   /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
399   /// scalarized instruction behind an if block predicated on the control
400   /// dependence of the instruction.
401   virtual void scalarizeInstruction(Instruction *Instr,
402                                     bool IfPredicateStore=false);
403
404   /// Vectorize Load and Store instructions,
405   virtual void vectorizeMemoryInstruction(Instruction *Instr);
406
407   /// Create a broadcast instruction. This method generates a broadcast
408   /// instruction (shuffle) for loop invariant values and for the induction
409   /// value. If this is the induction variable then we extend it to N, N+1, ...
410   /// this is needed because each iteration in the loop corresponds to a SIMD
411   /// element.
412   virtual Value *getBroadcastInstrs(Value *V);
413
414   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
415   /// to each vector element of Val. The sequence starts at StartIndex.
416   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step);
417
418   /// When we go over instructions in the basic block we rely on previous
419   /// values within the current basic block or on loop invariant values.
420   /// When we widen (vectorize) values we place them in the map. If the values
421   /// are not within the map, they have to be loop invariant, so we simply
422   /// broadcast them into a vector.
423   VectorParts &getVectorValue(Value *V);
424
425   /// Try to vectorize the interleaved access group that \p Instr belongs to.
426   void vectorizeInterleaveGroup(Instruction *Instr);
427
428   /// Generate a shuffle sequence that will reverse the vector Vec.
429   virtual Value *reverseVector(Value *Vec);
430
431   /// Returns (and creates if needed) the original loop trip count.
432   Value *getOrCreateTripCount(Loop *NewLoop);
433
434   /// Returns (and creates if needed) the trip count of the widened loop.
435   Value *getOrCreateVectorTripCount(Loop *NewLoop);
436
437   /// Emit a bypass check to see if the trip count would overflow, or we
438   /// wouldn't have enough iterations to execute one vector loop.
439   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
440   /// Emit a bypass check to see if the vector trip count is nonzero.
441   void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass);
442   /// Emit a bypass check to see if all of the SCEV assumptions we've
443   /// had to make are correct.
444   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
445   /// Emit bypass checks to check any memory assumptions we may have made.
446   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
447
448   /// This is a helper class that holds the vectorizer state. It maps scalar
449   /// instructions to vector instructions. When the code is 'unrolled' then
450   /// then a single scalar value is mapped to multiple vector parts. The parts
451   /// are stored in the VectorPart type.
452   struct ValueMap {
453     /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
454     /// are mapped.
455     ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
456
457     /// \return True if 'Key' is saved in the Value Map.
458     bool has(Value *Key) const { return MapStorage.count(Key); }
459
460     /// Initializes a new entry in the map. Sets all of the vector parts to the
461     /// save value in 'Val'.
462     /// \return A reference to a vector with splat values.
463     VectorParts &splat(Value *Key, Value *Val) {
464       VectorParts &Entry = MapStorage[Key];
465       Entry.assign(UF, Val);
466       return Entry;
467     }
468
469     ///\return A reference to the value that is stored at 'Key'.
470     VectorParts &get(Value *Key) {
471       VectorParts &Entry = MapStorage[Key];
472       if (Entry.empty())
473         Entry.resize(UF);
474       assert(Entry.size() == UF);
475       return Entry;
476     }
477
478   private:
479     /// The unroll factor. Each entry in the map stores this number of vector
480     /// elements.
481     unsigned UF;
482
483     /// Map storage. We use std::map and not DenseMap because insertions to a
484     /// dense map invalidates its iterators.
485     std::map<Value *, VectorParts> MapStorage;
486   };
487
488   /// The original loop.
489   Loop *OrigLoop;
490   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
491   /// dynamic knowledge to simplify SCEV expressions and converts them to a
492   /// more usable form.
493   PredicatedScalarEvolution &PSE;
494   /// Loop Info.
495   LoopInfo *LI;
496   /// Dominator Tree.
497   DominatorTree *DT;
498   /// Alias Analysis.
499   AliasAnalysis *AA;
500   /// Target Library Info.
501   const TargetLibraryInfo *TLI;
502   /// Target Transform Info.
503   const TargetTransformInfo *TTI;
504
505   /// The vectorization SIMD factor to use. Each vector will have this many
506   /// vector elements.
507   unsigned VF;
508
509 protected:
510   /// The vectorization unroll factor to use. Each scalar is vectorized to this
511   /// many different vector instructions.
512   unsigned UF;
513
514   /// The builder that we use
515   IRBuilder<> Builder;
516
517   // --- Vectorization state ---
518
519   /// The vector-loop preheader.
520   BasicBlock *LoopVectorPreHeader;
521   /// The scalar-loop preheader.
522   BasicBlock *LoopScalarPreHeader;
523   /// Middle Block between the vector and the scalar.
524   BasicBlock *LoopMiddleBlock;
525   ///The ExitBlock of the scalar loop.
526   BasicBlock *LoopExitBlock;
527   ///The vector loop body.
528   SmallVector<BasicBlock *, 4> LoopVectorBody;
529   ///The scalar loop body.
530   BasicBlock *LoopScalarBody;
531   /// A list of all bypass blocks. The first block is the entry of the loop.
532   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
533
534   /// The new Induction variable which was added to the new block.
535   PHINode *Induction;
536   /// The induction variable of the old basic block.
537   PHINode *OldInduction;
538   /// Maps scalars to widened vectors.
539   ValueMap WidenMap;
540   /// Store instructions that should be predicated, as a pair
541   ///   <StoreInst, Predicate>
542   SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores;
543   EdgeMaskCache MaskCache;
544   /// Trip count of the original loop.
545   Value *TripCount;
546   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
547   Value *VectorTripCount;
548
549   /// Map of scalar integer values to the smallest bitwidth they can be legally
550   /// represented as. The vector equivalents of these values should be truncated
551   /// to this type.
552   MapVector<Instruction*,uint64_t> MinBWs;
553   LoopVectorizationLegality *Legal;
554
555   // Record whether runtime check is added.
556   bool AddedSafetyChecks;
557 };
558
559 class InnerLoopUnroller : public InnerLoopVectorizer {
560 public:
561   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
562                     LoopInfo *LI, DominatorTree *DT,
563                     const TargetLibraryInfo *TLI,
564                     const TargetTransformInfo *TTI, unsigned UnrollFactor)
565       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, 1, UnrollFactor) {}
566
567 private:
568   void scalarizeInstruction(Instruction *Instr,
569                             bool IfPredicateStore = false) override;
570   void vectorizeMemoryInstruction(Instruction *Instr) override;
571   Value *getBroadcastInstrs(Value *V) override;
572   Value *getStepVector(Value *Val, int StartIdx, Value *Step) override;
573   Value *reverseVector(Value *Vec) override;
574 };
575
576 /// \brief Look for a meaningful debug location on the instruction or it's
577 /// operands.
578 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
579   if (!I)
580     return I;
581
582   DebugLoc Empty;
583   if (I->getDebugLoc() != Empty)
584     return I;
585
586   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
587     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
588       if (OpInst->getDebugLoc() != Empty)
589         return OpInst;
590   }
591
592   return I;
593 }
594
595 /// \brief Set the debug location in the builder using the debug location in the
596 /// instruction.
597 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
598   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
599     B.SetCurrentDebugLocation(Inst->getDebugLoc());
600   else
601     B.SetCurrentDebugLocation(DebugLoc());
602 }
603
604 #ifndef NDEBUG
605 /// \return string containing a file name and a line # for the given loop.
606 static std::string getDebugLocString(const Loop *L) {
607   std::string Result;
608   if (L) {
609     raw_string_ostream OS(Result);
610     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
611       LoopDbgLoc.print(OS);
612     else
613       // Just print the module name.
614       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
615     OS.flush();
616   }
617   return Result;
618 }
619 #endif
620
621 /// \brief Propagate known metadata from one instruction to another.
622 static void propagateMetadata(Instruction *To, const Instruction *From) {
623   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
624   From->getAllMetadataOtherThanDebugLoc(Metadata);
625
626   for (auto M : Metadata) {
627     unsigned Kind = M.first;
628
629     // These are safe to transfer (this is safe for TBAA, even when we
630     // if-convert, because should that metadata have had a control dependency
631     // on the condition, and thus actually aliased with some other
632     // non-speculated memory access when the condition was false, this would be
633     // caught by the runtime overlap checks).
634     if (Kind != LLVMContext::MD_tbaa &&
635         Kind != LLVMContext::MD_alias_scope &&
636         Kind != LLVMContext::MD_noalias &&
637         Kind != LLVMContext::MD_fpmath &&
638         Kind != LLVMContext::MD_nontemporal)
639       continue;
640
641     To->setMetadata(Kind, M.second);
642   }
643 }
644
645 /// \brief Propagate known metadata from one instruction to a vector of others.
646 static void propagateMetadata(SmallVectorImpl<Value *> &To,
647                               const Instruction *From) {
648   for (Value *V : To)
649     if (Instruction *I = dyn_cast<Instruction>(V))
650       propagateMetadata(I, From);
651 }
652
653 /// \brief The group of interleaved loads/stores sharing the same stride and
654 /// close to each other.
655 ///
656 /// Each member in this group has an index starting from 0, and the largest
657 /// index should be less than interleaved factor, which is equal to the absolute
658 /// value of the access's stride.
659 ///
660 /// E.g. An interleaved load group of factor 4:
661 ///        for (unsigned i = 0; i < 1024; i+=4) {
662 ///          a = A[i];                           // Member of index 0
663 ///          b = A[i+1];                         // Member of index 1
664 ///          d = A[i+3];                         // Member of index 3
665 ///          ...
666 ///        }
667 ///
668 ///      An interleaved store group of factor 4:
669 ///        for (unsigned i = 0; i < 1024; i+=4) {
670 ///          ...
671 ///          A[i]   = a;                         // Member of index 0
672 ///          A[i+1] = b;                         // Member of index 1
673 ///          A[i+2] = c;                         // Member of index 2
674 ///          A[i+3] = d;                         // Member of index 3
675 ///        }
676 ///
677 /// Note: the interleaved load group could have gaps (missing members), but
678 /// the interleaved store group doesn't allow gaps.
679 class InterleaveGroup {
680 public:
681   InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
682       : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) {
683     assert(Align && "The alignment should be non-zero");
684
685     Factor = std::abs(Stride);
686     assert(Factor > 1 && "Invalid interleave factor");
687
688     Reverse = Stride < 0;
689     Members[0] = Instr;
690   }
691
692   bool isReverse() const { return Reverse; }
693   unsigned getFactor() const { return Factor; }
694   unsigned getAlignment() const { return Align; }
695   unsigned getNumMembers() const { return Members.size(); }
696
697   /// \brief Try to insert a new member \p Instr with index \p Index and
698   /// alignment \p NewAlign. The index is related to the leader and it could be
699   /// negative if it is the new leader.
700   ///
701   /// \returns false if the instruction doesn't belong to the group.
702   bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
703     assert(NewAlign && "The new member's alignment should be non-zero");
704
705     int Key = Index + SmallestKey;
706
707     // Skip if there is already a member with the same index.
708     if (Members.count(Key))
709       return false;
710
711     if (Key > LargestKey) {
712       // The largest index is always less than the interleave factor.
713       if (Index >= static_cast<int>(Factor))
714         return false;
715
716       LargestKey = Key;
717     } else if (Key < SmallestKey) {
718       // The largest index is always less than the interleave factor.
719       if (LargestKey - Key >= static_cast<int>(Factor))
720         return false;
721
722       SmallestKey = Key;
723     }
724
725     // It's always safe to select the minimum alignment.
726     Align = std::min(Align, NewAlign);
727     Members[Key] = Instr;
728     return true;
729   }
730
731   /// \brief Get the member with the given index \p Index
732   ///
733   /// \returns nullptr if contains no such member.
734   Instruction *getMember(unsigned Index) const {
735     int Key = SmallestKey + Index;
736     if (!Members.count(Key))
737       return nullptr;
738
739     return Members.find(Key)->second;
740   }
741
742   /// \brief Get the index for the given member. Unlike the key in the member
743   /// map, the index starts from 0.
744   unsigned getIndex(Instruction *Instr) const {
745     for (auto I : Members)
746       if (I.second == Instr)
747         return I.first - SmallestKey;
748
749     llvm_unreachable("InterleaveGroup contains no such member");
750   }
751
752   Instruction *getInsertPos() const { return InsertPos; }
753   void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
754
755 private:
756   unsigned Factor; // Interleave Factor.
757   bool Reverse;
758   unsigned Align;
759   DenseMap<int, Instruction *> Members;
760   int SmallestKey;
761   int LargestKey;
762
763   // To avoid breaking dependences, vectorized instructions of an interleave
764   // group should be inserted at either the first load or the last store in
765   // program order.
766   //
767   // E.g. %even = load i32             // Insert Position
768   //      %add = add i32 %even         // Use of %even
769   //      %odd = load i32
770   //
771   //      store i32 %even
772   //      %odd = add i32               // Def of %odd
773   //      store i32 %odd               // Insert Position
774   Instruction *InsertPos;
775 };
776
777 /// \brief Drive the analysis of interleaved memory accesses in the loop.
778 ///
779 /// Use this class to analyze interleaved accesses only when we can vectorize
780 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
781 /// on interleaved accesses is unsafe.
782 ///
783 /// The analysis collects interleave groups and records the relationships
784 /// between the member and the group in a map.
785 class InterleavedAccessInfo {
786 public:
787   InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
788                         DominatorTree *DT)
789       : PSE(PSE), TheLoop(L), DT(DT) {}
790
791   ~InterleavedAccessInfo() {
792     SmallSet<InterleaveGroup *, 4> DelSet;
793     // Avoid releasing a pointer twice.
794     for (auto &I : InterleaveGroupMap)
795       DelSet.insert(I.second);
796     for (auto *Ptr : DelSet)
797       delete Ptr;
798   }
799
800   /// \brief Analyze the interleaved accesses and collect them in interleave
801   /// groups. Substitute symbolic strides using \p Strides.
802   void analyzeInterleaving(const ValueToValueMap &Strides);
803
804   /// \brief Check if \p Instr belongs to any interleave group.
805   bool isInterleaved(Instruction *Instr) const {
806     return InterleaveGroupMap.count(Instr);
807   }
808
809   /// \brief Get the interleave group that \p Instr belongs to.
810   ///
811   /// \returns nullptr if doesn't have such group.
812   InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
813     if (InterleaveGroupMap.count(Instr))
814       return InterleaveGroupMap.find(Instr)->second;
815     return nullptr;
816   }
817
818 private:
819   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
820   /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
821   /// The interleaved access analysis can also add new predicates (for example
822   /// by versioning strides of pointers).
823   PredicatedScalarEvolution &PSE;
824   Loop *TheLoop;
825   DominatorTree *DT;
826
827   /// Holds the relationships between the members and the interleave group.
828   DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
829
830   /// \brief The descriptor for a strided memory access.
831   struct StrideDescriptor {
832     StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size,
833                      unsigned Align)
834         : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
835
836     StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {}
837
838     int Stride; // The access's stride. It is negative for a reverse access.
839     const SCEV *Scev; // The scalar expression of this access
840     unsigned Size;    // The size of the memory object.
841     unsigned Align;   // The alignment of this access.
842   };
843
844   /// \brief Create a new interleave group with the given instruction \p Instr,
845   /// stride \p Stride and alignment \p Align.
846   ///
847   /// \returns the newly created interleave group.
848   InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
849                                          unsigned Align) {
850     assert(!InterleaveGroupMap.count(Instr) &&
851            "Already in an interleaved access group");
852     InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
853     return InterleaveGroupMap[Instr];
854   }
855
856   /// \brief Release the group and remove all the relationships.
857   void releaseGroup(InterleaveGroup *Group) {
858     for (unsigned i = 0; i < Group->getFactor(); i++)
859       if (Instruction *Member = Group->getMember(i))
860         InterleaveGroupMap.erase(Member);
861
862     delete Group;
863   }
864
865   /// \brief Collect all the accesses with a constant stride in program order.
866   void collectConstStridedAccesses(
867       MapVector<Instruction *, StrideDescriptor> &StrideAccesses,
868       const ValueToValueMap &Strides);
869 };
870
871 /// Utility class for getting and setting loop vectorizer hints in the form
872 /// of loop metadata.
873 /// This class keeps a number of loop annotations locally (as member variables)
874 /// and can, upon request, write them back as metadata on the loop. It will
875 /// initially scan the loop for existing metadata, and will update the local
876 /// values based on information in the loop.
877 /// We cannot write all values to metadata, as the mere presence of some info,
878 /// for example 'force', means a decision has been made. So, we need to be
879 /// careful NOT to add them if the user hasn't specifically asked so.
880 class LoopVectorizeHints {
881   enum HintKind {
882     HK_WIDTH,
883     HK_UNROLL,
884     HK_FORCE
885   };
886
887   /// Hint - associates name and validation with the hint value.
888   struct Hint {
889     const char * Name;
890     unsigned Value; // This may have to change for non-numeric values.
891     HintKind Kind;
892
893     Hint(const char * Name, unsigned Value, HintKind Kind)
894       : Name(Name), Value(Value), Kind(Kind) { }
895
896     bool validate(unsigned Val) {
897       switch (Kind) {
898       case HK_WIDTH:
899         return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
900       case HK_UNROLL:
901         return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
902       case HK_FORCE:
903         return (Val <= 1);
904       }
905       return false;
906     }
907   };
908
909   /// Vectorization width.
910   Hint Width;
911   /// Vectorization interleave factor.
912   Hint Interleave;
913   /// Vectorization forced
914   Hint Force;
915
916   /// Return the loop metadata prefix.
917   static StringRef Prefix() { return "llvm.loop."; }
918
919 public:
920   enum ForceKind {
921     FK_Undefined = -1, ///< Not selected.
922     FK_Disabled = 0,   ///< Forcing disabled.
923     FK_Enabled = 1,    ///< Forcing enabled.
924   };
925
926   LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
927       : Width("vectorize.width", VectorizerParams::VectorizationFactor,
928               HK_WIDTH),
929         Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
930         Force("vectorize.enable", FK_Undefined, HK_FORCE),
931         TheLoop(L) {
932     // Populate values with existing loop metadata.
933     getHintsFromMetadata();
934
935     // force-vector-interleave overrides DisableInterleaving.
936     if (VectorizerParams::isInterleaveForced())
937       Interleave.Value = VectorizerParams::VectorizationInterleave;
938
939     DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
940           << "LV: Interleaving disabled by the pass manager\n");
941   }
942
943   /// Mark the loop L as already vectorized by setting the width to 1.
944   void setAlreadyVectorized() {
945     Width.Value = Interleave.Value = 1;
946     Hint Hints[] = {Width, Interleave};
947     writeHintsToMetadata(Hints);
948   }
949
950   bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
951     if (getForce() == LoopVectorizeHints::FK_Disabled) {
952       DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
953       emitOptimizationRemarkAnalysis(F->getContext(),
954                                      vectorizeAnalysisPassName(), *F,
955                                      L->getStartLoc(), emitRemark());
956       return false;
957     }
958
959     if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
960       DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
961       emitOptimizationRemarkAnalysis(F->getContext(),
962                                      vectorizeAnalysisPassName(), *F,
963                                      L->getStartLoc(), emitRemark());
964       return false;
965     }
966
967     if (getWidth() == 1 && getInterleave() == 1) {
968       // FIXME: Add a separate metadata to indicate when the loop has already
969       // been vectorized instead of setting width and count to 1.
970       DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
971       // FIXME: Add interleave.disable metadata. This will allow
972       // vectorize.disable to be used without disabling the pass and errors
973       // to differentiate between disabled vectorization and a width of 1.
974       emitOptimizationRemarkAnalysis(
975           F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(),
976           "loop not vectorized: vectorization and interleaving are explicitly "
977           "disabled, or vectorize width and interleave count are both set to "
978           "1");
979       return false;
980     }
981
982     return true;
983   }
984
985   /// Dumps all the hint information.
986   std::string emitRemark() const {
987     VectorizationReport R;
988     if (Force.Value == LoopVectorizeHints::FK_Disabled)
989       R << "vectorization is explicitly disabled";
990     else {
991       R << "use -Rpass-analysis=loop-vectorize for more info";
992       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
993         R << " (Force=true";
994         if (Width.Value != 0)
995           R << ", Vector Width=" << Width.Value;
996         if (Interleave.Value != 0)
997           R << ", Interleave Count=" << Interleave.Value;
998         R << ")";
999       }
1000     }
1001
1002     return R.str();
1003   }
1004
1005   unsigned getWidth() const { return Width.Value; }
1006   unsigned getInterleave() const { return Interleave.Value; }
1007   enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1008   const char *vectorizeAnalysisPassName() const {
1009     // If hints are provided that don't disable vectorization use the
1010     // AlwaysPrint pass name to force the frontend to print the diagnostic.
1011     if (getWidth() == 1)
1012       return LV_NAME;
1013     if (getForce() == LoopVectorizeHints::FK_Disabled)
1014       return LV_NAME;
1015     if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
1016       return LV_NAME;
1017     return DiagnosticInfo::AlwaysPrint;
1018   }
1019
1020   bool allowReordering() const {
1021     // When enabling loop hints are provided we allow the vectorizer to change
1022     // the order of operations that is given by the scalar loop. This is not
1023     // enabled by default because can be unsafe or inefficient. For example,
1024     // reordering floating-point operations will change the way round-off
1025     // error accumulates in the loop.
1026     return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
1027   }
1028
1029 private:
1030   /// Find hints specified in the loop metadata and update local values.
1031   void getHintsFromMetadata() {
1032     MDNode *LoopID = TheLoop->getLoopID();
1033     if (!LoopID)
1034       return;
1035
1036     // First operand should refer to the loop id itself.
1037     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1038     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1039
1040     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1041       const MDString *S = nullptr;
1042       SmallVector<Metadata *, 4> Args;
1043
1044       // The expected hint is either a MDString or a MDNode with the first
1045       // operand a MDString.
1046       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1047         if (!MD || MD->getNumOperands() == 0)
1048           continue;
1049         S = dyn_cast<MDString>(MD->getOperand(0));
1050         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1051           Args.push_back(MD->getOperand(i));
1052       } else {
1053         S = dyn_cast<MDString>(LoopID->getOperand(i));
1054         assert(Args.size() == 0 && "too many arguments for MDString");
1055       }
1056
1057       if (!S)
1058         continue;
1059
1060       // Check if the hint starts with the loop metadata prefix.
1061       StringRef Name = S->getString();
1062       if (Args.size() == 1)
1063         setHint(Name, Args[0]);
1064     }
1065   }
1066
1067   /// Checks string hint with one operand and set value if valid.
1068   void setHint(StringRef Name, Metadata *Arg) {
1069     if (!Name.startswith(Prefix()))
1070       return;
1071     Name = Name.substr(Prefix().size(), StringRef::npos);
1072
1073     const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1074     if (!C) return;
1075     unsigned Val = C->getZExtValue();
1076
1077     Hint *Hints[] = {&Width, &Interleave, &Force};
1078     for (auto H : Hints) {
1079       if (Name == H->Name) {
1080         if (H->validate(Val))
1081           H->Value = Val;
1082         else
1083           DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1084         break;
1085       }
1086     }
1087   }
1088
1089   /// Create a new hint from name / value pair.
1090   MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1091     LLVMContext &Context = TheLoop->getHeader()->getContext();
1092     Metadata *MDs[] = {MDString::get(Context, Name),
1093                        ConstantAsMetadata::get(
1094                            ConstantInt::get(Type::getInt32Ty(Context), V))};
1095     return MDNode::get(Context, MDs);
1096   }
1097
1098   /// Matches metadata with hint name.
1099   bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1100     MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
1101     if (!Name)
1102       return false;
1103
1104     for (auto H : HintTypes)
1105       if (Name->getString().endswith(H.Name))
1106         return true;
1107     return false;
1108   }
1109
1110   /// Sets current hints into loop metadata, keeping other values intact.
1111   void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1112     if (HintTypes.size() == 0)
1113       return;
1114
1115     // Reserve the first element to LoopID (see below).
1116     SmallVector<Metadata *, 4> MDs(1);
1117     // If the loop already has metadata, then ignore the existing operands.
1118     MDNode *LoopID = TheLoop->getLoopID();
1119     if (LoopID) {
1120       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1121         MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1122         // If node in update list, ignore old value.
1123         if (!matchesHintMetadataName(Node, HintTypes))
1124           MDs.push_back(Node);
1125       }
1126     }
1127
1128     // Now, add the missing hints.
1129     for (auto H : HintTypes)
1130       MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1131
1132     // Replace current metadata node with new one.
1133     LLVMContext &Context = TheLoop->getHeader()->getContext();
1134     MDNode *NewLoopID = MDNode::get(Context, MDs);
1135     // Set operand 0 to refer to the loop id itself.
1136     NewLoopID->replaceOperandWith(0, NewLoopID);
1137
1138     TheLoop->setLoopID(NewLoopID);
1139   }
1140
1141   /// The loop these hints belong to.
1142   const Loop *TheLoop;
1143 };
1144
1145 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop,
1146                              const LoopVectorizeHints &Hints,
1147                              const LoopAccessReport &Message) {
1148   const char *Name = Hints.vectorizeAnalysisPassName();
1149   LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name);
1150 }
1151
1152 static void emitMissedWarning(Function *F, Loop *L,
1153                               const LoopVectorizeHints &LH) {
1154   emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1155                                LH.emitRemark());
1156
1157   if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1158     if (LH.getWidth() != 1)
1159       emitLoopVectorizeWarning(
1160           F->getContext(), *F, L->getStartLoc(),
1161           "failed explicitly specified loop vectorization");
1162     else if (LH.getInterleave() != 1)
1163       emitLoopInterleaveWarning(
1164           F->getContext(), *F, L->getStartLoc(),
1165           "failed explicitly specified loop interleaving");
1166   }
1167 }
1168
1169 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
1170 /// to what vectorization factor.
1171 /// This class does not look at the profitability of vectorization, only the
1172 /// legality. This class has two main kinds of checks:
1173 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
1174 ///   will change the order of memory accesses in a way that will change the
1175 ///   correctness of the program.
1176 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
1177 /// checks for a number of different conditions, such as the availability of a
1178 /// single induction variable, that all types are supported and vectorize-able,
1179 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
1180 /// This class is also used by InnerLoopVectorizer for identifying
1181 /// induction variable and the different reduction variables.
1182 class LoopVectorizationLegality {
1183 public:
1184   LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE,
1185                             DominatorTree *DT, TargetLibraryInfo *TLI,
1186                             AliasAnalysis *AA, Function *F,
1187                             const TargetTransformInfo *TTI,
1188                             LoopAccessAnalysis *LAA,
1189                             LoopVectorizationRequirements *R,
1190                             const LoopVectorizeHints *H)
1191       : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F),
1192         TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT),
1193         Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false),
1194         Requirements(R), Hints(H) {}
1195
1196   /// ReductionList contains the reduction descriptors for all
1197   /// of the reductions that were found in the loop.
1198   typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
1199
1200   /// InductionList saves induction variables and maps them to the
1201   /// induction descriptor.
1202   typedef MapVector<PHINode*, InductionDescriptor> InductionList;
1203
1204   /// Returns true if it is legal to vectorize this loop.
1205   /// This does not mean that it is profitable to vectorize this
1206   /// loop, only that it is legal to do so.
1207   bool canVectorize();
1208
1209   /// Returns the Induction variable.
1210   PHINode *getInduction() { return Induction; }
1211
1212   /// Returns the reduction variables found in the loop.
1213   ReductionList *getReductionVars() { return &Reductions; }
1214
1215   /// Returns the induction variables found in the loop.
1216   InductionList *getInductionVars() { return &Inductions; }
1217
1218   /// Returns the widest induction type.
1219   Type *getWidestInductionType() { return WidestIndTy; }
1220
1221   /// Returns True if V is an induction variable in this loop.
1222   bool isInductionVariable(const Value *V);
1223
1224   /// Returns True if PN is a reduction variable in this loop.
1225   bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
1226
1227   /// Return true if the block BB needs to be predicated in order for the loop
1228   /// to be vectorized.
1229   bool blockNeedsPredication(BasicBlock *BB);
1230
1231   /// Check if this  pointer is consecutive when vectorizing. This happens
1232   /// when the last index of the GEP is the induction variable, or that the
1233   /// pointer itself is an induction variable.
1234   /// This check allows us to vectorize A[idx] into a wide load/store.
1235   /// Returns:
1236   /// 0 - Stride is unknown or non-consecutive.
1237   /// 1 - Address is consecutive.
1238   /// -1 - Address is consecutive, and decreasing.
1239   int isConsecutivePtr(Value *Ptr);
1240
1241   /// Returns true if the value V is uniform within the loop.
1242   bool isUniform(Value *V);
1243
1244   /// Returns true if this instruction will remain scalar after vectorization.
1245   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
1246
1247   /// Returns the information that we collected about runtime memory check.
1248   const RuntimePointerChecking *getRuntimePointerChecking() const {
1249     return LAI->getRuntimePointerChecking();
1250   }
1251
1252   const LoopAccessInfo *getLAI() const {
1253     return LAI;
1254   }
1255
1256   /// \brief Check if \p Instr belongs to any interleaved access group.
1257   bool isAccessInterleaved(Instruction *Instr) {
1258     return InterleaveInfo.isInterleaved(Instr);
1259   }
1260
1261   /// \brief Get the interleaved access group that \p Instr belongs to.
1262   const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
1263     return InterleaveInfo.getInterleaveGroup(Instr);
1264   }
1265
1266   unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
1267
1268   bool hasStride(Value *V) { return StrideSet.count(V); }
1269   bool mustCheckStrides() { return !StrideSet.empty(); }
1270   SmallPtrSet<Value *, 8>::iterator strides_begin() {
1271     return StrideSet.begin();
1272   }
1273   SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
1274
1275   /// Returns true if the target machine supports masked store operation
1276   /// for the given \p DataType and kind of access to \p Ptr.
1277   bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1278     return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType);
1279   }
1280   /// Returns true if the target machine supports masked load operation
1281   /// for the given \p DataType and kind of access to \p Ptr.
1282   bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
1283     return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType);
1284   }
1285   /// Returns true if vector representation of the instruction \p I
1286   /// requires mask.
1287   bool isMaskRequired(const Instruction* I) {
1288     return (MaskedOp.count(I) != 0);
1289   }
1290   unsigned getNumStores() const {
1291     return LAI->getNumStores();
1292   }
1293   unsigned getNumLoads() const {
1294     return LAI->getNumLoads();
1295   }
1296   unsigned getNumPredStores() const {
1297     return NumPredStores;
1298   }
1299 private:
1300   /// Check if a single basic block loop is vectorizable.
1301   /// At this point we know that this is a loop with a constant trip count
1302   /// and we only need to check individual instructions.
1303   bool canVectorizeInstrs();
1304
1305   /// When we vectorize loops we may change the order in which
1306   /// we read and write from memory. This method checks if it is
1307   /// legal to vectorize the code, considering only memory constrains.
1308   /// Returns true if the loop is vectorizable
1309   bool canVectorizeMemory();
1310
1311   /// Return true if we can vectorize this loop using the IF-conversion
1312   /// transformation.
1313   bool canVectorizeWithIfConvert();
1314
1315   /// Collect the variables that need to stay uniform after vectorization.
1316   void collectLoopUniforms();
1317
1318   /// Return true if all of the instructions in the block can be speculatively
1319   /// executed. \p SafePtrs is a list of addresses that are known to be legal
1320   /// and we know that we can read from them without segfault.
1321   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
1322
1323   /// \brief Collect memory access with loop invariant strides.
1324   ///
1325   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
1326   /// invariant.
1327   void collectStridedAccess(Value *LoadOrStoreInst);
1328
1329   /// Report an analysis message to assist the user in diagnosing loops that are
1330   /// not vectorized.  These are handled as LoopAccessReport rather than
1331   /// VectorizationReport because the << operator of VectorizationReport returns
1332   /// LoopAccessReport.
1333   void emitAnalysis(const LoopAccessReport &Message) const {
1334     emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1335   }
1336
1337   unsigned NumPredStores;
1338
1339   /// The loop that we evaluate.
1340   Loop *TheLoop;
1341   /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
1342   /// Applies dynamic knowledge to simplify SCEV expressions in the context
1343   /// of existing SCEV assumptions. The analysis will also add a minimal set
1344   /// of new predicates if this is required to enable vectorization and
1345   /// unrolling.
1346   PredicatedScalarEvolution &PSE;
1347   /// Target Library Info.
1348   TargetLibraryInfo *TLI;
1349   /// Parent function
1350   Function *TheFunction;
1351   /// Target Transform Info
1352   const TargetTransformInfo *TTI;
1353   /// Dominator Tree.
1354   DominatorTree *DT;
1355   // LoopAccess analysis.
1356   LoopAccessAnalysis *LAA;
1357   // And the loop-accesses info corresponding to this loop.  This pointer is
1358   // null until canVectorizeMemory sets it up.
1359   const LoopAccessInfo *LAI;
1360
1361   /// The interleave access information contains groups of interleaved accesses
1362   /// with the same stride and close to each other.
1363   InterleavedAccessInfo InterleaveInfo;
1364
1365   //  ---  vectorization state --- //
1366
1367   /// Holds the integer induction variable. This is the counter of the
1368   /// loop.
1369   PHINode *Induction;
1370   /// Holds the reduction variables.
1371   ReductionList Reductions;
1372   /// Holds all of the induction variables that we found in the loop.
1373   /// Notice that inductions don't need to start at zero and that induction
1374   /// variables can be pointers.
1375   InductionList Inductions;
1376   /// Holds the widest induction type encountered.
1377   Type *WidestIndTy;
1378
1379   /// Allowed outside users. This holds the reduction
1380   /// vars which can be accessed from outside the loop.
1381   SmallPtrSet<Value*, 4> AllowedExit;
1382   /// This set holds the variables which are known to be uniform after
1383   /// vectorization.
1384   SmallPtrSet<Instruction*, 4> Uniforms;
1385
1386   /// Can we assume the absence of NaNs.
1387   bool HasFunNoNaNAttr;
1388
1389   /// Vectorization requirements that will go through late-evaluation.
1390   LoopVectorizationRequirements *Requirements;
1391
1392   /// Used to emit an analysis of any legality issues.
1393   const LoopVectorizeHints *Hints;
1394
1395   ValueToValueMap Strides;
1396   SmallPtrSet<Value *, 8> StrideSet;
1397
1398   /// While vectorizing these instructions we have to generate a
1399   /// call to the appropriate masked intrinsic
1400   SmallPtrSet<const Instruction *, 8> MaskedOp;
1401 };
1402
1403 /// LoopVectorizationCostModel - estimates the expected speedups due to
1404 /// vectorization.
1405 /// In many cases vectorization is not profitable. This can happen because of
1406 /// a number of reasons. In this class we mainly attempt to predict the
1407 /// expected speedup/slowdowns due to the supported instruction set. We use the
1408 /// TargetTransformInfo to query the different backends for the cost of
1409 /// different operations.
1410 class LoopVectorizationCostModel {
1411 public:
1412   LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
1413                              LoopInfo *LI, LoopVectorizationLegality *Legal,
1414                              const TargetTransformInfo &TTI,
1415                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1416                              AssumptionCache *AC, const Function *F,
1417                              const LoopVectorizeHints *Hints)
1418       : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1419         AC(AC), TheFunction(F), Hints(Hints) {}
1420
1421   /// Information about vectorization costs
1422   struct VectorizationFactor {
1423     unsigned Width; // Vector width with best cost
1424     unsigned Cost; // Cost of the loop with that width
1425   };
1426   /// \return The most profitable vectorization factor and the cost of that VF.
1427   /// This method checks every power of two up to VF. If UserVF is not ZERO
1428   /// then this vectorization factor will be selected if vectorization is
1429   /// possible.
1430   VectorizationFactor selectVectorizationFactor(bool OptForSize);
1431
1432   /// \return The size (in bits) of the smallest and widest types in the code
1433   /// that needs to be vectorized. We ignore values that remain scalar such as
1434   /// 64 bit loop indices.
1435   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1436
1437   /// \return The desired interleave count.
1438   /// If interleave count has been specified by metadata it will be returned.
1439   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1440   /// are the selected vectorization factor and the cost of the selected VF.
1441   unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1442                                  unsigned LoopCost);
1443
1444   /// \return The most profitable unroll factor.
1445   /// This method finds the best unroll-factor based on register pressure and
1446   /// other parameters. VF and LoopCost are the selected vectorization factor
1447   /// and the cost of the selected VF.
1448   unsigned computeInterleaveCount(bool OptForSize, unsigned VF,
1449                                   unsigned LoopCost);
1450
1451   /// \brief A struct that represents some properties of the register usage
1452   /// of a loop.
1453   struct RegisterUsage {
1454     /// Holds the number of loop invariant values that are used in the loop.
1455     unsigned LoopInvariantRegs;
1456     /// Holds the maximum number of concurrent live intervals in the loop.
1457     unsigned MaxLocalUsers;
1458     /// Holds the number of instructions in the loop.
1459     unsigned NumInstructions;
1460   };
1461
1462   /// \return Returns information about the register usages of the loop for the
1463   /// given vectorization factors.
1464   SmallVector<RegisterUsage, 8>
1465   calculateRegisterUsage(const SmallVector<unsigned, 8> &VFs);
1466
1467   /// Collect values we want to ignore in the cost model.
1468   void collectValuesToIgnore();
1469
1470 private:
1471   /// Returns the expected execution cost. The unit of the cost does
1472   /// not matter because we use the 'cost' units to compare different
1473   /// vector widths. The cost that is returned is *not* normalized by
1474   /// the factor width.
1475   unsigned expectedCost(unsigned VF);
1476
1477   /// Returns the execution time cost of an instruction for a given vector
1478   /// width. Vector width of one means scalar.
1479   unsigned getInstructionCost(Instruction *I, unsigned VF);
1480
1481   /// Returns whether the instruction is a load or store and will be a emitted
1482   /// as a vector operation.
1483   bool isConsecutiveLoadOrStore(Instruction *I);
1484
1485   /// Report an analysis message to assist the user in diagnosing loops that are
1486   /// not vectorized.  These are handled as LoopAccessReport rather than
1487   /// VectorizationReport because the << operator of VectorizationReport returns
1488   /// LoopAccessReport.
1489   void emitAnalysis(const LoopAccessReport &Message) const {
1490     emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message);
1491   }
1492
1493 public:
1494   /// Map of scalar integer values to the smallest bitwidth they can be legally
1495   /// represented as. The vector equivalents of these values should be truncated
1496   /// to this type.
1497   MapVector<Instruction*,uint64_t> MinBWs;
1498
1499   /// The loop that we evaluate.
1500   Loop *TheLoop;
1501   /// Predicated scalar evolution analysis.
1502   PredicatedScalarEvolution &PSE;
1503   /// Loop Info analysis.
1504   LoopInfo *LI;
1505   /// Vectorization legality.
1506   LoopVectorizationLegality *Legal;
1507   /// Vector target information.
1508   const TargetTransformInfo &TTI;
1509   /// Target Library Info.
1510   const TargetLibraryInfo *TLI;
1511   /// Demanded bits analysis.
1512   DemandedBits *DB;
1513   /// Assumption cache.
1514   AssumptionCache *AC;
1515   const Function *TheFunction;
1516   /// Loop Vectorize Hint.
1517   const LoopVectorizeHints *Hints;
1518   /// Values to ignore in the cost model.
1519   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1520   /// Values to ignore in the cost model when VF > 1.
1521   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1522 };
1523
1524 /// \brief This holds vectorization requirements that must be verified late in
1525 /// the process. The requirements are set by legalize and costmodel. Once
1526 /// vectorization has been determined to be possible and profitable the
1527 /// requirements can be verified by looking for metadata or compiler options.
1528 /// For example, some loops require FP commutativity which is only allowed if
1529 /// vectorization is explicitly specified or if the fast-math compiler option
1530 /// has been provided.
1531 /// Late evaluation of these requirements allows helpful diagnostics to be
1532 /// composed that tells the user what need to be done to vectorize the loop. For
1533 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
1534 /// evaluation should be used only when diagnostics can generated that can be
1535 /// followed by a non-expert user.
1536 class LoopVectorizationRequirements {
1537 public:
1538   LoopVectorizationRequirements()
1539       : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {}
1540
1541   void addUnsafeAlgebraInst(Instruction *I) {
1542     // First unsafe algebra instruction.
1543     if (!UnsafeAlgebraInst)
1544       UnsafeAlgebraInst = I;
1545   }
1546
1547   void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
1548
1549   bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
1550     const char *Name = Hints.vectorizeAnalysisPassName();
1551     bool Failed = false;
1552     if (UnsafeAlgebraInst && !Hints.allowReordering()) {
1553       emitOptimizationRemarkAnalysisFPCommute(
1554           F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(),
1555           VectorizationReport() << "cannot prove it is safe to reorder "
1556                                    "floating-point operations");
1557       Failed = true;
1558     }
1559
1560     // Test if runtime memcheck thresholds are exceeded.
1561     bool PragmaThresholdReached =
1562         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
1563     bool ThresholdReached =
1564         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
1565     if ((ThresholdReached && !Hints.allowReordering()) ||
1566         PragmaThresholdReached) {
1567       emitOptimizationRemarkAnalysisAliasing(
1568           F->getContext(), Name, *F, L->getStartLoc(),
1569           VectorizationReport()
1570               << "cannot prove it is safe to reorder memory operations");
1571       DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
1572       Failed = true;
1573     }
1574
1575     return Failed;
1576   }
1577
1578 private:
1579   unsigned NumRuntimePointerChecks;
1580   Instruction *UnsafeAlgebraInst;
1581 };
1582
1583 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1584   if (L.empty())
1585     return V.push_back(&L);
1586
1587   for (Loop *InnerL : L)
1588     addInnerLoop(*InnerL, V);
1589 }
1590
1591 /// The LoopVectorize Pass.
1592 struct LoopVectorize : public FunctionPass {
1593   /// Pass identification, replacement for typeid
1594   static char ID;
1595
1596   explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1597     : FunctionPass(ID),
1598       DisableUnrolling(NoUnrolling),
1599       AlwaysVectorize(AlwaysVectorize) {
1600     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1601   }
1602
1603   ScalarEvolution *SE;
1604   LoopInfo *LI;
1605   TargetTransformInfo *TTI;
1606   DominatorTree *DT;
1607   BlockFrequencyInfo *BFI;
1608   TargetLibraryInfo *TLI;
1609   DemandedBits *DB;
1610   AliasAnalysis *AA;
1611   AssumptionCache *AC;
1612   LoopAccessAnalysis *LAA;
1613   bool DisableUnrolling;
1614   bool AlwaysVectorize;
1615
1616   BlockFrequency ColdEntryFreq;
1617
1618   bool runOnFunction(Function &F) override {
1619     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1620     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1621     TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1622     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1623     BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1624     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1625     TLI = TLIP ? &TLIP->getTLI() : nullptr;
1626     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1627     AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1628     LAA = &getAnalysis<LoopAccessAnalysis>();
1629     DB = &getAnalysis<DemandedBits>();
1630
1631     // Compute some weights outside of the loop over the loops. Compute this
1632     // using a BranchProbability to re-use its scaling math.
1633     const BranchProbability ColdProb(1, 5); // 20%
1634     ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
1635
1636     // Don't attempt if
1637     // 1. the target claims to have no vector registers, and
1638     // 2. interleaving won't help ILP.
1639     //
1640     // The second condition is necessary because, even if the target has no
1641     // vector registers, loop vectorization may still enable scalar
1642     // interleaving.
1643     if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
1644       return false;
1645
1646     // Build up a worklist of inner-loops to vectorize. This is necessary as
1647     // the act of vectorizing or partially unrolling a loop creates new loops
1648     // and can invalidate iterators across the loops.
1649     SmallVector<Loop *, 8> Worklist;
1650
1651     for (Loop *L : *LI)
1652       addInnerLoop(*L, Worklist);
1653
1654     LoopsAnalyzed += Worklist.size();
1655
1656     // Now walk the identified inner loops.
1657     bool Changed = false;
1658     while (!Worklist.empty())
1659       Changed |= processLoop(Worklist.pop_back_val());
1660
1661     // Process each loop nest in the function.
1662     return Changed;
1663   }
1664
1665   static void AddRuntimeUnrollDisableMetaData(Loop *L) {
1666     SmallVector<Metadata *, 4> MDs;
1667     // Reserve first location for self reference to the LoopID metadata node.
1668     MDs.push_back(nullptr);
1669     bool IsUnrollMetadata = false;
1670     MDNode *LoopID = L->getLoopID();
1671     if (LoopID) {
1672       // First find existing loop unrolling disable metadata.
1673       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1674         MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1675         if (MD) {
1676           const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1677           IsUnrollMetadata =
1678               S && S->getString().startswith("llvm.loop.unroll.disable");
1679         }
1680         MDs.push_back(LoopID->getOperand(i));
1681       }
1682     }
1683
1684     if (!IsUnrollMetadata) {
1685       // Add runtime unroll disable metadata.
1686       LLVMContext &Context = L->getHeader()->getContext();
1687       SmallVector<Metadata *, 1> DisableOperands;
1688       DisableOperands.push_back(
1689           MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
1690       MDNode *DisableNode = MDNode::get(Context, DisableOperands);
1691       MDs.push_back(DisableNode);
1692       MDNode *NewLoopID = MDNode::get(Context, MDs);
1693       // Set operand 0 to refer to the loop id itself.
1694       NewLoopID->replaceOperandWith(0, NewLoopID);
1695       L->setLoopID(NewLoopID);
1696     }
1697   }
1698
1699   bool processLoop(Loop *L) {
1700     assert(L->empty() && "Only process inner loops.");
1701
1702 #ifndef NDEBUG
1703     const std::string DebugLocStr = getDebugLocString(L);
1704 #endif /* NDEBUG */
1705
1706     DEBUG(dbgs() << "\nLV: Checking a loop in \""
1707                  << L->getHeader()->getParent()->getName() << "\" from "
1708                  << DebugLocStr << "\n");
1709
1710     LoopVectorizeHints Hints(L, DisableUnrolling);
1711
1712     DEBUG(dbgs() << "LV: Loop hints:"
1713                  << " force="
1714                  << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
1715                          ? "disabled"
1716                          : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
1717                                 ? "enabled"
1718                                 : "?")) << " width=" << Hints.getWidth()
1719                  << " unroll=" << Hints.getInterleave() << "\n");
1720
1721     // Function containing loop
1722     Function *F = L->getHeader()->getParent();
1723
1724     // Looking at the diagnostic output is the only way to determine if a loop
1725     // was vectorized (other than looking at the IR or machine code), so it
1726     // is important to generate an optimization remark for each loop. Most of
1727     // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
1728     // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
1729     // less verbose reporting vectorized loops and unvectorized loops that may
1730     // benefit from vectorization, respectively.
1731
1732     if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
1733       DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
1734       return false;
1735     }
1736
1737     // Check the loop for a trip count threshold:
1738     // do not vectorize loops with a tiny trip count.
1739     const unsigned TC = SE->getSmallConstantTripCount(L);
1740     if (TC > 0u && TC < TinyTripCountVectorThreshold) {
1741       DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
1742                    << "This loop is not worth vectorizing.");
1743       if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
1744         DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
1745       else {
1746         DEBUG(dbgs() << "\n");
1747         emitAnalysisDiag(F, L, Hints, VectorizationReport()
1748                                           << "vectorization is not beneficial "
1749                                              "and is not explicitly forced");
1750         return false;
1751       }
1752     }
1753
1754     PredicatedScalarEvolution PSE(*SE);
1755
1756     // Check if it is legal to vectorize the loop.
1757     LoopVectorizationRequirements Requirements;
1758     LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA,
1759                                   &Requirements, &Hints);
1760     if (!LVL.canVectorize()) {
1761       DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
1762       emitMissedWarning(F, L, Hints);
1763       return false;
1764     }
1765
1766     // Use the cost model.
1767     LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F,
1768                                   &Hints);
1769     CM.collectValuesToIgnore();
1770
1771     // Check the function attributes to find out if this function should be
1772     // optimized for size.
1773     bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1774                       F->optForSize();
1775
1776     // Compute the weighted frequency of this loop being executed and see if it
1777     // is less than 20% of the function entry baseline frequency. Note that we
1778     // always have a canonical loop here because we think we *can* vectorize.
1779     // FIXME: This is hidden behind a flag due to pervasive problems with
1780     // exactly what block frequency models.
1781     if (LoopVectorizeWithBlockFrequency) {
1782       BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
1783       if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1784           LoopEntryFreq < ColdEntryFreq)
1785         OptForSize = true;
1786     }
1787
1788     // Check the function attributes to see if implicit floats are allowed.
1789     // FIXME: This check doesn't seem possibly correct -- what if the loop is
1790     // an integer loop and the vector instructions selected are purely integer
1791     // vector instructions?
1792     if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1793       DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
1794             "attribute is used.\n");
1795       emitAnalysisDiag(
1796           F, L, Hints,
1797           VectorizationReport()
1798               << "loop not vectorized due to NoImplicitFloat attribute");
1799       emitMissedWarning(F, L, Hints);
1800       return false;
1801     }
1802
1803     // Select the optimal vectorization factor.
1804     const LoopVectorizationCostModel::VectorizationFactor VF =
1805         CM.selectVectorizationFactor(OptForSize);
1806
1807     // Select the interleave count.
1808     unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
1809
1810     // Get user interleave count.
1811     unsigned UserIC = Hints.getInterleave();
1812
1813     // Identify the diagnostic messages that should be produced.
1814     std::string VecDiagMsg, IntDiagMsg;
1815     bool VectorizeLoop = true, InterleaveLoop = true;
1816
1817     if (Requirements.doesNotMeet(F, L, Hints)) {
1818       DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
1819                       "requirements.\n");
1820       emitMissedWarning(F, L, Hints);
1821       return false;
1822     }
1823
1824     if (VF.Width == 1) {
1825       DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
1826       VecDiagMsg =
1827           "the cost-model indicates that vectorization is not beneficial";
1828       VectorizeLoop = false;
1829     }
1830
1831     if (IC == 1 && UserIC <= 1) {
1832       // Tell the user interleaving is not beneficial.
1833       DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
1834       IntDiagMsg =
1835           "the cost-model indicates that interleaving is not beneficial";
1836       InterleaveLoop = false;
1837       if (UserIC == 1)
1838         IntDiagMsg +=
1839             " and is explicitly disabled or interleave count is set to 1";
1840     } else if (IC > 1 && UserIC == 1) {
1841       // Tell the user interleaving is beneficial, but it explicitly disabled.
1842       DEBUG(dbgs()
1843             << "LV: Interleaving is beneficial but is explicitly disabled.");
1844       IntDiagMsg = "the cost-model indicates that interleaving is beneficial "
1845                    "but is explicitly disabled or interleave count is set to 1";
1846       InterleaveLoop = false;
1847     }
1848
1849     // Override IC if user provided an interleave count.
1850     IC = UserIC > 0 ? UserIC : IC;
1851
1852     // Emit diagnostic messages, if any.
1853     const char *VAPassName = Hints.vectorizeAnalysisPassName();
1854     if (!VectorizeLoop && !InterleaveLoop) {
1855       // Do not vectorize or interleaving the loop.
1856       emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
1857                                      L->getStartLoc(), VecDiagMsg);
1858       emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
1859                                      L->getStartLoc(), IntDiagMsg);
1860       return false;
1861     } else if (!VectorizeLoop && InterleaveLoop) {
1862       DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
1863       emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F,
1864                                      L->getStartLoc(), VecDiagMsg);
1865     } else if (VectorizeLoop && !InterleaveLoop) {
1866       DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1867                    << DebugLocStr << '\n');
1868       emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F,
1869                                      L->getStartLoc(), IntDiagMsg);
1870     } else if (VectorizeLoop && InterleaveLoop) {
1871       DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1872                    << DebugLocStr << '\n');
1873       DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
1874     }
1875
1876     if (!VectorizeLoop) {
1877       assert(IC > 1 && "interleave count should not be 1 or 0");
1878       // If we decided that it is not legal to vectorize the loop then
1879       // interleave it.
1880       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, IC);
1881       Unroller.vectorize(&LVL, CM.MinBWs);
1882
1883       emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1884                              Twine("interleaved loop (interleaved count: ") +
1885                                  Twine(IC) + ")");
1886     } else {
1887       // If we decided that it is *legal* to vectorize the loop then do it.
1888       InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, VF.Width, IC);
1889       LB.vectorize(&LVL, CM.MinBWs);
1890       ++LoopsVectorized;
1891
1892       // Add metadata to disable runtime unrolling scalar loop when there's no
1893       // runtime check about strides and memory. Because at this situation,
1894       // scalar loop is rarely used not worthy to be unrolled.
1895       if (!LB.IsSafetyChecksAdded())
1896         AddRuntimeUnrollDisableMetaData(L);
1897
1898       // Report the vectorization decision.
1899       emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(),
1900                              Twine("vectorized loop (vectorization width: ") +
1901                                  Twine(VF.Width) + ", interleaved count: " +
1902                                  Twine(IC) + ")");
1903     }
1904
1905     // Mark the loop as already vectorized to avoid vectorizing again.
1906     Hints.setAlreadyVectorized();
1907
1908     DEBUG(verifyFunction(*L->getHeader()->getParent()));
1909     return true;
1910   }
1911
1912   void getAnalysisUsage(AnalysisUsage &AU) const override {
1913     AU.addRequired<AssumptionCacheTracker>();
1914     AU.addRequiredID(LoopSimplifyID);
1915     AU.addRequiredID(LCSSAID);
1916     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1917     AU.addRequired<DominatorTreeWrapperPass>();
1918     AU.addRequired<LoopInfoWrapperPass>();
1919     AU.addRequired<ScalarEvolutionWrapperPass>();
1920     AU.addRequired<TargetTransformInfoWrapperPass>();
1921     AU.addRequired<AAResultsWrapperPass>();
1922     AU.addRequired<LoopAccessAnalysis>();
1923     AU.addRequired<DemandedBits>();
1924     AU.addPreserved<LoopInfoWrapperPass>();
1925     AU.addPreserved<DominatorTreeWrapperPass>();
1926     AU.addPreserved<BasicAAWrapperPass>();
1927     AU.addPreserved<AAResultsWrapperPass>();
1928     AU.addPreserved<GlobalsAAWrapperPass>();
1929   }
1930
1931 };
1932
1933 } // end anonymous namespace
1934
1935 //===----------------------------------------------------------------------===//
1936 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1937 // LoopVectorizationCostModel.
1938 //===----------------------------------------------------------------------===//
1939
1940 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1941   // We need to place the broadcast of invariant variables outside the loop.
1942   Instruction *Instr = dyn_cast<Instruction>(V);
1943   bool NewInstr =
1944       (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
1945                           Instr->getParent()) != LoopVectorBody.end());
1946   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1947
1948   // Place the code for broadcasting invariant variables in the new preheader.
1949   IRBuilder<>::InsertPointGuard Guard(Builder);
1950   if (Invariant)
1951     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1952
1953   // Broadcast the scalar into all locations in the vector.
1954   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1955
1956   return Shuf;
1957 }
1958
1959 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx,
1960                                           Value *Step) {
1961   assert(Val->getType()->isVectorTy() && "Must be a vector");
1962   assert(Val->getType()->getScalarType()->isIntegerTy() &&
1963          "Elem must be an integer");
1964   assert(Step->getType() == Val->getType()->getScalarType() &&
1965          "Step has wrong type");
1966   // Create the types.
1967   Type *ITy = Val->getType()->getScalarType();
1968   VectorType *Ty = cast<VectorType>(Val->getType());
1969   int VLen = Ty->getNumElements();
1970   SmallVector<Constant*, 8> Indices;
1971
1972   // Create a vector of consecutive numbers from zero to VF.
1973   for (int i = 0; i < VLen; ++i)
1974     Indices.push_back(ConstantInt::get(ITy, StartIdx + i));
1975
1976   // Add the consecutive indices to the vector value.
1977   Constant *Cv = ConstantVector::get(Indices);
1978   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1979   Step = Builder.CreateVectorSplat(VLen, Step);
1980   assert(Step->getType() == Val->getType() && "Invalid step vec");
1981   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1982   // which can be found from the original scalar operations.
1983   Step = Builder.CreateMul(Cv, Step);
1984   return Builder.CreateAdd(Val, Step, "induction");
1985 }
1986
1987 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1988   assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
1989   auto *SE = PSE.getSE();
1990   // Make sure that the pointer does not point to structs.
1991   if (Ptr->getType()->getPointerElementType()->isAggregateType())
1992     return 0;
1993
1994   // If this value is a pointer induction variable we know it is consecutive.
1995   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1996   if (Phi && Inductions.count(Phi)) {
1997     InductionDescriptor II = Inductions[Phi];
1998     return II.getConsecutiveDirection();
1999   }
2000
2001   GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2002   if (!Gep)
2003     return 0;
2004
2005   unsigned NumOperands = Gep->getNumOperands();
2006   Value *GpPtr = Gep->getPointerOperand();
2007   // If this GEP value is a consecutive pointer induction variable and all of
2008   // the indices are constant then we know it is consecutive. We can
2009   Phi = dyn_cast<PHINode>(GpPtr);
2010   if (Phi && Inductions.count(Phi)) {
2011
2012     // Make sure that the pointer does not point to structs.
2013     PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
2014     if (GepPtrType->getElementType()->isAggregateType())
2015       return 0;
2016
2017     // Make sure that all of the index operands are loop invariant.
2018     for (unsigned i = 1; i < NumOperands; ++i)
2019       if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
2020         return 0;
2021
2022     InductionDescriptor II = Inductions[Phi];
2023     return II.getConsecutiveDirection();
2024   }
2025
2026   unsigned InductionOperand = getGEPInductionOperand(Gep);
2027
2028   // Check that all of the gep indices are uniform except for our induction
2029   // operand.
2030   for (unsigned i = 0; i != NumOperands; ++i)
2031     if (i != InductionOperand &&
2032         !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop))
2033       return 0;
2034
2035   // We can emit wide load/stores only if the last non-zero index is the
2036   // induction variable.
2037   const SCEV *Last = nullptr;
2038   if (!Strides.count(Gep))
2039     Last = PSE.getSCEV(Gep->getOperand(InductionOperand));
2040   else {
2041     // Because of the multiplication by a stride we can have a s/zext cast.
2042     // We are going to replace this stride by 1 so the cast is safe to ignore.
2043     //
2044     //  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
2045     //  %0 = trunc i64 %indvars.iv to i32
2046     //  %mul = mul i32 %0, %Stride1
2047     //  %idxprom = zext i32 %mul to i64  << Safe cast.
2048     //  %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
2049     //
2050     Last = replaceSymbolicStrideSCEV(PSE, Strides,
2051                                      Gep->getOperand(InductionOperand), Gep);
2052     if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
2053       Last =
2054           (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
2055               ? C->getOperand()
2056               : Last;
2057   }
2058   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
2059     const SCEV *Step = AR->getStepRecurrence(*SE);
2060
2061     // The memory is consecutive because the last index is consecutive
2062     // and all other indices are loop invariant.
2063     if (Step->isOne())
2064       return 1;
2065     if (Step->isAllOnesValue())
2066       return -1;
2067   }
2068
2069   return 0;
2070 }
2071
2072 bool LoopVectorizationLegality::isUniform(Value *V) {
2073   return LAI->isUniform(V);
2074 }
2075
2076 InnerLoopVectorizer::VectorParts&
2077 InnerLoopVectorizer::getVectorValue(Value *V) {
2078   assert(V != Induction && "The new induction variable should not be used.");
2079   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2080
2081   // If we have a stride that is replaced by one, do it here.
2082   if (Legal->hasStride(V))
2083     V = ConstantInt::get(V->getType(), 1);
2084
2085   // If we have this scalar in the map, return it.
2086   if (WidenMap.has(V))
2087     return WidenMap.get(V);
2088
2089   // If this scalar is unknown, assume that it is a constant or that it is
2090   // loop invariant. Broadcast V and save the value for future uses.
2091   Value *B = getBroadcastInstrs(V);
2092   return WidenMap.splat(V, B);
2093 }
2094
2095 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2096   assert(Vec->getType()->isVectorTy() && "Invalid type");
2097   SmallVector<Constant*, 8> ShuffleMask;
2098   for (unsigned i = 0; i < VF; ++i)
2099     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2100
2101   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2102                                      ConstantVector::get(ShuffleMask),
2103                                      "reverse");
2104 }
2105
2106 // Get a mask to interleave \p NumVec vectors into a wide vector.
2107 // I.e.  <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...>
2108 // E.g. For 2 interleaved vectors, if VF is 4, the mask is:
2109 //      <0, 4, 1, 5, 2, 6, 3, 7>
2110 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF,
2111                                     unsigned NumVec) {
2112   SmallVector<Constant *, 16> Mask;
2113   for (unsigned i = 0; i < VF; i++)
2114     for (unsigned j = 0; j < NumVec; j++)
2115       Mask.push_back(Builder.getInt32(j * VF + i));
2116
2117   return ConstantVector::get(Mask);
2118 }
2119
2120 // Get the strided mask starting from index \p Start.
2121 // I.e.  <Start, Start + Stride, ..., Start + Stride*(VF-1)>
2122 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start,
2123                                 unsigned Stride, unsigned VF) {
2124   SmallVector<Constant *, 16> Mask;
2125   for (unsigned i = 0; i < VF; i++)
2126     Mask.push_back(Builder.getInt32(Start + i * Stride));
2127
2128   return ConstantVector::get(Mask);
2129 }
2130
2131 // Get a mask of two parts: The first part consists of sequential integers
2132 // starting from 0, The second part consists of UNDEFs.
2133 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef>
2134 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt,
2135                                    unsigned NumUndef) {
2136   SmallVector<Constant *, 16> Mask;
2137   for (unsigned i = 0; i < NumInt; i++)
2138     Mask.push_back(Builder.getInt32(i));
2139
2140   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
2141   for (unsigned i = 0; i < NumUndef; i++)
2142     Mask.push_back(Undef);
2143
2144   return ConstantVector::get(Mask);
2145 }
2146
2147 // Concatenate two vectors with the same element type. The 2nd vector should
2148 // not have more elements than the 1st vector. If the 2nd vector has less
2149 // elements, extend it with UNDEFs.
2150 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
2151                                     Value *V2) {
2152   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
2153   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
2154   assert(VecTy1 && VecTy2 &&
2155          VecTy1->getScalarType() == VecTy2->getScalarType() &&
2156          "Expect two vectors with the same element type");
2157
2158   unsigned NumElts1 = VecTy1->getNumElements();
2159   unsigned NumElts2 = VecTy2->getNumElements();
2160   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
2161
2162   if (NumElts1 > NumElts2) {
2163     // Extend with UNDEFs.
2164     Constant *ExtMask =
2165         getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2);
2166     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
2167   }
2168
2169   Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0);
2170   return Builder.CreateShuffleVector(V1, V2, Mask);
2171 }
2172
2173 // Concatenate vectors in the given list. All vectors have the same type.
2174 static Value *ConcatenateVectors(IRBuilder<> &Builder,
2175                                  ArrayRef<Value *> InputList) {
2176   unsigned NumVec = InputList.size();
2177   assert(NumVec > 1 && "Should be at least two vectors");
2178
2179   SmallVector<Value *, 8> ResList;
2180   ResList.append(InputList.begin(), InputList.end());
2181   do {
2182     SmallVector<Value *, 8> TmpList;
2183     for (unsigned i = 0; i < NumVec - 1; i += 2) {
2184       Value *V0 = ResList[i], *V1 = ResList[i + 1];
2185       assert((V0->getType() == V1->getType() || i == NumVec - 2) &&
2186              "Only the last vector may have a different type");
2187
2188       TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1));
2189     }
2190
2191     // Push the last vector if the total number of vectors is odd.
2192     if (NumVec % 2 != 0)
2193       TmpList.push_back(ResList[NumVec - 1]);
2194
2195     ResList = TmpList;
2196     NumVec = ResList.size();
2197   } while (NumVec > 1);
2198
2199   return ResList[0];
2200 }
2201
2202 // Try to vectorize the interleave group that \p Instr belongs to.
2203 //
2204 // E.g. Translate following interleaved load group (factor = 3):
2205 //   for (i = 0; i < N; i+=3) {
2206 //     R = Pic[i];             // Member of index 0
2207 //     G = Pic[i+1];           // Member of index 1
2208 //     B = Pic[i+2];           // Member of index 2
2209 //     ... // do something to R, G, B
2210 //   }
2211 // To:
2212 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2213 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2214 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2215 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2216 //
2217 // Or translate following interleaved store group (factor = 3):
2218 //   for (i = 0; i < N; i+=3) {
2219 //     ... do something to R, G, B
2220 //     Pic[i]   = R;           // Member of index 0
2221 //     Pic[i+1] = G;           // Member of index 1
2222 //     Pic[i+2] = B;           // Member of index 2
2223 //   }
2224 // To:
2225 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2226 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2227 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2228 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2229 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2230 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2231   const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
2232   assert(Group && "Fail to get an interleaved access group.");
2233
2234   // Skip if current instruction is not the insert position.
2235   if (Instr != Group->getInsertPos())
2236     return;
2237
2238   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2239   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2240   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2241
2242   // Prepare for the vector type of the interleaved load/store.
2243   Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2244   unsigned InterleaveFactor = Group->getFactor();
2245   Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2246   Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace());
2247
2248   // Prepare for the new pointers.
2249   setDebugLocFromInst(Builder, Ptr);
2250   VectorParts &PtrParts = getVectorValue(Ptr);
2251   SmallVector<Value *, 2> NewPtrs;
2252   unsigned Index = Group->getIndex(Instr);
2253   for (unsigned Part = 0; Part < UF; Part++) {
2254     // Extract the pointer for current instruction from the pointer vector. A
2255     // reverse access uses the pointer in the last lane.
2256     Value *NewPtr = Builder.CreateExtractElement(
2257         PtrParts[Part],
2258         Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0));
2259
2260     // Notice current instruction could be any index. Need to adjust the address
2261     // to the member of index 0.
2262     //
2263     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2264     //       b = A[i];       // Member of index 0
2265     // Current pointer is pointed to A[i+1], adjust it to A[i].
2266     //
2267     // E.g.  A[i+1] = a;     // Member of index 1
2268     //       A[i]   = b;     // Member of index 0
2269     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2270     // Current pointer is pointed to A[i+2], adjust it to A[i].
2271     NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2272
2273     // Cast to the vector pointer type.
2274     NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2275   }
2276
2277   setDebugLocFromInst(Builder, Instr);
2278   Value *UndefVec = UndefValue::get(VecTy);
2279
2280   // Vectorize the interleaved load group.
2281   if (LI) {
2282     for (unsigned Part = 0; Part < UF; Part++) {
2283       Instruction *NewLoadInstr = Builder.CreateAlignedLoad(
2284           NewPtrs[Part], Group->getAlignment(), "wide.vec");
2285
2286       for (unsigned i = 0; i < InterleaveFactor; i++) {
2287         Instruction *Member = Group->getMember(i);
2288
2289         // Skip the gaps in the group.
2290         if (!Member)
2291           continue;
2292
2293         Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF);
2294         Value *StridedVec = Builder.CreateShuffleVector(
2295             NewLoadInstr, UndefVec, StrideMask, "strided.vec");
2296
2297         // If this member has different type, cast the result type.
2298         if (Member->getType() != ScalarTy) {
2299           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2300           StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy);
2301         }
2302
2303         VectorParts &Entry = WidenMap.get(Member);
2304         Entry[Part] =
2305             Group->isReverse() ? reverseVector(StridedVec) : StridedVec;
2306       }
2307
2308       propagateMetadata(NewLoadInstr, Instr);
2309     }
2310     return;
2311   }
2312
2313   // The sub vector type for current instruction.
2314   VectorType *SubVT = VectorType::get(ScalarTy, VF);
2315
2316   // Vectorize the interleaved store group.
2317   for (unsigned Part = 0; Part < UF; Part++) {
2318     // Collect the stored vector from each member.
2319     SmallVector<Value *, 4> StoredVecs;
2320     for (unsigned i = 0; i < InterleaveFactor; i++) {
2321       // Interleaved store group doesn't allow a gap, so each index has a member
2322       Instruction *Member = Group->getMember(i);
2323       assert(Member && "Fail to get a member from an interleaved store group");
2324
2325       Value *StoredVec =
2326           getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part];
2327       if (Group->isReverse())
2328         StoredVec = reverseVector(StoredVec);
2329
2330       // If this member has different type, cast it to an unified type.
2331       if (StoredVec->getType() != SubVT)
2332         StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT);
2333
2334       StoredVecs.push_back(StoredVec);
2335     }
2336
2337     // Concatenate all vectors into a wide vector.
2338     Value *WideVec = ConcatenateVectors(Builder, StoredVecs);
2339
2340     // Interleave the elements in the wide vector.
2341     Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor);
2342     Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2343                                               "interleaved.vec");
2344
2345     Instruction *NewStoreInstr =
2346         Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2347     propagateMetadata(NewStoreInstr, Instr);
2348   }
2349 }
2350
2351 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
2352   // Attempt to issue a wide load.
2353   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2354   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2355
2356   assert((LI || SI) && "Invalid Load/Store instruction");
2357
2358   // Try to vectorize the interleave group if this access is interleaved.
2359   if (Legal->isAccessInterleaved(Instr))
2360     return vectorizeInterleaveGroup(Instr);
2361
2362   Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
2363   Type *DataTy = VectorType::get(ScalarDataTy, VF);
2364   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
2365   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
2366   // An alignment of 0 means target abi alignment. We need to use the scalar's
2367   // target abi alignment in such a case.
2368   const DataLayout &DL = Instr->getModule()->getDataLayout();
2369   if (!Alignment)
2370     Alignment = DL.getABITypeAlignment(ScalarDataTy);
2371   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2372   unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy);
2373   unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF;
2374
2375   if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
2376       !Legal->isMaskRequired(SI))
2377     return scalarizeInstruction(Instr, true);
2378
2379   if (ScalarAllocatedSize != VectorElementSize)
2380     return scalarizeInstruction(Instr);
2381
2382   // If the pointer is loop invariant or if it is non-consecutive,
2383   // scalarize the load.
2384   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
2385   bool Reverse = ConsecutiveStride < 0;
2386   bool UniformLoad = LI && Legal->isUniform(Ptr);
2387   if (!ConsecutiveStride || UniformLoad)
2388     return scalarizeInstruction(Instr);
2389
2390   Constant *Zero = Builder.getInt32(0);
2391   VectorParts &Entry = WidenMap.get(Instr);
2392
2393   // Handle consecutive loads/stores.
2394   GetElementPtrInst *Gep = getGEPInstruction(Ptr);
2395   if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
2396     setDebugLocFromInst(Builder, Gep);
2397     Value *PtrOperand = Gep->getPointerOperand();
2398     Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
2399     FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
2400
2401     // Create the new GEP with the new induction variable.
2402     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2403     Gep2->setOperand(0, FirstBasePtr);
2404     Gep2->setName("gep.indvar.base");
2405     Ptr = Builder.Insert(Gep2);
2406   } else if (Gep) {
2407     setDebugLocFromInst(Builder, Gep);
2408     assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()),
2409                                         OrigLoop) &&
2410            "Base ptr must be invariant");
2411
2412     // The last index does not have to be the induction. It can be
2413     // consecutive and be a function of the index. For example A[I+1];
2414     unsigned NumOperands = Gep->getNumOperands();
2415     unsigned InductionOperand = getGEPInductionOperand(Gep);
2416     // Create the new GEP with the new induction variable.
2417     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
2418
2419     for (unsigned i = 0; i < NumOperands; ++i) {
2420       Value *GepOperand = Gep->getOperand(i);
2421       Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
2422
2423       // Update last index or loop invariant instruction anchored in loop.
2424       if (i == InductionOperand ||
2425           (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
2426         assert((i == InductionOperand ||
2427                 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst),
2428                                              OrigLoop)) &&
2429                "Must be last index or loop invariant");
2430
2431         VectorParts &GEPParts = getVectorValue(GepOperand);
2432         Value *Index = GEPParts[0];
2433         Index = Builder.CreateExtractElement(Index, Zero);
2434         Gep2->setOperand(i, Index);
2435         Gep2->setName("gep.indvar.idx");
2436       }
2437     }
2438     Ptr = Builder.Insert(Gep2);
2439   } else {
2440     // Use the induction element ptr.
2441     assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
2442     setDebugLocFromInst(Builder, Ptr);
2443     VectorParts &PtrVal = getVectorValue(Ptr);
2444     Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
2445   }
2446
2447   VectorParts Mask = createBlockInMask(Instr->getParent());
2448   // Handle Stores:
2449   if (SI) {
2450     assert(!Legal->isUniform(SI->getPointerOperand()) &&
2451            "We do not allow storing to uniform addresses");
2452     setDebugLocFromInst(Builder, SI);
2453     // We don't want to update the value in the map as it might be used in
2454     // another expression. So don't use a reference type for "StoredVal".
2455     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
2456
2457     for (unsigned Part = 0; Part < UF; ++Part) {
2458       // Calculate the pointer for the specific unroll-part.
2459       Value *PartPtr =
2460           Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2461
2462       if (Reverse) {
2463         // If we store to reverse consecutive memory locations, then we need
2464         // to reverse the order of elements in the stored value.
2465         StoredVal[Part] = reverseVector(StoredVal[Part]);
2466         // If the address is consecutive but reversed, then the
2467         // wide store needs to start at the last vector element.
2468         PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2469         PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2470         Mask[Part] = reverseVector(Mask[Part]);
2471       }
2472
2473       Value *VecPtr = Builder.CreateBitCast(PartPtr,
2474                                             DataTy->getPointerTo(AddressSpace));
2475
2476       Instruction *NewSI;
2477       if (Legal->isMaskRequired(SI))
2478         NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
2479                                           Mask[Part]);
2480       else 
2481         NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
2482       propagateMetadata(NewSI, SI);
2483     }
2484     return;
2485   }
2486
2487   // Handle loads.
2488   assert(LI && "Must have a load instruction");
2489   setDebugLocFromInst(Builder, LI);
2490   for (unsigned Part = 0; Part < UF; ++Part) {
2491     // Calculate the pointer for the specific unroll-part.
2492     Value *PartPtr =
2493         Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
2494
2495     if (Reverse) {
2496       // If the address is consecutive but reversed, then the
2497       // wide load needs to start at the last vector element.
2498       PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
2499       PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
2500       Mask[Part] = reverseVector(Mask[Part]);
2501     }
2502
2503     Instruction* NewLI;
2504     Value *VecPtr = Builder.CreateBitCast(PartPtr,
2505                                           DataTy->getPointerTo(AddressSpace));
2506     if (Legal->isMaskRequired(LI))
2507       NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
2508                                        UndefValue::get(DataTy),
2509                                        "wide.masked.load");
2510     else
2511       NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
2512     propagateMetadata(NewLI, LI);
2513     Entry[Part] = Reverse ? reverseVector(NewLI) :  NewLI;
2514   }
2515 }
2516
2517 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2518                                                bool IfPredicateStore) {
2519   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2520   // Holds vector parameters or scalars, in case of uniform vals.
2521   SmallVector<VectorParts, 4> Params;
2522
2523   setDebugLocFromInst(Builder, Instr);
2524
2525   // Find all of the vectorized parameters.
2526   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2527     Value *SrcOp = Instr->getOperand(op);
2528
2529     // If we are accessing the old induction variable, use the new one.
2530     if (SrcOp == OldInduction) {
2531       Params.push_back(getVectorValue(SrcOp));
2532       continue;
2533     }
2534
2535     // Try using previously calculated values.
2536     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
2537
2538     // If the src is an instruction that appeared earlier in the basic block,
2539     // then it should already be vectorized.
2540     if (SrcInst && OrigLoop->contains(SrcInst)) {
2541       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
2542       // The parameter is a vector value from earlier.
2543       Params.push_back(WidenMap.get(SrcInst));
2544     } else {
2545       // The parameter is a scalar from outside the loop. Maybe even a constant.
2546       VectorParts Scalars;
2547       Scalars.append(UF, SrcOp);
2548       Params.push_back(Scalars);
2549     }
2550   }
2551
2552   assert(Params.size() == Instr->getNumOperands() &&
2553          "Invalid number of operands");
2554
2555   // Does this instruction return a value ?
2556   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2557
2558   Value *UndefVec = IsVoidRetTy ? nullptr :
2559     UndefValue::get(VectorType::get(Instr->getType(), VF));
2560   // Create a new entry in the WidenMap and initialize it to Undef or Null.
2561   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
2562
2563   VectorParts Cond;
2564   if (IfPredicateStore) {
2565     assert(Instr->getParent()->getSinglePredecessor() &&
2566            "Only support single predecessor blocks");
2567     Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
2568                           Instr->getParent());
2569   }
2570
2571   // For each vector unroll 'part':
2572   for (unsigned Part = 0; Part < UF; ++Part) {
2573     // For each scalar that we create:
2574     for (unsigned Width = 0; Width < VF; ++Width) {
2575
2576       // Start if-block.
2577       Value *Cmp = nullptr;
2578       if (IfPredicateStore) {
2579         Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
2580         Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp,
2581                                  ConstantInt::get(Cmp->getType(), 1));
2582       }
2583
2584       Instruction *Cloned = Instr->clone();
2585       if (!IsVoidRetTy)
2586         Cloned->setName(Instr->getName() + ".cloned");
2587       // Replace the operands of the cloned instructions with extracted scalars.
2588       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2589         Value *Op = Params[op][Part];
2590         // Param is a vector. Need to extract the right lane.
2591         if (Op->getType()->isVectorTy())
2592           Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
2593         Cloned->setOperand(op, Op);
2594       }
2595
2596       // Place the cloned scalar in the new loop.
2597       Builder.Insert(Cloned);
2598
2599       // If the original scalar returns a value we need to place it in a vector
2600       // so that future users will be able to use it.
2601       if (!IsVoidRetTy)
2602         VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
2603                                                        Builder.getInt32(Width));
2604       // End if-block.
2605       if (IfPredicateStore)
2606         PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned),
2607                                                   Cmp));
2608     }
2609   }
2610 }
2611
2612 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2613                                                       Value *End, Value *Step,
2614                                                       Instruction *DL) {
2615   BasicBlock *Header = L->getHeader();
2616   BasicBlock *Latch = L->getLoopLatch();
2617   // As we're just creating this loop, it's possible no latch exists
2618   // yet. If so, use the header as this will be a single block loop.
2619   if (!Latch)
2620     Latch = Header;
2621
2622   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2623   setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2624   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2625
2626   Builder.SetInsertPoint(Latch->getTerminator());
2627   
2628   // Create i+1 and fill the PHINode.
2629   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2630   Induction->addIncoming(Start, L->getLoopPreheader());
2631   Induction->addIncoming(Next, Latch);
2632   // Create the compare.
2633   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2634   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2635   
2636   // Now we have two terminators. Remove the old one from the block.
2637   Latch->getTerminator()->eraseFromParent();
2638
2639   return Induction;
2640 }
2641
2642 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2643   if (TripCount)
2644     return TripCount;
2645
2646   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2647   // Find the loop boundaries.
2648   ScalarEvolution *SE = PSE.getSE();
2649   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(OrigLoop);
2650   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2651          "Invalid loop count");
2652
2653   Type *IdxTy = Legal->getWidestInductionType();
2654   
2655   // The exit count might have the type of i64 while the phi is i32. This can
2656   // happen if we have an induction variable that is sign extended before the
2657   // compare. The only way that we get a backedge taken count is that the
2658   // induction variable was signed and as such will not overflow. In such a case
2659   // truncation is legal.
2660   if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
2661       IdxTy->getPrimitiveSizeInBits())
2662     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2663   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2664   
2665   // Get the total trip count from the count by adding 1.
2666   const SCEV *ExitCount = SE->getAddExpr(
2667       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2668
2669   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2670
2671   // Expand the trip count and place the new instructions in the preheader.
2672   // Notice that the pre-header does not change, only the loop body.
2673   SCEVExpander Exp(*SE, DL, "induction");
2674
2675   // Count holds the overall loop count (N).
2676   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2677                                 L->getLoopPreheader()->getTerminator());
2678
2679   if (TripCount->getType()->isPointerTy())
2680     TripCount =
2681       CastInst::CreatePointerCast(TripCount, IdxTy,
2682                                   "exitcount.ptrcnt.to.int",
2683                                   L->getLoopPreheader()->getTerminator());
2684
2685   return TripCount;
2686 }
2687
2688 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2689   if (VectorTripCount)
2690     return VectorTripCount;
2691   
2692   Value *TC = getOrCreateTripCount(L);
2693   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2694   
2695   // Now we need to generate the expression for N - (N % VF), which is
2696   // the part that the vectorized body will execute.
2697   // The loop step is equal to the vectorization factor (num of SIMD elements)
2698   // times the unroll factor (num of SIMD instructions).
2699   Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
2700   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2701   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2702
2703   return VectorTripCount;
2704 }
2705
2706 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2707                                                          BasicBlock *Bypass) {
2708   Value *Count = getOrCreateTripCount(L);
2709   BasicBlock *BB = L->getLoopPreheader();
2710   IRBuilder<> Builder(BB->getTerminator());
2711
2712   // Generate code to check that the loop's trip count that we computed by
2713   // adding one to the backedge-taken count will not overflow.
2714   Value *CheckMinIters =
2715     Builder.CreateICmpULT(Count,
2716                           ConstantInt::get(Count->getType(), VF * UF),
2717                           "min.iters.check");
2718   
2719   BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(),
2720                                           "min.iters.checked");
2721   if (L->getParentLoop())
2722     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2723   ReplaceInstWithInst(BB->getTerminator(),
2724                       BranchInst::Create(Bypass, NewBB, CheckMinIters));
2725   LoopBypassBlocks.push_back(BB);
2726 }
2727
2728 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L,
2729                                                      BasicBlock *Bypass) {
2730   Value *TC = getOrCreateVectorTripCount(L);
2731   BasicBlock *BB = L->getLoopPreheader();
2732   IRBuilder<> Builder(BB->getTerminator());
2733   
2734   // Now, compare the new count to zero. If it is zero skip the vector loop and
2735   // jump to the scalar loop.
2736   Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()),
2737                                     "cmp.zero");
2738
2739   // Generate code to check that the loop's trip count that we computed by
2740   // adding one to the backedge-taken count will not overflow.
2741   BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(),
2742                                           "vector.ph");
2743   if (L->getParentLoop())
2744     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2745   ReplaceInstWithInst(BB->getTerminator(),
2746                       BranchInst::Create(Bypass, NewBB, Cmp));
2747   LoopBypassBlocks.push_back(BB);
2748 }
2749
2750 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2751   BasicBlock *BB = L->getLoopPreheader();
2752
2753   // Generate the code to check that the SCEV assumptions that we made.
2754   // We want the new basic block to start at the first instruction in a
2755   // sequence of instructions that form a check.
2756   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2757                    "scev.check");
2758   Value *SCEVCheck =
2759       Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
2760
2761   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2762     if (C->isZero())
2763       return;
2764
2765   // Create a new block containing the stride check.
2766   BB->setName("vector.scevcheck");
2767   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2768   if (L->getParentLoop())
2769     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2770   ReplaceInstWithInst(BB->getTerminator(),
2771                       BranchInst::Create(Bypass, NewBB, SCEVCheck));
2772   LoopBypassBlocks.push_back(BB);
2773   AddedSafetyChecks = true;
2774 }
2775
2776 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
2777                                                BasicBlock *Bypass) {
2778   BasicBlock *BB = L->getLoopPreheader();
2779
2780   // Generate the code that checks in runtime if arrays overlap. We put the
2781   // checks into a separate block to make the more common case of few elements
2782   // faster.
2783   Instruction *FirstCheckInst;
2784   Instruction *MemRuntimeCheck;
2785   std::tie(FirstCheckInst, MemRuntimeCheck) =
2786       Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
2787   if (!MemRuntimeCheck)
2788     return;
2789
2790   // Create a new block containing the memory check.
2791   BB->setName("vector.memcheck");
2792   auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2793   if (L->getParentLoop())
2794     L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2795   ReplaceInstWithInst(BB->getTerminator(),
2796                       BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
2797   LoopBypassBlocks.push_back(BB);
2798   AddedSafetyChecks = true;
2799 }
2800
2801
2802 void InnerLoopVectorizer::createEmptyLoop() {
2803   /*
2804    In this function we generate a new loop. The new loop will contain
2805    the vectorized instructions while the old loop will continue to run the
2806    scalar remainder.
2807
2808        [ ] <-- loop iteration number check.
2809     /   |
2810    /    v
2811   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2812   |  /  |
2813   | /   v
2814   ||   [ ]     <-- vector pre header.
2815   |/    |
2816   |     v
2817   |    [  ] \
2818   |    [  ]_|   <-- vector loop.
2819   |     |
2820   |     v
2821   |   -[ ]   <--- middle-block.
2822   |  /  |
2823   | /   v
2824   -|- >[ ]     <--- new preheader.
2825    |    |
2826    |    v
2827    |   [ ] \
2828    |   [ ]_|   <-- old scalar loop to handle remainder.
2829     \   |
2830      \  v
2831       >[ ]     <-- exit block.
2832    ...
2833    */
2834
2835   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2836   BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2837   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2838   assert(VectorPH && "Invalid loop structure");
2839   assert(ExitBlock && "Must have an exit block");
2840
2841   // Some loops have a single integer induction variable, while other loops
2842   // don't. One example is c++ iterators that often have multiple pointer
2843   // induction variables. In the code below we also support a case where we
2844   // don't have a single induction variable.
2845   //
2846   // We try to obtain an induction variable from the original loop as hard
2847   // as possible. However if we don't find one that:
2848   //   - is an integer
2849   //   - counts from zero, stepping by one
2850   //   - is the size of the widest induction variable type
2851   // then we create a new one.
2852   OldInduction = Legal->getInduction();
2853   Type *IdxTy = Legal->getWidestInductionType();
2854
2855   // Split the single block loop into the two loop structure described above.
2856   BasicBlock *VecBody =
2857       VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
2858   BasicBlock *MiddleBlock =
2859   VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
2860   BasicBlock *ScalarPH =
2861   MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
2862
2863   // Create and register the new vector loop.
2864   Loop* Lp = new Loop();
2865   Loop *ParentLoop = OrigLoop->getParentLoop();
2866
2867   // Insert the new loop into the loop nest and register the new basic blocks
2868   // before calling any utilities such as SCEV that require valid LoopInfo.
2869   if (ParentLoop) {
2870     ParentLoop->addChildLoop(Lp);
2871     ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
2872     ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
2873   } else {
2874     LI->addTopLevelLoop(Lp);
2875   }
2876   Lp->addBasicBlockToLoop(VecBody, *LI);
2877
2878   // Find the loop boundaries.
2879   Value *Count = getOrCreateTripCount(Lp);
2880
2881   Value *StartIdx = ConstantInt::get(IdxTy, 0);
2882
2883   // We need to test whether the backedge-taken count is uint##_max. Adding one
2884   // to it will cause overflow and an incorrect loop trip count in the vector
2885   // body. In case of overflow we want to directly jump to the scalar remainder
2886   // loop.
2887   emitMinimumIterationCountCheck(Lp, ScalarPH);
2888   // Now, compare the new count to zero. If it is zero skip the vector loop and
2889   // jump to the scalar loop.
2890   emitVectorLoopEnteredCheck(Lp, ScalarPH);
2891   // Generate the code to check any assumptions that we've made for SCEV
2892   // expressions.
2893   emitSCEVChecks(Lp, ScalarPH);
2894
2895   // Generate the code that checks in runtime if arrays overlap. We put the
2896   // checks into a separate block to make the more common case of few elements
2897   // faster.
2898   emitMemRuntimeChecks(Lp, ScalarPH);
2899   
2900   // Generate the induction variable.
2901   // The loop step is equal to the vectorization factor (num of SIMD elements)
2902   // times the unroll factor (num of SIMD instructions).
2903   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
2904   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
2905   Induction =
2906     createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
2907                             getDebugLocFromInstOrOperands(OldInduction));
2908
2909   // We are going to resume the execution of the scalar loop.
2910   // Go over all of the induction variables that we found and fix the
2911   // PHIs that are left in the scalar version of the loop.
2912   // The starting values of PHI nodes depend on the counter of the last
2913   // iteration in the vectorized loop.
2914   // If we come from a bypass edge then we need to start from the original
2915   // start value.
2916
2917   // This variable saves the new starting index for the scalar loop. It is used
2918   // to test if there are any tail iterations left once the vector loop has
2919   // completed.
2920   LoopVectorizationLegality::InductionList::iterator I, E;
2921   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
2922   for (I = List->begin(), E = List->end(); I != E; ++I) {
2923     PHINode *OrigPhi = I->first;
2924     InductionDescriptor II = I->second;
2925
2926     // Create phi nodes to merge from the  backedge-taken check block.
2927     PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3,
2928                                            "bc.resume.val",
2929                                            ScalarPH->getTerminator());
2930     Value *EndValue;
2931     if (OrigPhi == OldInduction) {
2932       // We know what the end value is.
2933       EndValue = CountRoundDown;
2934     } else {
2935       IRBuilder<> B(LoopBypassBlocks.back()->getTerminator());
2936       Value *CRD = B.CreateSExtOrTrunc(CountRoundDown,
2937                                        II.getStepValue()->getType(),
2938                                        "cast.crd");
2939       EndValue = II.transform(B, CRD);
2940       EndValue->setName("ind.end");
2941     }
2942
2943     // The new PHI merges the original incoming value, in case of a bypass,
2944     // or the value at the end of the vectorized loop.
2945     BCResumeVal->addIncoming(EndValue, MiddleBlock);
2946
2947     // Fix the scalar body counter (PHI node).
2948     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
2949
2950     // The old induction's phi node in the scalar body needs the truncated
2951     // value.
2952     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2953       BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]);
2954     OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
2955   }
2956
2957   // Add a check in the middle block to see if we have completed
2958   // all of the iterations in the first vector loop.
2959   // If (N - N%VF) == N, then we *don't* need to run the remainder.
2960   Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
2961                                 CountRoundDown, "cmp.n",
2962                                 MiddleBlock->getTerminator());
2963   ReplaceInstWithInst(MiddleBlock->getTerminator(),
2964                       BranchInst::Create(ExitBlock, ScalarPH, CmpN));
2965
2966   // Get ready to start creating new instructions into the vectorized body.
2967   Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
2968
2969   // Save the state.
2970   LoopVectorPreHeader = Lp->getLoopPreheader();
2971   LoopScalarPreHeader = ScalarPH;
2972   LoopMiddleBlock = MiddleBlock;
2973   LoopExitBlock = ExitBlock;
2974   LoopVectorBody.push_back(VecBody);
2975   LoopScalarBody = OldBasicBlock;
2976
2977   LoopVectorizeHints Hints(Lp, true);
2978   Hints.setAlreadyVectorized();
2979 }
2980
2981 namespace {
2982 struct CSEDenseMapInfo {
2983   static bool canHandle(Instruction *I) {
2984     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2985            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2986   }
2987   static inline Instruction *getEmptyKey() {
2988     return DenseMapInfo<Instruction *>::getEmptyKey();
2989   }
2990   static inline Instruction *getTombstoneKey() {
2991     return DenseMapInfo<Instruction *>::getTombstoneKey();
2992   }
2993   static unsigned getHashValue(Instruction *I) {
2994     assert(canHandle(I) && "Unknown instruction!");
2995     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2996                                                            I->value_op_end()));
2997   }
2998   static bool isEqual(Instruction *LHS, Instruction *RHS) {
2999     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3000         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3001       return LHS == RHS;
3002     return LHS->isIdenticalTo(RHS);
3003   }
3004 };
3005 }
3006
3007 /// \brief Check whether this block is a predicated block.
3008 /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
3009 /// = ...;  " blocks. We start with one vectorized basic block. For every
3010 /// conditional block we split this vectorized block. Therefore, every second
3011 /// block will be a predicated one.
3012 static bool isPredicatedBlock(unsigned BlockNum) {
3013   return BlockNum % 2;
3014 }
3015
3016 ///\brief Perform cse of induction variable instructions.
3017 static void cse(SmallVector<BasicBlock *, 4> &BBs) {
3018   // Perform simple cse.
3019   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3020   for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
3021     BasicBlock *BB = BBs[i];
3022     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3023       Instruction *In = &*I++;
3024
3025       if (!CSEDenseMapInfo::canHandle(In))
3026         continue;
3027
3028       // Check if we can replace this instruction with any of the
3029       // visited instructions.
3030       if (Instruction *V = CSEMap.lookup(In)) {
3031         In->replaceAllUsesWith(V);
3032         In->eraseFromParent();
3033         continue;
3034       }
3035       // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
3036       // ...;" blocks for predicated stores. Every second block is a predicated
3037       // block.
3038       if (isPredicatedBlock(i))
3039         continue;
3040
3041       CSEMap[In] = In;
3042     }
3043   }
3044 }
3045
3046 /// \brief Adds a 'fast' flag to floating point operations.
3047 static Value *addFastMathFlag(Value *V) {
3048   if (isa<FPMathOperator>(V)){
3049     FastMathFlags Flags;
3050     Flags.setUnsafeAlgebra();
3051     cast<Instruction>(V)->setFastMathFlags(Flags);
3052   }
3053   return V;
3054 }
3055
3056 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if
3057 /// the result needs to be inserted and/or extracted from vectors.
3058 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract,
3059                                          const TargetTransformInfo &TTI) {
3060   if (Ty->isVoidTy())
3061     return 0;
3062
3063   assert(Ty->isVectorTy() && "Can only scalarize vectors");
3064   unsigned Cost = 0;
3065
3066   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
3067     if (Insert)
3068       Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i);
3069     if (Extract)
3070       Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i);
3071   }
3072
3073   return Cost;
3074 }
3075
3076 // Estimate cost of a call instruction CI if it were vectorized with factor VF.
3077 // Return the cost of the instruction, including scalarization overhead if it's
3078 // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3079 // i.e. either vector version isn't available, or is too expensive.
3080 static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3081                                   const TargetTransformInfo &TTI,
3082                                   const TargetLibraryInfo *TLI,
3083                                   bool &NeedToScalarize) {
3084   Function *F = CI->getCalledFunction();
3085   StringRef FnName = CI->getCalledFunction()->getName();
3086   Type *ScalarRetTy = CI->getType();
3087   SmallVector<Type *, 4> Tys, ScalarTys;
3088   for (auto &ArgOp : CI->arg_operands())
3089     ScalarTys.push_back(ArgOp->getType());
3090
3091   // Estimate cost of scalarized vector call. The source operands are assumed
3092   // to be vectors, so we need to extract individual elements from there,
3093   // execute VF scalar calls, and then gather the result into the vector return
3094   // value.
3095   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3096   if (VF == 1)
3097     return ScalarCallCost;
3098
3099   // Compute corresponding vector type for return value and arguments.
3100   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3101   for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i)
3102     Tys.push_back(ToVectorTy(ScalarTys[i], VF));
3103
3104   // Compute costs of unpacking argument values for the scalar calls and
3105   // packing the return values to a vector.
3106   unsigned ScalarizationCost =
3107       getScalarizationOverhead(RetTy, true, false, TTI);
3108   for (unsigned i = 0, ie = Tys.size(); i != ie; ++i)
3109     ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI);
3110
3111   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3112
3113   // If we can't emit a vector call for this function, then the currently found
3114   // cost is the cost we need to return.
3115   NeedToScalarize = true;
3116   if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3117     return Cost;
3118
3119   // If the corresponding vector cost is cheaper, return its cost.
3120   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3121   if (VectorCallCost < Cost) {
3122     NeedToScalarize = false;
3123     return VectorCallCost;
3124   }
3125   return Cost;
3126 }
3127
3128 // Estimate cost of an intrinsic call instruction CI if it were vectorized with
3129 // factor VF.  Return the cost of the instruction, including scalarization
3130 // overhead if it's needed.
3131 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3132                                        const TargetTransformInfo &TTI,
3133                                        const TargetLibraryInfo *TLI) {
3134   Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3135   assert(ID && "Expected intrinsic call!");
3136
3137   Type *RetTy = ToVectorTy(CI->getType(), VF);
3138   SmallVector<Type *, 4> Tys;
3139   for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
3140     Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
3141
3142   return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
3143 }
3144
3145 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3146   IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType());
3147   IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType());
3148   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3149 }
3150 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3151   IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType());
3152   IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType());
3153   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3154 }
3155
3156 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3157   // For every instruction `I` in MinBWs, truncate the operands, create a
3158   // truncated version of `I` and reextend its result. InstCombine runs
3159   // later and will remove any ext/trunc pairs.
3160   //
3161   for (auto &KV : MinBWs) {
3162     VectorParts &Parts = WidenMap.get(KV.first);
3163     for (Value *&I : Parts) {
3164       if (I->use_empty())
3165         continue;
3166       Type *OriginalTy = I->getType();
3167       Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(),
3168                                                  KV.second);
3169       Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3170                                           OriginalTy->getVectorNumElements());
3171       if (TruncatedTy == OriginalTy)
3172         continue;
3173
3174       IRBuilder<> B(cast<Instruction>(I));
3175       auto ShrinkOperand = [&](Value *V) -> Value* {
3176         if (auto *ZI = dyn_cast<ZExtInst>(V))
3177           if (ZI->getSrcTy() == TruncatedTy)
3178             return ZI->getOperand(0);
3179         return B.CreateZExtOrTrunc(V, TruncatedTy);
3180       };
3181
3182       // The actual instruction modification depends on the instruction type,
3183       // unfortunately.
3184       Value *NewI = nullptr;
3185       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
3186         NewI = B.CreateBinOp(BO->getOpcode(),
3187                              ShrinkOperand(BO->getOperand(0)),
3188                              ShrinkOperand(BO->getOperand(1)));
3189         cast<BinaryOperator>(NewI)->copyIRFlags(I);
3190       } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) {
3191         NewI = B.CreateICmp(CI->getPredicate(),
3192                             ShrinkOperand(CI->getOperand(0)),
3193                             ShrinkOperand(CI->getOperand(1)));
3194       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
3195         NewI = B.CreateSelect(SI->getCondition(),
3196                               ShrinkOperand(SI->getTrueValue()),
3197                               ShrinkOperand(SI->getFalseValue()));
3198       } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3199         switch (CI->getOpcode()) {
3200         default: llvm_unreachable("Unhandled cast!");
3201         case Instruction::Trunc:
3202           NewI = ShrinkOperand(CI->getOperand(0));
3203           break;
3204         case Instruction::SExt:
3205           NewI = B.CreateSExtOrTrunc(CI->getOperand(0),
3206                                      smallestIntegerVectorType(OriginalTy,
3207                                                                TruncatedTy));
3208           break;
3209         case Instruction::ZExt:
3210           NewI = B.CreateZExtOrTrunc(CI->getOperand(0),
3211                                      smallestIntegerVectorType(OriginalTy,
3212                                                                TruncatedTy));
3213           break;
3214         }
3215       } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
3216         auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3217         auto *O0 =
3218           B.CreateZExtOrTrunc(SI->getOperand(0),
3219                               VectorType::get(ScalarTruncatedTy, Elements0));
3220         auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3221         auto *O1 =
3222           B.CreateZExtOrTrunc(SI->getOperand(1),
3223                               VectorType::get(ScalarTruncatedTy, Elements1));
3224
3225         NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3226       } else if (isa<LoadInst>(I)) {
3227         // Don't do anything with the operands, just extend the result.
3228         continue;
3229       } else {
3230         llvm_unreachable("Unhandled instruction type!");
3231       }
3232
3233       // Lastly, extend the result.
3234       NewI->takeName(cast<Instruction>(I));
3235       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3236       I->replaceAllUsesWith(Res);
3237       cast<Instruction>(I)->eraseFromParent();
3238       I = Res;
3239     }
3240   }
3241
3242   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3243   for (auto &KV : MinBWs) {
3244     VectorParts &Parts = WidenMap.get(KV.first);
3245     for (Value *&I : Parts) {
3246       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3247       if (Inst && Inst->use_empty()) {
3248         Value *NewI = Inst->getOperand(0);
3249         Inst->eraseFromParent();
3250         I = NewI;
3251       }
3252     }
3253   }
3254 }
3255
3256 void InnerLoopVectorizer::vectorizeLoop() {
3257   //===------------------------------------------------===//
3258   //
3259   // Notice: any optimization or new instruction that go
3260   // into the code below should be also be implemented in
3261   // the cost-model.
3262   //
3263   //===------------------------------------------------===//
3264   Constant *Zero = Builder.getInt32(0);
3265
3266   // In order to support reduction variables we need to be able to vectorize
3267   // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
3268   // stages. First, we create a new vector PHI node with no incoming edges.
3269   // We use this value when we vectorize all of the instructions that use the
3270   // PHI. Next, after all of the instructions in the block are complete we
3271   // add the new incoming edges to the PHI. At this point all of the
3272   // instructions in the basic block are vectorized, so we can use them to
3273   // construct the PHI.
3274   PhiVector RdxPHIsToFix;
3275
3276   // Scan the loop in a topological order to ensure that defs are vectorized
3277   // before users.
3278   LoopBlocksDFS DFS(OrigLoop);
3279   DFS.perform(LI);
3280
3281   // Vectorize all of the blocks in the original loop.
3282   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
3283        be = DFS.endRPO(); bb != be; ++bb)
3284     vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
3285
3286   // Insert truncates and extends for any truncated instructions as hints to
3287   // InstCombine.
3288   if (VF > 1)
3289     truncateToMinimalBitwidths();
3290   
3291   // At this point every instruction in the original loop is widened to
3292   // a vector form. We are almost done. Now, we need to fix the PHI nodes
3293   // that we vectorized. The PHI nodes are currently empty because we did
3294   // not want to introduce cycles. Notice that the remaining PHI nodes
3295   // that we need to fix are reduction variables.
3296
3297   // Create the 'reduced' values for each of the induction vars.
3298   // The reduced values are the vector values that we scalarize and combine
3299   // after the loop is finished.
3300   for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
3301        it != e; ++it) {
3302     PHINode *RdxPhi = *it;
3303     assert(RdxPhi && "Unable to recover vectorized PHI");
3304
3305     // Find the reduction variable descriptor.