1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/NoFolder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ValueMapper.h"
52 using namespace PatternMatch;
54 #define DEBUG_TYPE "simplifycfg"
56 static cl::opt<unsigned>
57 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
58 cl::desc("Control the amount of phi node folding to perform (default = 1)"));
61 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
62 cl::desc("Duplicate return instructions into unconditional branches"));
65 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
66 cl::desc("Sink common instructions down to the end block"));
68 static cl::opt<bool> HoistCondStores(
69 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
70 cl::desc("Hoist conditional stores if an unconditional store precedes"));
72 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
73 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
74 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
75 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
76 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
77 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
80 // The first field contains the value that the switch produces when a certain
81 // case group is selected, and the second field is a vector containing the cases
82 // composing the case group.
83 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
84 SwitchCaseResultVectorTy;
85 // The first field contains the phi node that generates a result of the switch
86 // and the second field contains the value generated for a certain case in the switch
88 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
90 /// ValueEqualityComparisonCase - Represents a case of a switch.
91 struct ValueEqualityComparisonCase {
95 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
96 : Value(Value), Dest(Dest) {}
98 bool operator<(ValueEqualityComparisonCase RHS) const {
99 // Comparing pointers is ok as we only rely on the order for uniquing.
100 return Value < RHS.Value;
103 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
106 class SimplifyCFGOpt {
107 const TargetTransformInfo &TTI;
108 unsigned BonusInstThreshold;
109 const DataLayout *const DL;
110 AssumptionTracker *AT;
111 Value *isValueEqualityComparison(TerminatorInst *TI);
112 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
113 std::vector<ValueEqualityComparisonCase> &Cases);
114 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
116 IRBuilder<> &Builder);
117 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
118 IRBuilder<> &Builder);
120 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
121 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
122 bool SimplifyUnreachable(UnreachableInst *UI);
123 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
124 bool SimplifyIndirectBr(IndirectBrInst *IBI);
125 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
126 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
129 SimplifyCFGOpt(const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
130 const DataLayout *DL, AssumptionTracker *AT)
131 : TTI(TTI), BonusInstThreshold(BonusInstThreshold), DL(DL), AT(AT) {}
132 bool run(BasicBlock *BB);
136 /// SafeToMergeTerminators - Return true if it is safe to merge these two
137 /// terminator instructions together.
139 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
140 if (SI1 == SI2) return false; // Can't merge with self!
142 // It is not safe to merge these two switch instructions if they have a common
143 // successor, and if that successor has a PHI node, and if *that* PHI node has
144 // conflicting incoming values from the two switch blocks.
145 BasicBlock *SI1BB = SI1->getParent();
146 BasicBlock *SI2BB = SI2->getParent();
147 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
149 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
150 if (SI1Succs.count(*I))
151 for (BasicBlock::iterator BBI = (*I)->begin();
152 isa<PHINode>(BBI); ++BBI) {
153 PHINode *PN = cast<PHINode>(BBI);
154 if (PN->getIncomingValueForBlock(SI1BB) !=
155 PN->getIncomingValueForBlock(SI2BB))
162 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable
163 /// to merge these two terminator instructions together, where SI1 is an
164 /// unconditional branch. PhiNodes will store all PHI nodes in common
167 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
170 SmallVectorImpl<PHINode*> &PhiNodes) {
171 if (SI1 == SI2) return false; // Can't merge with self!
172 assert(SI1->isUnconditional() && SI2->isConditional());
174 // We fold the unconditional branch if we can easily update all PHI nodes in
175 // common successors:
176 // 1> We have a constant incoming value for the conditional branch;
177 // 2> We have "Cond" as the incoming value for the unconditional branch;
178 // 3> SI2->getCondition() and Cond have same operands.
179 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
180 if (!Ci2) return false;
181 if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
182 Cond->getOperand(1) == Ci2->getOperand(1)) &&
183 !(Cond->getOperand(0) == Ci2->getOperand(1) &&
184 Cond->getOperand(1) == Ci2->getOperand(0)))
187 BasicBlock *SI1BB = SI1->getParent();
188 BasicBlock *SI2BB = SI2->getParent();
189 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
190 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
191 if (SI1Succs.count(*I))
192 for (BasicBlock::iterator BBI = (*I)->begin();
193 isa<PHINode>(BBI); ++BBI) {
194 PHINode *PN = cast<PHINode>(BBI);
195 if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
196 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
198 PhiNodes.push_back(PN);
203 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
204 /// now be entries in it from the 'NewPred' block. The values that will be
205 /// flowing into the PHI nodes will be the same as those coming in from
206 /// ExistPred, an existing predecessor of Succ.
207 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
208 BasicBlock *ExistPred) {
209 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
212 for (BasicBlock::iterator I = Succ->begin();
213 (PN = dyn_cast<PHINode>(I)); ++I)
214 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
217 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
218 /// given instruction, which is assumed to be safe to speculate. 1 means
219 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
220 static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) {
221 assert(isSafeToSpeculativelyExecute(I, DL) &&
222 "Instruction is not safe to speculatively execute!");
223 switch (Operator::getOpcode(I)) {
225 // In doubt, be conservative.
227 case Instruction::GetElementPtr:
228 // GEPs are cheap if all indices are constant.
229 if (!cast<GEPOperator>(I)->hasAllConstantIndices())
232 case Instruction::ExtractValue:
233 case Instruction::Load:
234 case Instruction::Add:
235 case Instruction::Sub:
236 case Instruction::And:
237 case Instruction::Or:
238 case Instruction::Xor:
239 case Instruction::Shl:
240 case Instruction::LShr:
241 case Instruction::AShr:
242 case Instruction::ICmp:
243 case Instruction::Trunc:
244 case Instruction::ZExt:
245 case Instruction::SExt:
246 case Instruction::BitCast:
247 case Instruction::ExtractElement:
248 case Instruction::InsertElement:
249 return 1; // These are all cheap.
251 case Instruction::Call:
252 case Instruction::Select:
257 /// DominatesMergePoint - If we have a merge point of an "if condition" as
258 /// accepted above, return true if the specified value dominates the block. We
259 /// don't handle the true generality of domination here, just a special case
260 /// which works well enough for us.
262 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
263 /// see if V (which must be an instruction) and its recursive operands
264 /// that do not dominate BB have a combined cost lower than CostRemaining and
265 /// are non-trapping. If both are true, the instruction is inserted into the
266 /// set and true is returned.
268 /// The cost for most non-trapping instructions is defined as 1 except for
269 /// Select whose cost is 2.
271 /// After this function returns, CostRemaining is decreased by the cost of
272 /// V plus its non-dominating operands. If that cost is greater than
273 /// CostRemaining, false is returned and CostRemaining is undefined.
274 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
275 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
276 unsigned &CostRemaining,
277 const DataLayout *DL) {
278 Instruction *I = dyn_cast<Instruction>(V);
280 // Non-instructions all dominate instructions, but not all constantexprs
281 // can be executed unconditionally.
282 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
287 BasicBlock *PBB = I->getParent();
289 // We don't want to allow weird loops that might have the "if condition" in
290 // the bottom of this block.
291 if (PBB == BB) return false;
293 // If this instruction is defined in a block that contains an unconditional
294 // branch to BB, then it must be in the 'conditional' part of the "if
295 // statement". If not, it definitely dominates the region.
296 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
297 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
300 // If we aren't allowing aggressive promotion anymore, then don't consider
301 // instructions in the 'if region'.
302 if (!AggressiveInsts) return false;
304 // If we have seen this instruction before, don't count it again.
305 if (AggressiveInsts->count(I)) return true;
307 // Okay, it looks like the instruction IS in the "condition". Check to
308 // see if it's a cheap instruction to unconditionally compute, and if it
309 // only uses stuff defined outside of the condition. If so, hoist it out.
310 if (!isSafeToSpeculativelyExecute(I, DL))
313 unsigned Cost = ComputeSpeculationCost(I, DL);
315 if (Cost > CostRemaining)
318 CostRemaining -= Cost;
320 // Okay, we can only really hoist these out if their operands do
321 // not take us over the cost threshold.
322 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
323 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL))
325 // Okay, it's safe to do this! Remember this instruction.
326 AggressiveInsts->insert(I);
330 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
331 /// and PointerNullValue. Return NULL if value is not a constant int.
332 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) {
333 // Normal constant int.
334 ConstantInt *CI = dyn_cast<ConstantInt>(V);
335 if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy())
338 // This is some kind of pointer constant. Turn it into a pointer-sized
339 // ConstantInt if possible.
340 IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType()));
342 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
343 if (isa<ConstantPointerNull>(V))
344 return ConstantInt::get(PtrTy, 0);
346 // IntToPtr const int.
347 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
348 if (CE->getOpcode() == Instruction::IntToPtr)
349 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
350 // The constant is very likely to have the right type already.
351 if (CI->getType() == PtrTy)
354 return cast<ConstantInt>
355 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
360 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
361 /// collection of icmp eq/ne instructions that compare a value against a
362 /// constant, return the value being compared, and stick the constant into the
365 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
366 const DataLayout *DL, bool isEQ, unsigned &UsedICmps) {
367 Instruction *I = dyn_cast<Instruction>(V);
368 if (!I) return nullptr;
370 // If this is an icmp against a constant, handle this as one of the cases.
371 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
372 if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) {
376 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
377 // (x & ~2^x) == y --> x == y || x == y|2^x
378 // This undoes a transformation done by instcombine to fuse 2 compares.
379 if (match(ICI->getOperand(0),
380 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
381 APInt Not = ~RHSC->getValue();
382 if (Not.isPowerOf2()) {
385 ConstantInt::get(C->getContext(), C->getValue() | Not));
393 return I->getOperand(0);
396 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
399 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
401 // Shift the range if the compare is fed by an add. This is the range
402 // compare idiom as emitted by instcombine.
404 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)));
406 Span = Span.subtract(RHSC->getValue());
408 // If this is an and/!= check then we want to optimize "x ugt 2" into
411 Span = Span.inverse();
413 // If there are a ton of values, we don't want to make a ginormous switch.
414 if (Span.getSetSize().ugt(8) || Span.isEmptySet())
417 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
418 Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
420 return hasAdd ? RHSVal : I->getOperand(0);
425 // Otherwise, we can only handle an | or &, depending on isEQ.
426 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
429 unsigned NumValsBeforeLHS = Vals.size();
430 unsigned UsedICmpsBeforeLHS = UsedICmps;
431 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL,
433 unsigned NumVals = Vals.size();
434 unsigned UsedICmpsBeforeRHS = UsedICmps;
435 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
439 Vals.resize(NumVals);
440 UsedICmps = UsedICmpsBeforeRHS;
443 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
444 // set it and return success.
445 if (Extra == nullptr || Extra == I->getOperand(1)) {
446 Extra = I->getOperand(1);
450 Vals.resize(NumValsBeforeLHS);
451 UsedICmps = UsedICmpsBeforeLHS;
455 // If the LHS can't be folded in, but Extra is available and RHS can, try to
457 if (Extra == nullptr || Extra == I->getOperand(0)) {
458 Value *OldExtra = Extra;
459 Extra = I->getOperand(0);
460 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
463 assert(Vals.size() == NumValsBeforeLHS);
470 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
471 Instruction *Cond = nullptr;
472 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
473 Cond = dyn_cast<Instruction>(SI->getCondition());
474 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
475 if (BI->isConditional())
476 Cond = dyn_cast<Instruction>(BI->getCondition());
477 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
478 Cond = dyn_cast<Instruction>(IBI->getAddress());
481 TI->eraseFromParent();
482 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
485 /// isValueEqualityComparison - Return true if the specified terminator checks
486 /// to see if a value is equal to constant integer value.
487 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
489 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
490 // Do not permit merging of large switch instructions into their
491 // predecessors unless there is only one predecessor.
492 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
493 pred_end(SI->getParent())) <= 128)
494 CV = SI->getCondition();
495 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
496 if (BI->isConditional() && BI->getCondition()->hasOneUse())
497 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
498 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
499 CV = ICI->getOperand(0);
501 // Unwrap any lossless ptrtoint cast.
503 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
504 Value *Ptr = PTII->getPointerOperand();
505 if (PTII->getType() == DL->getIntPtrType(Ptr->getType()))
512 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
513 /// decode all of the 'cases' that it represents and return the 'default' block.
514 BasicBlock *SimplifyCFGOpt::
515 GetValueEqualityComparisonCases(TerminatorInst *TI,
516 std::vector<ValueEqualityComparisonCase>
518 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
519 Cases.reserve(SI->getNumCases());
520 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
521 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
522 i.getCaseSuccessor()));
523 return SI->getDefaultDest();
526 BranchInst *BI = cast<BranchInst>(TI);
527 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
528 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
529 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
532 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
536 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
537 /// in the list that match the specified block.
538 static void EliminateBlockCases(BasicBlock *BB,
539 std::vector<ValueEqualityComparisonCase> &Cases) {
540 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
543 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
546 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
547 std::vector<ValueEqualityComparisonCase > &C2) {
548 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
550 // Make V1 be smaller than V2.
551 if (V1->size() > V2->size())
554 if (V1->size() == 0) return false;
555 if (V1->size() == 1) {
557 ConstantInt *TheVal = (*V1)[0].Value;
558 for (unsigned i = 0, e = V2->size(); i != e; ++i)
559 if (TheVal == (*V2)[i].Value)
563 // Otherwise, just sort both lists and compare element by element.
564 array_pod_sort(V1->begin(), V1->end());
565 array_pod_sort(V2->begin(), V2->end());
566 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
567 while (i1 != e1 && i2 != e2) {
568 if ((*V1)[i1].Value == (*V2)[i2].Value)
570 if ((*V1)[i1].Value < (*V2)[i2].Value)
578 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
579 /// terminator instruction and its block is known to only have a single
580 /// predecessor block, check to see if that predecessor is also a value
581 /// comparison with the same value, and if that comparison determines the
582 /// outcome of this comparison. If so, simplify TI. This does a very limited
583 /// form of jump threading.
584 bool SimplifyCFGOpt::
585 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
587 IRBuilder<> &Builder) {
588 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
589 if (!PredVal) return false; // Not a value comparison in predecessor.
591 Value *ThisVal = isValueEqualityComparison(TI);
592 assert(ThisVal && "This isn't a value comparison!!");
593 if (ThisVal != PredVal) return false; // Different predicates.
595 // TODO: Preserve branch weight metadata, similarly to how
596 // FoldValueComparisonIntoPredecessors preserves it.
598 // Find out information about when control will move from Pred to TI's block.
599 std::vector<ValueEqualityComparisonCase> PredCases;
600 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
602 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
604 // Find information about how control leaves this block.
605 std::vector<ValueEqualityComparisonCase> ThisCases;
606 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
607 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
609 // If TI's block is the default block from Pred's comparison, potentially
610 // simplify TI based on this knowledge.
611 if (PredDef == TI->getParent()) {
612 // If we are here, we know that the value is none of those cases listed in
613 // PredCases. If there are any cases in ThisCases that are in PredCases, we
615 if (!ValuesOverlap(PredCases, ThisCases))
618 if (isa<BranchInst>(TI)) {
619 // Okay, one of the successors of this condbr is dead. Convert it to a
621 assert(ThisCases.size() == 1 && "Branch can only have one case!");
622 // Insert the new branch.
623 Instruction *NI = Builder.CreateBr(ThisDef);
626 // Remove PHI node entries for the dead edge.
627 ThisCases[0].Dest->removePredecessor(TI->getParent());
629 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
630 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
632 EraseTerminatorInstAndDCECond(TI);
636 SwitchInst *SI = cast<SwitchInst>(TI);
637 // Okay, TI has cases that are statically dead, prune them away.
638 SmallPtrSet<Constant*, 16> DeadCases;
639 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
640 DeadCases.insert(PredCases[i].Value);
642 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
643 << "Through successor TI: " << *TI);
645 // Collect branch weights into a vector.
646 SmallVector<uint32_t, 8> Weights;
647 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
648 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
650 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
652 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
654 Weights.push_back(CI->getValue().getZExtValue());
656 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
658 if (DeadCases.count(i.getCaseValue())) {
660 std::swap(Weights[i.getCaseIndex()+1], Weights.back());
663 i.getCaseSuccessor()->removePredecessor(TI->getParent());
667 if (HasWeight && Weights.size() >= 2)
668 SI->setMetadata(LLVMContext::MD_prof,
669 MDBuilder(SI->getParent()->getContext()).
670 createBranchWeights(Weights));
672 DEBUG(dbgs() << "Leaving: " << *TI << "\n");
676 // Otherwise, TI's block must correspond to some matched value. Find out
677 // which value (or set of values) this is.
678 ConstantInt *TIV = nullptr;
679 BasicBlock *TIBB = TI->getParent();
680 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
681 if (PredCases[i].Dest == TIBB) {
683 return false; // Cannot handle multiple values coming to this block.
684 TIV = PredCases[i].Value;
686 assert(TIV && "No edge from pred to succ?");
688 // Okay, we found the one constant that our value can be if we get into TI's
689 // BB. Find out which successor will unconditionally be branched to.
690 BasicBlock *TheRealDest = nullptr;
691 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
692 if (ThisCases[i].Value == TIV) {
693 TheRealDest = ThisCases[i].Dest;
697 // If not handled by any explicit cases, it is handled by the default case.
698 if (!TheRealDest) TheRealDest = ThisDef;
700 // Remove PHI node entries for dead edges.
701 BasicBlock *CheckEdge = TheRealDest;
702 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
703 if (*SI != CheckEdge)
704 (*SI)->removePredecessor(TIBB);
708 // Insert the new branch.
709 Instruction *NI = Builder.CreateBr(TheRealDest);
712 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
713 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
715 EraseTerminatorInstAndDCECond(TI);
720 /// ConstantIntOrdering - This class implements a stable ordering of constant
721 /// integers that does not depend on their address. This is important for
722 /// applications that sort ConstantInt's to ensure uniqueness.
723 struct ConstantIntOrdering {
724 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
725 return LHS->getValue().ult(RHS->getValue());
730 static int ConstantIntSortPredicate(ConstantInt *const *P1,
731 ConstantInt *const *P2) {
732 const ConstantInt *LHS = *P1;
733 const ConstantInt *RHS = *P2;
734 if (LHS->getValue().ult(RHS->getValue()))
736 if (LHS->getValue() == RHS->getValue())
741 static inline bool HasBranchWeights(const Instruction* I) {
742 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
743 if (ProfMD && ProfMD->getOperand(0))
744 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
745 return MDS->getString().equals("branch_weights");
750 /// Get Weights of a given TerminatorInst, the default weight is at the front
751 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
753 static void GetBranchWeights(TerminatorInst *TI,
754 SmallVectorImpl<uint64_t> &Weights) {
755 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
757 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
758 ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i));
759 Weights.push_back(CI->getValue().getZExtValue());
762 // If TI is a conditional eq, the default case is the false case,
763 // and the corresponding branch-weight data is at index 2. We swap the
764 // default weight to be the first entry.
765 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
766 assert(Weights.size() == 2);
767 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
768 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
769 std::swap(Weights.front(), Weights.back());
773 /// Keep halving the weights until all can fit in uint32_t.
774 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
775 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
776 if (Max > UINT_MAX) {
777 unsigned Offset = 32 - countLeadingZeros(Max);
778 for (uint64_t &I : Weights)
783 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
784 /// equality comparison instruction (either a switch or a branch on "X == c").
785 /// See if any of the predecessors of the terminator block are value comparisons
786 /// on the same value. If so, and if safe to do so, fold them together.
787 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
788 IRBuilder<> &Builder) {
789 BasicBlock *BB = TI->getParent();
790 Value *CV = isValueEqualityComparison(TI); // CondVal
791 assert(CV && "Not a comparison?");
792 bool Changed = false;
794 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
795 while (!Preds.empty()) {
796 BasicBlock *Pred = Preds.pop_back_val();
798 // See if the predecessor is a comparison with the same value.
799 TerminatorInst *PTI = Pred->getTerminator();
800 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
802 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
803 // Figure out which 'cases' to copy from SI to PSI.
804 std::vector<ValueEqualityComparisonCase> BBCases;
805 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
807 std::vector<ValueEqualityComparisonCase> PredCases;
808 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
810 // Based on whether the default edge from PTI goes to BB or not, fill in
811 // PredCases and PredDefault with the new switch cases we would like to
813 SmallVector<BasicBlock*, 8> NewSuccessors;
815 // Update the branch weight metadata along the way
816 SmallVector<uint64_t, 8> Weights;
817 bool PredHasWeights = HasBranchWeights(PTI);
818 bool SuccHasWeights = HasBranchWeights(TI);
820 if (PredHasWeights) {
821 GetBranchWeights(PTI, Weights);
822 // branch-weight metadata is inconsistent here.
823 if (Weights.size() != 1 + PredCases.size())
824 PredHasWeights = SuccHasWeights = false;
825 } else if (SuccHasWeights)
826 // If there are no predecessor weights but there are successor weights,
827 // populate Weights with 1, which will later be scaled to the sum of
828 // successor's weights
829 Weights.assign(1 + PredCases.size(), 1);
831 SmallVector<uint64_t, 8> SuccWeights;
832 if (SuccHasWeights) {
833 GetBranchWeights(TI, SuccWeights);
834 // branch-weight metadata is inconsistent here.
835 if (SuccWeights.size() != 1 + BBCases.size())
836 PredHasWeights = SuccHasWeights = false;
837 } else if (PredHasWeights)
838 SuccWeights.assign(1 + BBCases.size(), 1);
840 if (PredDefault == BB) {
841 // If this is the default destination from PTI, only the edges in TI
842 // that don't occur in PTI, or that branch to BB will be activated.
843 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
844 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
845 if (PredCases[i].Dest != BB)
846 PTIHandled.insert(PredCases[i].Value);
848 // The default destination is BB, we don't need explicit targets.
849 std::swap(PredCases[i], PredCases.back());
851 if (PredHasWeights || SuccHasWeights) {
852 // Increase weight for the default case.
853 Weights[0] += Weights[i+1];
854 std::swap(Weights[i+1], Weights.back());
858 PredCases.pop_back();
862 // Reconstruct the new switch statement we will be building.
863 if (PredDefault != BBDefault) {
864 PredDefault->removePredecessor(Pred);
865 PredDefault = BBDefault;
866 NewSuccessors.push_back(BBDefault);
869 unsigned CasesFromPred = Weights.size();
870 uint64_t ValidTotalSuccWeight = 0;
871 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
872 if (!PTIHandled.count(BBCases[i].Value) &&
873 BBCases[i].Dest != BBDefault) {
874 PredCases.push_back(BBCases[i]);
875 NewSuccessors.push_back(BBCases[i].Dest);
876 if (SuccHasWeights || PredHasWeights) {
877 // The default weight is at index 0, so weight for the ith case
878 // should be at index i+1. Scale the cases from successor by
879 // PredDefaultWeight (Weights[0]).
880 Weights.push_back(Weights[0] * SuccWeights[i+1]);
881 ValidTotalSuccWeight += SuccWeights[i+1];
885 if (SuccHasWeights || PredHasWeights) {
886 ValidTotalSuccWeight += SuccWeights[0];
887 // Scale the cases from predecessor by ValidTotalSuccWeight.
888 for (unsigned i = 1; i < CasesFromPred; ++i)
889 Weights[i] *= ValidTotalSuccWeight;
890 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
891 Weights[0] *= SuccWeights[0];
894 // If this is not the default destination from PSI, only the edges
895 // in SI that occur in PSI with a destination of BB will be
897 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
898 std::map<ConstantInt*, uint64_t> WeightsForHandled;
899 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
900 if (PredCases[i].Dest == BB) {
901 PTIHandled.insert(PredCases[i].Value);
903 if (PredHasWeights || SuccHasWeights) {
904 WeightsForHandled[PredCases[i].Value] = Weights[i+1];
905 std::swap(Weights[i+1], Weights.back());
909 std::swap(PredCases[i], PredCases.back());
910 PredCases.pop_back();
914 // Okay, now we know which constants were sent to BB from the
915 // predecessor. Figure out where they will all go now.
916 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
917 if (PTIHandled.count(BBCases[i].Value)) {
918 // If this is one we are capable of getting...
919 if (PredHasWeights || SuccHasWeights)
920 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
921 PredCases.push_back(BBCases[i]);
922 NewSuccessors.push_back(BBCases[i].Dest);
923 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
926 // If there are any constants vectored to BB that TI doesn't handle,
927 // they must go to the default destination of TI.
928 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
930 E = PTIHandled.end(); I != E; ++I) {
931 if (PredHasWeights || SuccHasWeights)
932 Weights.push_back(WeightsForHandled[*I]);
933 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
934 NewSuccessors.push_back(BBDefault);
938 // Okay, at this point, we know which new successor Pred will get. Make
939 // sure we update the number of entries in the PHI nodes for these
941 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
942 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
944 Builder.SetInsertPoint(PTI);
945 // Convert pointer to int before we switch.
946 if (CV->getType()->isPointerTy()) {
947 assert(DL && "Cannot switch on pointer without DataLayout");
948 CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()),
952 // Now that the successors are updated, create the new Switch instruction.
953 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
955 NewSI->setDebugLoc(PTI->getDebugLoc());
956 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
957 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
959 if (PredHasWeights || SuccHasWeights) {
960 // Halve the weights if any of them cannot fit in an uint32_t
963 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
965 NewSI->setMetadata(LLVMContext::MD_prof,
966 MDBuilder(BB->getContext()).
967 createBranchWeights(MDWeights));
970 EraseTerminatorInstAndDCECond(PTI);
972 // Okay, last check. If BB is still a successor of PSI, then we must
973 // have an infinite loop case. If so, add an infinitely looping block
974 // to handle the case to preserve the behavior of the code.
975 BasicBlock *InfLoopBlock = nullptr;
976 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
977 if (NewSI->getSuccessor(i) == BB) {
979 // Insert it at the end of the function, because it's either code,
980 // or it won't matter if it's hot. :)
981 InfLoopBlock = BasicBlock::Create(BB->getContext(),
982 "infloop", BB->getParent());
983 BranchInst::Create(InfLoopBlock, InfLoopBlock);
985 NewSI->setSuccessor(i, InfLoopBlock);
994 // isSafeToHoistInvoke - If we would need to insert a select that uses the
995 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
996 // would need to do this), we can't hoist the invoke, as there is nowhere
997 // to put the select in this case.
998 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
999 Instruction *I1, Instruction *I2) {
1000 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1002 for (BasicBlock::iterator BBI = SI->begin();
1003 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1004 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1005 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1006 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1014 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1016 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1017 /// BB2, hoist any common code in the two blocks up into the branch block. The
1018 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
1019 static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) {
1020 // This does very trivial matching, with limited scanning, to find identical
1021 // instructions in the two blocks. In particular, we don't want to get into
1022 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1023 // such, we currently just scan for obviously identical instructions in an
1025 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1026 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1028 BasicBlock::iterator BB1_Itr = BB1->begin();
1029 BasicBlock::iterator BB2_Itr = BB2->begin();
1031 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1032 // Skip debug info if it is not identical.
1033 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1034 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1035 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1036 while (isa<DbgInfoIntrinsic>(I1))
1038 while (isa<DbgInfoIntrinsic>(I2))
1041 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1042 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1045 BasicBlock *BIParent = BI->getParent();
1047 bool Changed = false;
1049 // If we are hoisting the terminator instruction, don't move one (making a
1050 // broken BB), instead clone it, and remove BI.
1051 if (isa<TerminatorInst>(I1))
1052 goto HoistTerminator;
1054 // For a normal instruction, we just move one to right before the branch,
1055 // then replace all uses of the other with the first. Finally, we remove
1056 // the now redundant second instruction.
1057 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1058 if (!I2->use_empty())
1059 I2->replaceAllUsesWith(I1);
1060 I1->intersectOptionalDataWith(I2);
1061 unsigned KnownIDs[] = {
1062 LLVMContext::MD_tbaa,
1063 LLVMContext::MD_range,
1064 LLVMContext::MD_fpmath,
1065 LLVMContext::MD_invariant_load,
1066 LLVMContext::MD_nonnull
1068 combineMetadata(I1, I2, KnownIDs);
1069 I2->eraseFromParent();
1074 // Skip debug info if it is not identical.
1075 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1076 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1077 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1078 while (isa<DbgInfoIntrinsic>(I1))
1080 while (isa<DbgInfoIntrinsic>(I2))
1083 } while (I1->isIdenticalToWhenDefined(I2));
1088 // It may not be possible to hoist an invoke.
1089 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1092 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1094 for (BasicBlock::iterator BBI = SI->begin();
1095 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1096 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1097 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1101 // Check for passingValueIsAlwaysUndefined here because we would rather
1102 // eliminate undefined control flow then converting it to a select.
1103 if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1104 passingValueIsAlwaysUndefined(BB2V, PN))
1107 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL))
1109 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL))
1114 // Okay, it is safe to hoist the terminator.
1115 Instruction *NT = I1->clone();
1116 BIParent->getInstList().insert(BI, NT);
1117 if (!NT->getType()->isVoidTy()) {
1118 I1->replaceAllUsesWith(NT);
1119 I2->replaceAllUsesWith(NT);
1123 IRBuilder<true, NoFolder> Builder(NT);
1124 // Hoisting one of the terminators from our successor is a great thing.
1125 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1126 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1127 // nodes, so we insert select instruction to compute the final result.
1128 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1129 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1131 for (BasicBlock::iterator BBI = SI->begin();
1132 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1133 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1134 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1135 if (BB1V == BB2V) continue;
1137 // These values do not agree. Insert a select instruction before NT
1138 // that determines the right value.
1139 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1141 SI = cast<SelectInst>
1142 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1143 BB1V->getName()+"."+BB2V->getName()));
1145 // Make the PHI node use the select for all incoming values for BB1/BB2
1146 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1147 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1148 PN->setIncomingValue(i, SI);
1152 // Update any PHI nodes in our new successors.
1153 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1154 AddPredecessorToBlock(*SI, BIParent, BB1);
1156 EraseTerminatorInstAndDCECond(BI);
1160 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1161 /// check whether BBEnd has only two predecessors and the other predecessor
1162 /// ends with an unconditional branch. If it is true, sink any common code
1163 /// in the two predecessors to BBEnd.
1164 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1165 assert(BI1->isUnconditional());
1166 BasicBlock *BB1 = BI1->getParent();
1167 BasicBlock *BBEnd = BI1->getSuccessor(0);
1169 // Check that BBEnd has two predecessors and the other predecessor ends with
1170 // an unconditional branch.
1171 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1172 BasicBlock *Pred0 = *PI++;
1173 if (PI == PE) // Only one predecessor.
1175 BasicBlock *Pred1 = *PI++;
1176 if (PI != PE) // More than two predecessors.
1178 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1179 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1180 if (!BI2 || !BI2->isUnconditional())
1183 // Gather the PHI nodes in BBEnd.
1184 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
1185 Instruction *FirstNonPhiInBBEnd = nullptr;
1186 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
1188 if (PHINode *PN = dyn_cast<PHINode>(I)) {
1189 Value *BB1V = PN->getIncomingValueForBlock(BB1);
1190 Value *BB2V = PN->getIncomingValueForBlock(BB2);
1191 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
1193 FirstNonPhiInBBEnd = &*I;
1197 if (!FirstNonPhiInBBEnd)
1201 // This does very trivial matching, with limited scanning, to find identical
1202 // instructions in the two blocks. We scan backward for obviously identical
1203 // instructions in an identical order.
1204 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1205 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
1206 RE2 = BB2->getInstList().rend();
1208 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1211 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1214 // Skip the unconditional branches.
1218 bool Changed = false;
1219 while (RI1 != RE1 && RI2 != RE2) {
1221 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1224 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1228 Instruction *I1 = &*RI1, *I2 = &*RI2;
1229 // I1 and I2 should have a single use in the same PHI node, and they
1230 // perform the same operation.
1231 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1232 if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1233 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1234 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1235 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1236 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1237 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1238 !I1->hasOneUse() || !I2->hasOneUse() ||
1239 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
1240 MapValueFromBB1ToBB2[I1].first != I2)
1243 // Check whether we should swap the operands of ICmpInst.
1244 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1245 bool SwapOpnds = false;
1246 if (ICmp1 && ICmp2 &&
1247 ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1248 ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1249 (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1250 ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1251 ICmp2->swapOperands();
1254 if (!I1->isSameOperationAs(I2)) {
1256 ICmp2->swapOperands();
1260 // The operands should be either the same or they need to be generated
1261 // with a PHI node after sinking. We only handle the case where there is
1262 // a single pair of different operands.
1263 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1264 unsigned Op1Idx = 0;
1265 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1266 if (I1->getOperand(I) == I2->getOperand(I))
1268 // Early exit if we have more-than one pair of different operands or
1269 // the different operand is already in MapValueFromBB1ToBB2.
1270 // Early exit if we need a PHI node to replace a constant.
1272 MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
1273 MapValueFromBB1ToBB2.end() ||
1274 isa<Constant>(I1->getOperand(I)) ||
1275 isa<Constant>(I2->getOperand(I))) {
1276 // If we can't sink the instructions, undo the swapping.
1278 ICmp2->swapOperands();
1281 DifferentOp1 = I1->getOperand(I);
1283 DifferentOp2 = I2->getOperand(I);
1286 // We insert the pair of different operands to MapValueFromBB1ToBB2 and
1287 // remove (I1, I2) from MapValueFromBB1ToBB2.
1289 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
1290 DifferentOp1->getName() + ".sink",
1292 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
1293 // I1 should use NewPN instead of DifferentOp1.
1294 I1->setOperand(Op1Idx, NewPN);
1295 NewPN->addIncoming(DifferentOp1, BB1);
1296 NewPN->addIncoming(DifferentOp2, BB2);
1297 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1299 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
1300 MapValueFromBB1ToBB2.erase(I1);
1302 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
1303 DEBUG(dbgs() << " " << *I2 << "\n";);
1304 // We need to update RE1 and RE2 if we are going to sink the first
1305 // instruction in the basic block down.
1306 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1307 // Sink the instruction.
1308 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1309 if (!OldPN->use_empty())
1310 OldPN->replaceAllUsesWith(I1);
1311 OldPN->eraseFromParent();
1313 if (!I2->use_empty())
1314 I2->replaceAllUsesWith(I1);
1315 I1->intersectOptionalDataWith(I2);
1316 // TODO: Use combineMetadata here to preserve what metadata we can
1317 // (analogous to the hoisting case above).
1318 I2->eraseFromParent();
1321 RE1 = BB1->getInstList().rend();
1323 RE2 = BB2->getInstList().rend();
1324 FirstNonPhiInBBEnd = I1;
1331 /// \brief Determine if we can hoist sink a sole store instruction out of a
1332 /// conditional block.
1334 /// We are looking for code like the following:
1336 /// store i32 %add, i32* %arrayidx2
1337 /// ... // No other stores or function calls (we could be calling a memory
1338 /// ... // function).
1339 /// %cmp = icmp ult %x, %y
1340 /// br i1 %cmp, label %EndBB, label %ThenBB
1342 /// store i32 %add5, i32* %arrayidx2
1346 /// We are going to transform this into:
1348 /// store i32 %add, i32* %arrayidx2
1350 /// %cmp = icmp ult %x, %y
1351 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1352 /// store i32 %add.add5, i32* %arrayidx2
1355 /// \return The pointer to the value of the previous store if the store can be
1356 /// hoisted into the predecessor block. 0 otherwise.
1357 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1358 BasicBlock *StoreBB, BasicBlock *EndBB) {
1359 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1363 // Volatile or atomic.
1364 if (!StoreToHoist->isSimple())
1367 Value *StorePtr = StoreToHoist->getPointerOperand();
1369 // Look for a store to the same pointer in BrBB.
1370 unsigned MaxNumInstToLookAt = 10;
1371 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1372 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1373 Instruction *CurI = &*RI;
1375 // Could be calling an instruction that effects memory like free().
1376 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1379 StoreInst *SI = dyn_cast<StoreInst>(CurI);
1380 // Found the previous store make sure it stores to the same location.
1381 if (SI && SI->getPointerOperand() == StorePtr)
1382 // Found the previous store, return its value operand.
1383 return SI->getValueOperand();
1385 return nullptr; // Unknown store.
1391 /// \brief Speculate a conditional basic block flattening the CFG.
1393 /// Note that this is a very risky transform currently. Speculating
1394 /// instructions like this is most often not desirable. Instead, there is an MI
1395 /// pass which can do it with full awareness of the resource constraints.
1396 /// However, some cases are "obvious" and we should do directly. An example of
1397 /// this is speculating a single, reasonably cheap instruction.
1399 /// There is only one distinct advantage to flattening the CFG at the IR level:
1400 /// it makes very common but simplistic optimizations such as are common in
1401 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1402 /// modeling their effects with easier to reason about SSA value graphs.
1405 /// An illustration of this transform is turning this IR:
1408 /// %cmp = icmp ult %x, %y
1409 /// br i1 %cmp, label %EndBB, label %ThenBB
1411 /// %sub = sub %x, %y
1414 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1421 /// %cmp = icmp ult %x, %y
1422 /// %sub = sub %x, %y
1423 /// %cond = select i1 %cmp, 0, %sub
1427 /// \returns true if the conditional block is removed.
1428 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1429 const DataLayout *DL) {
1430 // Be conservative for now. FP select instruction can often be expensive.
1431 Value *BrCond = BI->getCondition();
1432 if (isa<FCmpInst>(BrCond))
1435 BasicBlock *BB = BI->getParent();
1436 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1438 // If ThenBB is actually on the false edge of the conditional branch, remember
1439 // to swap the select operands later.
1440 bool Invert = false;
1441 if (ThenBB != BI->getSuccessor(0)) {
1442 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1445 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1447 // Keep a count of how many times instructions are used within CondBB when
1448 // they are candidates for sinking into CondBB. Specifically:
1449 // - They are defined in BB, and
1450 // - They have no side effects, and
1451 // - All of their uses are in CondBB.
1452 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1454 unsigned SpeculationCost = 0;
1455 Value *SpeculatedStoreValue = nullptr;
1456 StoreInst *SpeculatedStore = nullptr;
1457 for (BasicBlock::iterator BBI = ThenBB->begin(),
1458 BBE = std::prev(ThenBB->end());
1459 BBI != BBE; ++BBI) {
1460 Instruction *I = BBI;
1462 if (isa<DbgInfoIntrinsic>(I))
1465 // Only speculatively execution a single instruction (not counting the
1466 // terminator) for now.
1468 if (SpeculationCost > 1)
1471 // Don't hoist the instruction if it's unsafe or expensive.
1472 if (!isSafeToSpeculativelyExecute(I, DL) &&
1473 !(HoistCondStores &&
1474 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
1477 if (!SpeculatedStoreValue &&
1478 ComputeSpeculationCost(I, DL) > PHINodeFoldingThreshold)
1481 // Store the store speculation candidate.
1482 if (SpeculatedStoreValue)
1483 SpeculatedStore = cast<StoreInst>(I);
1485 // Do not hoist the instruction if any of its operands are defined but not
1486 // used in BB. The transformation will prevent the operand from
1487 // being sunk into the use block.
1488 for (User::op_iterator i = I->op_begin(), e = I->op_end();
1490 Instruction *OpI = dyn_cast<Instruction>(*i);
1491 if (!OpI || OpI->getParent() != BB ||
1492 OpI->mayHaveSideEffects())
1493 continue; // Not a candidate for sinking.
1495 ++SinkCandidateUseCounts[OpI];
1499 // Consider any sink candidates which are only used in CondBB as costs for
1500 // speculation. Note, while we iterate over a DenseMap here, we are summing
1501 // and so iteration order isn't significant.
1502 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1503 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1505 if (I->first->getNumUses() == I->second) {
1507 if (SpeculationCost > 1)
1511 // Check that the PHI nodes can be converted to selects.
1512 bool HaveRewritablePHIs = false;
1513 for (BasicBlock::iterator I = EndBB->begin();
1514 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1515 Value *OrigV = PN->getIncomingValueForBlock(BB);
1516 Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1518 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1519 // Skip PHIs which are trivial.
1523 // Don't convert to selects if we could remove undefined behavior instead.
1524 if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1525 passingValueIsAlwaysUndefined(ThenV, PN))
1528 HaveRewritablePHIs = true;
1529 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1530 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1531 if (!OrigCE && !ThenCE)
1532 continue; // Known safe and cheap.
1534 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) ||
1535 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL)))
1537 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL) : 0;
1538 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL) : 0;
1539 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold)
1542 // Account for the cost of an unfolded ConstantExpr which could end up
1543 // getting expanded into Instructions.
1544 // FIXME: This doesn't account for how many operations are combined in the
1545 // constant expression.
1547 if (SpeculationCost > 1)
1551 // If there are no PHIs to process, bail early. This helps ensure idempotence
1553 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1556 // If we get here, we can hoist the instruction and if-convert.
1557 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1559 // Insert a select of the value of the speculated store.
1560 if (SpeculatedStoreValue) {
1561 IRBuilder<true, NoFolder> Builder(BI);
1562 Value *TrueV = SpeculatedStore->getValueOperand();
1563 Value *FalseV = SpeculatedStoreValue;
1565 std::swap(TrueV, FalseV);
1566 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1567 "." + FalseV->getName());
1568 SpeculatedStore->setOperand(0, S);
1571 // Hoist the instructions.
1572 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1573 std::prev(ThenBB->end()));
1575 // Insert selects and rewrite the PHI operands.
1576 IRBuilder<true, NoFolder> Builder(BI);
1577 for (BasicBlock::iterator I = EndBB->begin();
1578 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1579 unsigned OrigI = PN->getBasicBlockIndex(BB);
1580 unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1581 Value *OrigV = PN->getIncomingValue(OrigI);
1582 Value *ThenV = PN->getIncomingValue(ThenI);
1584 // Skip PHIs which are trivial.
1588 // Create a select whose true value is the speculatively executed value and
1589 // false value is the preexisting value. Swap them if the branch
1590 // destinations were inverted.
1591 Value *TrueV = ThenV, *FalseV = OrigV;
1593 std::swap(TrueV, FalseV);
1594 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1595 TrueV->getName() + "." + FalseV->getName());
1596 PN->setIncomingValue(OrigI, V);
1597 PN->setIncomingValue(ThenI, V);
1604 /// \returns True if this block contains a CallInst with the NoDuplicate
1606 static bool HasNoDuplicateCall(const BasicBlock *BB) {
1607 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1608 const CallInst *CI = dyn_cast<CallInst>(I);
1611 if (CI->cannotDuplicate())
1617 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1618 /// across this block.
1619 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1620 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1623 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1624 if (isa<DbgInfoIntrinsic>(BBI))
1626 if (Size > 10) return false; // Don't clone large BB's.
1629 // We can only support instructions that do not define values that are
1630 // live outside of the current basic block.
1631 for (User *U : BBI->users()) {
1632 Instruction *UI = cast<Instruction>(U);
1633 if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1636 // Looks ok, continue checking.
1642 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1643 /// that is defined in the same block as the branch and if any PHI entries are
1644 /// constants, thread edges corresponding to that entry to be branches to their
1645 /// ultimate destination.
1646 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) {
1647 BasicBlock *BB = BI->getParent();
1648 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1649 // NOTE: we currently cannot transform this case if the PHI node is used
1650 // outside of the block.
1651 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1654 // Degenerate case of a single entry PHI.
1655 if (PN->getNumIncomingValues() == 1) {
1656 FoldSingleEntryPHINodes(PN->getParent());
1660 // Now we know that this block has multiple preds and two succs.
1661 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1663 if (HasNoDuplicateCall(BB)) return false;
1665 // Okay, this is a simple enough basic block. See if any phi values are
1667 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1668 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1669 if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1671 // Okay, we now know that all edges from PredBB should be revectored to
1672 // branch to RealDest.
1673 BasicBlock *PredBB = PN->getIncomingBlock(i);
1674 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1676 if (RealDest == BB) continue; // Skip self loops.
1677 // Skip if the predecessor's terminator is an indirect branch.
1678 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1680 // The dest block might have PHI nodes, other predecessors and other
1681 // difficult cases. Instead of being smart about this, just insert a new
1682 // block that jumps to the destination block, effectively splitting
1683 // the edge we are about to create.
1684 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1685 RealDest->getName()+".critedge",
1686 RealDest->getParent(), RealDest);
1687 BranchInst::Create(RealDest, EdgeBB);
1689 // Update PHI nodes.
1690 AddPredecessorToBlock(RealDest, EdgeBB, BB);
1692 // BB may have instructions that are being threaded over. Clone these
1693 // instructions into EdgeBB. We know that there will be no uses of the
1694 // cloned instructions outside of EdgeBB.
1695 BasicBlock::iterator InsertPt = EdgeBB->begin();
1696 DenseMap<Value*, Value*> TranslateMap; // Track translated values.
1697 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1698 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1699 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1702 // Clone the instruction.
1703 Instruction *N = BBI->clone();
1704 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1706 // Update operands due to translation.
1707 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1709 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1710 if (PI != TranslateMap.end())
1714 // Check for trivial simplification.
1715 if (Value *V = SimplifyInstruction(N, DL)) {
1716 TranslateMap[BBI] = V;
1717 delete N; // Instruction folded away, don't need actual inst
1719 // Insert the new instruction into its new home.
1720 EdgeBB->getInstList().insert(InsertPt, N);
1721 if (!BBI->use_empty())
1722 TranslateMap[BBI] = N;
1726 // Loop over all of the edges from PredBB to BB, changing them to branch
1727 // to EdgeBB instead.
1728 TerminatorInst *PredBBTI = PredBB->getTerminator();
1729 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1730 if (PredBBTI->getSuccessor(i) == BB) {
1731 BB->removePredecessor(PredBB);
1732 PredBBTI->setSuccessor(i, EdgeBB);
1735 // Recurse, simplifying any other constants.
1736 return FoldCondBranchOnPHI(BI, DL) | true;
1742 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1743 /// PHI node, see if we can eliminate it.
1744 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) {
1745 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1746 // statement", which has a very simple dominance structure. Basically, we
1747 // are trying to find the condition that is being branched on, which
1748 // subsequently causes this merge to happen. We really want control
1749 // dependence information for this check, but simplifycfg can't keep it up
1750 // to date, and this catches most of the cases we care about anyway.
1751 BasicBlock *BB = PN->getParent();
1752 BasicBlock *IfTrue, *IfFalse;
1753 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1755 // Don't bother if the branch will be constant folded trivially.
1756 isa<ConstantInt>(IfCond))
1759 // Okay, we found that we can merge this two-entry phi node into a select.
1760 // Doing so would require us to fold *all* two entry phi nodes in this block.
1761 // At some point this becomes non-profitable (particularly if the target
1762 // doesn't support cmov's). Only do this transformation if there are two or
1763 // fewer PHI nodes in this block.
1764 unsigned NumPhis = 0;
1765 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1769 // Loop over the PHI's seeing if we can promote them all to select
1770 // instructions. While we are at it, keep track of the instructions
1771 // that need to be moved to the dominating block.
1772 SmallPtrSet<Instruction*, 4> AggressiveInsts;
1773 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1774 MaxCostVal1 = PHINodeFoldingThreshold;
1776 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1777 PHINode *PN = cast<PHINode>(II++);
1778 if (Value *V = SimplifyInstruction(PN, DL)) {
1779 PN->replaceAllUsesWith(V);
1780 PN->eraseFromParent();
1784 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1786 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1791 // If we folded the first phi, PN dangles at this point. Refresh it. If
1792 // we ran out of PHIs then we simplified them all.
1793 PN = dyn_cast<PHINode>(BB->begin());
1794 if (!PN) return true;
1796 // Don't fold i1 branches on PHIs which contain binary operators. These can
1797 // often be turned into switches and other things.
1798 if (PN->getType()->isIntegerTy(1) &&
1799 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1800 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1801 isa<BinaryOperator>(IfCond)))
1804 // If we all PHI nodes are promotable, check to make sure that all
1805 // instructions in the predecessor blocks can be promoted as well. If
1806 // not, we won't be able to get rid of the control flow, so it's not
1807 // worth promoting to select instructions.
1808 BasicBlock *DomBlock = nullptr;
1809 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1810 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1811 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1814 DomBlock = *pred_begin(IfBlock1);
1815 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1816 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1817 // This is not an aggressive instruction that we can promote.
1818 // Because of this, we won't be able to get rid of the control
1819 // flow, so the xform is not worth it.
1824 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1827 DomBlock = *pred_begin(IfBlock2);
1828 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1829 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1830 // This is not an aggressive instruction that we can promote.
1831 // Because of this, we won't be able to get rid of the control
1832 // flow, so the xform is not worth it.
1837 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
1838 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
1840 // If we can still promote the PHI nodes after this gauntlet of tests,
1841 // do all of the PHI's now.
1842 Instruction *InsertPt = DomBlock->getTerminator();
1843 IRBuilder<true, NoFolder> Builder(InsertPt);
1845 // Move all 'aggressive' instructions, which are defined in the
1846 // conditional parts of the if's up to the dominating block.
1848 DomBlock->getInstList().splice(InsertPt,
1849 IfBlock1->getInstList(), IfBlock1->begin(),
1850 IfBlock1->getTerminator());
1852 DomBlock->getInstList().splice(InsertPt,
1853 IfBlock2->getInstList(), IfBlock2->begin(),
1854 IfBlock2->getTerminator());
1856 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1857 // Change the PHI node into a select instruction.
1858 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1859 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1862 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1863 PN->replaceAllUsesWith(NV);
1865 PN->eraseFromParent();
1868 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1869 // has been flattened. Change DomBlock to jump directly to our new block to
1870 // avoid other simplifycfg's kicking in on the diamond.
1871 TerminatorInst *OldTI = DomBlock->getTerminator();
1872 Builder.SetInsertPoint(OldTI);
1873 Builder.CreateBr(BB);
1874 OldTI->eraseFromParent();
1878 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1879 /// to two returning blocks, try to merge them together into one return,
1880 /// introducing a select if the return values disagree.
1881 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1882 IRBuilder<> &Builder) {
1883 assert(BI->isConditional() && "Must be a conditional branch");
1884 BasicBlock *TrueSucc = BI->getSuccessor(0);
1885 BasicBlock *FalseSucc = BI->getSuccessor(1);
1886 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1887 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1889 // Check to ensure both blocks are empty (just a return) or optionally empty
1890 // with PHI nodes. If there are other instructions, merging would cause extra
1891 // computation on one path or the other.
1892 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1894 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1897 Builder.SetInsertPoint(BI);
1898 // Okay, we found a branch that is going to two return nodes. If
1899 // there is no return value for this function, just change the
1900 // branch into a return.
1901 if (FalseRet->getNumOperands() == 0) {
1902 TrueSucc->removePredecessor(BI->getParent());
1903 FalseSucc->removePredecessor(BI->getParent());
1904 Builder.CreateRetVoid();
1905 EraseTerminatorInstAndDCECond(BI);
1909 // Otherwise, figure out what the true and false return values are
1910 // so we can insert a new select instruction.
1911 Value *TrueValue = TrueRet->getReturnValue();
1912 Value *FalseValue = FalseRet->getReturnValue();
1914 // Unwrap any PHI nodes in the return blocks.
1915 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1916 if (TVPN->getParent() == TrueSucc)
1917 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1918 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1919 if (FVPN->getParent() == FalseSucc)
1920 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1922 // In order for this transformation to be safe, we must be able to
1923 // unconditionally execute both operands to the return. This is
1924 // normally the case, but we could have a potentially-trapping
1925 // constant expression that prevents this transformation from being
1927 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1930 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1934 // Okay, we collected all the mapped values and checked them for sanity, and
1935 // defined to really do this transformation. First, update the CFG.
1936 TrueSucc->removePredecessor(BI->getParent());
1937 FalseSucc->removePredecessor(BI->getParent());
1939 // Insert select instructions where needed.
1940 Value *BrCond = BI->getCondition();
1942 // Insert a select if the results differ.
1943 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1944 } else if (isa<UndefValue>(TrueValue)) {
1945 TrueValue = FalseValue;
1947 TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1948 FalseValue, "retval");
1952 Value *RI = !TrueValue ?
1953 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1957 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1958 << "\n " << *BI << "NewRet = " << *RI
1959 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1961 EraseTerminatorInstAndDCECond(BI);
1966 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1967 /// probabilities of the branch taking each edge. Fills in the two APInt
1968 /// parameters and return true, or returns false if no or invalid metadata was
1970 static bool ExtractBranchMetadata(BranchInst *BI,
1971 uint64_t &ProbTrue, uint64_t &ProbFalse) {
1972 assert(BI->isConditional() &&
1973 "Looking for probabilities on unconditional branch?");
1974 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1975 if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1976 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1977 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1978 if (!CITrue || !CIFalse) return false;
1979 ProbTrue = CITrue->getValue().getZExtValue();
1980 ProbFalse = CIFalse->getValue().getZExtValue();
1984 /// checkCSEInPredecessor - Return true if the given instruction is available
1985 /// in its predecessor block. If yes, the instruction will be removed.
1987 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1988 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1990 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1991 Instruction *PBI = &*I;
1992 // Check whether Inst and PBI generate the same value.
1993 if (Inst->isIdenticalTo(PBI)) {
1994 Inst->replaceAllUsesWith(PBI);
1995 Inst->eraseFromParent();
2002 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
2003 /// predecessor branches to us and one of our successors, fold the block into
2004 /// the predecessor and use logical operations to pick the right destination.
2005 bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL,
2006 unsigned BonusInstThreshold) {
2007 BasicBlock *BB = BI->getParent();
2009 Instruction *Cond = nullptr;
2010 if (BI->isConditional())
2011 Cond = dyn_cast<Instruction>(BI->getCondition());
2013 // For unconditional branch, check for a simple CFG pattern, where
2014 // BB has a single predecessor and BB's successor is also its predecessor's
2015 // successor. If such pattern exisits, check for CSE between BB and its
2017 if (BasicBlock *PB = BB->getSinglePredecessor())
2018 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2019 if (PBI->isConditional() &&
2020 (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2021 BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2022 for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2024 Instruction *Curr = I++;
2025 if (isa<CmpInst>(Curr)) {
2029 // Quit if we can't remove this instruction.
2030 if (!checkCSEInPredecessor(Curr, PB))
2039 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2040 Cond->getParent() != BB || !Cond->hasOneUse())
2043 // Make sure the instruction after the condition is the cond branch.
2044 BasicBlock::iterator CondIt = Cond; ++CondIt;
2046 // Ignore dbg intrinsics.
2047 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2052 // Only allow this transformation if computing the condition doesn't involve
2053 // too many instructions and these involved instructions can be executed
2054 // unconditionally. We denote all involved instructions except the condition
2055 // as "bonus instructions", and only allow this transformation when the
2056 // number of the bonus instructions does not exceed a certain threshold.
2057 unsigned NumBonusInsts = 0;
2058 for (auto I = BB->begin(); Cond != I; ++I) {
2059 // Ignore dbg intrinsics.
2060 if (isa<DbgInfoIntrinsic>(I))
2062 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I, DL))
2064 // I has only one use and can be executed unconditionally.
2065 Instruction *User = dyn_cast<Instruction>(I->user_back());
2066 if (User == nullptr || User->getParent() != BB)
2068 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2069 // to use any other instruction, User must be an instruction between next(I)
2072 // Early exits once we reach the limit.
2073 if (NumBonusInsts > BonusInstThreshold)
2077 // Cond is known to be a compare or binary operator. Check to make sure that
2078 // neither operand is a potentially-trapping constant expression.
2079 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2082 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2086 // Finally, don't infinitely unroll conditional loops.
2087 BasicBlock *TrueDest = BI->getSuccessor(0);
2088 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2089 if (TrueDest == BB || FalseDest == BB)
2092 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2093 BasicBlock *PredBlock = *PI;
2094 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2096 // Check that we have two conditional branches. If there is a PHI node in
2097 // the common successor, verify that the same value flows in from both
2099 SmallVector<PHINode*, 4> PHIs;
2100 if (!PBI || PBI->isUnconditional() ||
2101 (BI->isConditional() &&
2102 !SafeToMergeTerminators(BI, PBI)) ||
2103 (!BI->isConditional() &&
2104 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2107 // Determine if the two branches share a common destination.
2108 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2109 bool InvertPredCond = false;
2111 if (BI->isConditional()) {
2112 if (PBI->getSuccessor(0) == TrueDest)
2113 Opc = Instruction::Or;
2114 else if (PBI->getSuccessor(1) == FalseDest)
2115 Opc = Instruction::And;
2116 else if (PBI->getSuccessor(0) == FalseDest)
2117 Opc = Instruction::And, InvertPredCond = true;
2118 else if (PBI->getSuccessor(1) == TrueDest)
2119 Opc = Instruction::Or, InvertPredCond = true;
2123 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2127 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2128 IRBuilder<> Builder(PBI);
2130 // If we need to invert the condition in the pred block to match, do so now.
2131 if (InvertPredCond) {
2132 Value *NewCond = PBI->getCondition();
2134 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2135 CmpInst *CI = cast<CmpInst>(NewCond);
2136 CI->setPredicate(CI->getInversePredicate());
2138 NewCond = Builder.CreateNot(NewCond,
2139 PBI->getCondition()->getName()+".not");
2142 PBI->setCondition(NewCond);
2143 PBI->swapSuccessors();
2146 // If we have bonus instructions, clone them into the predecessor block.
2147 // Note that there may be mutliple predecessor blocks, so we cannot move
2148 // bonus instructions to a predecessor block.
2149 ValueToValueMapTy VMap; // maps original values to cloned values
2150 // We already make sure Cond is the last instruction before BI. Therefore,
2151 // every instructions before Cond other than DbgInfoIntrinsic are bonus
2153 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
2154 if (isa<DbgInfoIntrinsic>(BonusInst))
2156 Instruction *NewBonusInst = BonusInst->clone();
2157 RemapInstruction(NewBonusInst, VMap,
2158 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2159 VMap[BonusInst] = NewBonusInst;
2161 // If we moved a load, we cannot any longer claim any knowledge about
2162 // its potential value. The previous information might have been valid
2163 // only given the branch precondition.
2164 // For an analogous reason, we must also drop all the metadata whose
2165 // semantics we don't understand.
2166 NewBonusInst->dropUnknownMetadata(LLVMContext::MD_dbg);
2168 PredBlock->getInstList().insert(PBI, NewBonusInst);
2169 NewBonusInst->takeName(BonusInst);
2170 BonusInst->setName(BonusInst->getName() + ".old");
2173 // Clone Cond into the predecessor basic block, and or/and the
2174 // two conditions together.
2175 Instruction *New = Cond->clone();
2176 RemapInstruction(New, VMap,
2177 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2178 PredBlock->getInstList().insert(PBI, New);
2179 New->takeName(Cond);
2180 Cond->setName(New->getName() + ".old");
2182 if (BI->isConditional()) {
2183 Instruction *NewCond =
2184 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2186 PBI->setCondition(NewCond);
2188 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2189 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2191 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2193 SmallVector<uint64_t, 8> NewWeights;
2195 if (PBI->getSuccessor(0) == BB) {
2196 if (PredHasWeights && SuccHasWeights) {
2197 // PBI: br i1 %x, BB, FalseDest
2198 // BI: br i1 %y, TrueDest, FalseDest
2199 //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2200 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2201 //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2202 // TrueWeight for PBI * FalseWeight for BI.
2203 // We assume that total weights of a BranchInst can fit into 32 bits.
2204 // Therefore, we will not have overflow using 64-bit arithmetic.
2205 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2206 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2208 AddPredecessorToBlock(TrueDest, PredBlock, BB);
2209 PBI->setSuccessor(0, TrueDest);
2211 if (PBI->getSuccessor(1) == BB) {
2212 if (PredHasWeights && SuccHasWeights) {
2213 // PBI: br i1 %x, TrueDest, BB
2214 // BI: br i1 %y, TrueDest, FalseDest
2215 //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2216 // FalseWeight for PBI * TrueWeight for BI.
2217 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2218 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2219 //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2220 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2222 AddPredecessorToBlock(FalseDest, PredBlock, BB);
2223 PBI->setSuccessor(1, FalseDest);
2225 if (NewWeights.size() == 2) {
2226 // Halve the weights if any of them cannot fit in an uint32_t
2227 FitWeights(NewWeights);
2229 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2230 PBI->setMetadata(LLVMContext::MD_prof,
2231 MDBuilder(BI->getContext()).
2232 createBranchWeights(MDWeights));
2234 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2236 // Update PHI nodes in the common successors.
2237 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2238 ConstantInt *PBI_C = cast<ConstantInt>(
2239 PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2240 assert(PBI_C->getType()->isIntegerTy(1));
2241 Instruction *MergedCond = nullptr;
2242 if (PBI->getSuccessor(0) == TrueDest) {
2243 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2244 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2245 // is false: !PBI_Cond and BI_Value
2246 Instruction *NotCond =
2247 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2250 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2255 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2256 PBI->getCondition(), MergedCond,
2259 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2260 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2261 // is false: PBI_Cond and BI_Value
2263 cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2264 PBI->getCondition(), New,
2266 if (PBI_C->isOne()) {
2267 Instruction *NotCond =
2268 cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2271 cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2272 NotCond, MergedCond,
2277 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2280 // Change PBI from Conditional to Unconditional.
2281 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2282 EraseTerminatorInstAndDCECond(PBI);
2286 // TODO: If BB is reachable from all paths through PredBlock, then we
2287 // could replace PBI's branch probabilities with BI's.
2289 // Copy any debug value intrinsics into the end of PredBlock.
2290 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2291 if (isa<DbgInfoIntrinsic>(*I))
2292 I->clone()->insertBefore(PBI);
2299 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2300 /// predecessor of another block, this function tries to simplify it. We know
2301 /// that PBI and BI are both conditional branches, and BI is in one of the
2302 /// successor blocks of PBI - PBI branches to BI.
2303 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2304 assert(PBI->isConditional() && BI->isConditional());
2305 BasicBlock *BB = BI->getParent();
2307 // If this block ends with a branch instruction, and if there is a
2308 // predecessor that ends on a branch of the same condition, make
2309 // this conditional branch redundant.
2310 if (PBI->getCondition() == BI->getCondition() &&
2311 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2312 // Okay, the outcome of this conditional branch is statically
2313 // knowable. If this block had a single pred, handle specially.
2314 if (BB->getSinglePredecessor()) {
2315 // Turn this into a branch on constant.
2316 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2317 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2319 return true; // Nuke the branch on constant.
2322 // Otherwise, if there are multiple predecessors, insert a PHI that merges
2323 // in the constant and simplify the block result. Subsequent passes of
2324 // simplifycfg will thread the block.
2325 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2326 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2327 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2328 std::distance(PB, PE),
2329 BI->getCondition()->getName() + ".pr",
2331 // Okay, we're going to insert the PHI node. Since PBI is not the only
2332 // predecessor, compute the PHI'd conditional value for all of the preds.
2333 // Any predecessor where the condition is not computable we keep symbolic.
2334 for (pred_iterator PI = PB; PI != PE; ++PI) {
2335 BasicBlock *P = *PI;
2336 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2337 PBI != BI && PBI->isConditional() &&
2338 PBI->getCondition() == BI->getCondition() &&
2339 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2340 bool CondIsTrue = PBI->getSuccessor(0) == BB;
2341 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2344 NewPN->addIncoming(BI->getCondition(), P);
2348 BI->setCondition(NewPN);
2353 // If this is a conditional branch in an empty block, and if any
2354 // predecessors are a conditional branch to one of our destinations,
2355 // fold the conditions into logical ops and one cond br.
2356 BasicBlock::iterator BBI = BB->begin();
2357 // Ignore dbg intrinsics.
2358 while (isa<DbgInfoIntrinsic>(BBI))
2364 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2369 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2371 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2372 PBIOp = 0, BIOp = 1;
2373 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2374 PBIOp = 1, BIOp = 0;
2375 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2380 // Check to make sure that the other destination of this branch
2381 // isn't BB itself. If so, this is an infinite loop that will
2382 // keep getting unwound.
2383 if (PBI->getSuccessor(PBIOp) == BB)
2386 // Do not perform this transformation if it would require
2387 // insertion of a large number of select instructions. For targets
2388 // without predication/cmovs, this is a big pessimization.
2390 // Also do not perform this transformation if any phi node in the common
2391 // destination block can trap when reached by BB or PBB (PR17073). In that
2392 // case, it would be unsafe to hoist the operation into a select instruction.
2394 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2395 unsigned NumPhis = 0;
2396 for (BasicBlock::iterator II = CommonDest->begin();
2397 isa<PHINode>(II); ++II, ++NumPhis) {
2398 if (NumPhis > 2) // Disable this xform.
2401 PHINode *PN = cast<PHINode>(II);
2402 Value *BIV = PN->getIncomingValueForBlock(BB);
2403 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2407 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2408 Value *PBIV = PN->getIncomingValue(PBBIdx);
2409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2414 // Finally, if everything is ok, fold the branches to logical ops.
2415 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2417 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2418 << "AND: " << *BI->getParent());
2421 // If OtherDest *is* BB, then BB is a basic block with a single conditional
2422 // branch in it, where one edge (OtherDest) goes back to itself but the other
2423 // exits. We don't *know* that the program avoids the infinite loop
2424 // (even though that seems likely). If we do this xform naively, we'll end up
2425 // recursively unpeeling the loop. Since we know that (after the xform is
2426 // done) that the block *is* infinite if reached, we just make it an obviously
2427 // infinite loop with no cond branch.
2428 if (OtherDest == BB) {
2429 // Insert it at the end of the function, because it's either code,
2430 // or it won't matter if it's hot. :)
2431 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2432 "infloop", BB->getParent());
2433 BranchInst::Create(InfLoopBlock, InfLoopBlock);
2434 OtherDest = InfLoopBlock;
2437 DEBUG(dbgs() << *PBI->getParent()->getParent());
2439 // BI may have other predecessors. Because of this, we leave
2440 // it alone, but modify PBI.
2442 // Make sure we get to CommonDest on True&True directions.
2443 Value *PBICond = PBI->getCondition();
2444 IRBuilder<true, NoFolder> Builder(PBI);
2446 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2448 Value *BICond = BI->getCondition();
2450 BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2452 // Merge the conditions.
2453 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2455 // Modify PBI to branch on the new condition to the new dests.
2456 PBI->setCondition(Cond);
2457 PBI->setSuccessor(0, CommonDest);
2458 PBI->setSuccessor(1, OtherDest);
2460 // Update branch weight for PBI.
2461 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2462 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2464 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2466 if (PredHasWeights && SuccHasWeights) {
2467 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2468 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2469 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2470 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2471 // The weight to CommonDest should be PredCommon * SuccTotal +
2472 // PredOther * SuccCommon.
2473 // The weight to OtherDest should be PredOther * SuccOther.
2474 SmallVector<uint64_t, 2> NewWeights;
2475 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2476 PredOther * SuccCommon);
2477 NewWeights.push_back(PredOther * SuccOther);
2478 // Halve the weights if any of them cannot fit in an uint32_t
2479 FitWeights(NewWeights);
2481 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2482 PBI->setMetadata(LLVMContext::MD_prof,
2483 MDBuilder(BI->getContext()).
2484 createBranchWeights(MDWeights));
2487 // OtherDest may have phi nodes. If so, add an entry from PBI's
2488 // block that are identical to the entries for BI's block.
2489 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2491 // We know that the CommonDest already had an edge from PBI to
2492 // it. If it has PHIs though, the PHIs may have different
2493 // entries for BB and PBI's BB. If so, insert a select to make
2496 for (BasicBlock::iterator II = CommonDest->begin();
2497 (PN = dyn_cast<PHINode>(II)); ++II) {
2498 Value *BIV = PN->getIncomingValueForBlock(BB);
2499 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2500 Value *PBIV = PN->getIncomingValue(PBBIdx);
2502 // Insert a select in PBI to pick the right value.
2503 Value *NV = cast<SelectInst>
2504 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2505 PN->setIncomingValue(PBBIdx, NV);
2509 DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2510 DEBUG(dbgs() << *PBI->getParent()->getParent());
2512 // This basic block is probably dead. We know it has at least
2513 // one fewer predecessor.
2517 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2518 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2519 // Takes care of updating the successors and removing the old terminator.
2520 // Also makes sure not to introduce new successors by assuming that edges to
2521 // non-successor TrueBBs and FalseBBs aren't reachable.
2522 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2523 BasicBlock *TrueBB, BasicBlock *FalseBB,
2524 uint32_t TrueWeight,
2525 uint32_t FalseWeight){
2526 // Remove any superfluous successor edges from the CFG.
2527 // First, figure out which successors to preserve.
2528 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2530 BasicBlock *KeepEdge1 = TrueBB;
2531 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2533 // Then remove the rest.
2534 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2535 BasicBlock *Succ = OldTerm->getSuccessor(I);
2536 // Make sure only to keep exactly one copy of each edge.
2537 if (Succ == KeepEdge1)
2538 KeepEdge1 = nullptr;
2539 else if (Succ == KeepEdge2)
2540 KeepEdge2 = nullptr;
2542 Succ->removePredecessor(OldTerm->getParent());
2545 IRBuilder<> Builder(OldTerm);
2546 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2548 // Insert an appropriate new terminator.
2549 if (!KeepEdge1 && !KeepEdge2) {
2550 if (TrueBB == FalseBB)
2551 // We were only looking for one successor, and it was present.
2552 // Create an unconditional branch to it.
2553 Builder.CreateBr(TrueBB);
2555 // We found both of the successors we were looking for.
2556 // Create a conditional branch sharing the condition of the select.
2557 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2558 if (TrueWeight != FalseWeight)
2559 NewBI->setMetadata(LLVMContext::MD_prof,
2560 MDBuilder(OldTerm->getContext()).
2561 createBranchWeights(TrueWeight, FalseWeight));
2563 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2564 // Neither of the selected blocks were successors, so this
2565 // terminator must be unreachable.
2566 new UnreachableInst(OldTerm->getContext(), OldTerm);
2568 // One of the selected values was a successor, but the other wasn't.
2569 // Insert an unconditional branch to the one that was found;
2570 // the edge to the one that wasn't must be unreachable.
2572 // Only TrueBB was found.
2573 Builder.CreateBr(TrueBB);
2575 // Only FalseBB was found.
2576 Builder.CreateBr(FalseBB);
2579 EraseTerminatorInstAndDCECond(OldTerm);
2583 // SimplifySwitchOnSelect - Replaces
2584 // (switch (select cond, X, Y)) on constant X, Y
2585 // with a branch - conditional if X and Y lead to distinct BBs,
2586 // unconditional otherwise.
2587 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2588 // Check for constant integer values in the select.
2589 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2590 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2591 if (!TrueVal || !FalseVal)
2594 // Find the relevant condition and destinations.
2595 Value *Condition = Select->getCondition();
2596 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2597 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2599 // Get weight for TrueBB and FalseBB.
2600 uint32_t TrueWeight = 0, FalseWeight = 0;
2601 SmallVector<uint64_t, 8> Weights;
2602 bool HasWeights = HasBranchWeights(SI);
2604 GetBranchWeights(SI, Weights);
2605 if (Weights.size() == 1 + SI->getNumCases()) {
2606 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2607 getSuccessorIndex()];
2608 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2609 getSuccessorIndex()];
2613 // Perform the actual simplification.
2614 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2615 TrueWeight, FalseWeight);
2618 // SimplifyIndirectBrOnSelect - Replaces
2619 // (indirectbr (select cond, blockaddress(@fn, BlockA),
2620 // blockaddress(@fn, BlockB)))
2622 // (br cond, BlockA, BlockB).
2623 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2624 // Check that both operands of the select are block addresses.
2625 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2626 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2630 // Extract the actual blocks.
2631 BasicBlock *TrueBB = TBA->getBasicBlock();
2632 BasicBlock *FalseBB = FBA->getBasicBlock();
2634 // Perform the actual simplification.
2635 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2639 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2640 /// instruction (a seteq/setne with a constant) as the only instruction in a
2641 /// block that ends with an uncond branch. We are looking for a very specific
2642 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
2643 /// this case, we merge the first two "or's of icmp" into a switch, but then the
2644 /// default value goes to an uncond block with a seteq in it, we get something
2647 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
2649 /// %tmp = icmp eq i8 %A, 92
2652 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2654 /// We prefer to split the edge to 'end' so that there is a true/false entry to
2655 /// the PHI, merging the third icmp into the switch.
2656 static bool TryToSimplifyUncondBranchWithICmpInIt(
2657 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
2658 unsigned BonusInstThreshold, const DataLayout *DL, AssumptionTracker *AT) {
2659 BasicBlock *BB = ICI->getParent();
2661 // If the block has any PHIs in it or the icmp has multiple uses, it is too
2663 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2665 Value *V = ICI->getOperand(0);
2666 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2668 // The pattern we're looking for is where our only predecessor is a switch on
2669 // 'V' and this block is the default case for the switch. In this case we can
2670 // fold the compared value into the switch to simplify things.
2671 BasicBlock *Pred = BB->getSinglePredecessor();
2672 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
2674 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2675 if (SI->getCondition() != V)
2678 // If BB is reachable on a non-default case, then we simply know the value of
2679 // V in this block. Substitute it and constant fold the icmp instruction
2681 if (SI->getDefaultDest() != BB) {
2682 ConstantInt *VVal = SI->findCaseDest(BB);
2683 assert(VVal && "Should have a unique destination value");
2684 ICI->setOperand(0, VVal);
2686 if (Value *V = SimplifyInstruction(ICI, DL)) {
2687 ICI->replaceAllUsesWith(V);
2688 ICI->eraseFromParent();
2690 // BB is now empty, so it is likely to simplify away.
2691 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true;
2694 // Ok, the block is reachable from the default dest. If the constant we're
2695 // comparing exists in one of the other edges, then we can constant fold ICI
2697 if (SI->findCaseValue(Cst) != SI->case_default()) {
2699 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2700 V = ConstantInt::getFalse(BB->getContext());
2702 V = ConstantInt::getTrue(BB->getContext());
2704 ICI->replaceAllUsesWith(V);
2705 ICI->eraseFromParent();
2706 // BB is now empty, so it is likely to simplify away.
2707 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AT) | true;
2710 // The use of the icmp has to be in the 'end' block, by the only PHI node in
2712 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2713 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
2714 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
2715 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2718 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2720 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2721 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
2723 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2724 std::swap(DefaultCst, NewCst);
2726 // Replace ICI (which is used by the PHI for the default value) with true or
2727 // false depending on if it is EQ or NE.
2728 ICI->replaceAllUsesWith(DefaultCst);
2729 ICI->eraseFromParent();
2731 // Okay, the switch goes to this block on a default value. Add an edge from
2732 // the switch to the merge point on the compared value.
2733 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2734 BB->getParent(), BB);
2735 SmallVector<uint64_t, 8> Weights;
2736 bool HasWeights = HasBranchWeights(SI);
2738 GetBranchWeights(SI, Weights);
2739 if (Weights.size() == 1 + SI->getNumCases()) {
2740 // Split weight for default case to case for "Cst".
2741 Weights[0] = (Weights[0]+1) >> 1;
2742 Weights.push_back(Weights[0]);
2744 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2745 SI->setMetadata(LLVMContext::MD_prof,
2746 MDBuilder(SI->getContext()).
2747 createBranchWeights(MDWeights));
2750 SI->addCase(Cst, NewBB);
2752 // NewBB branches to the phi block, add the uncond branch and the phi entry.
2753 Builder.SetInsertPoint(NewBB);
2754 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2755 Builder.CreateBr(SuccBlock);
2756 PHIUse->addIncoming(NewCst, NewBB);
2760 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2761 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2762 /// fold it into a switch instruction if so.
2763 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
2764 IRBuilder<> &Builder) {
2765 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2766 if (!Cond) return false;
2769 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2770 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2771 // 'setne's and'ed together, collect them.
2772 Value *CompVal = nullptr;
2773 std::vector<ConstantInt*> Values;
2774 bool TrueWhenEqual = true;
2775 Value *ExtraCase = nullptr;
2776 unsigned UsedICmps = 0;
2778 if (Cond->getOpcode() == Instruction::Or) {
2779 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true,
2781 } else if (Cond->getOpcode() == Instruction::And) {
2782 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false,
2784 TrueWhenEqual = false;
2787 // If we didn't have a multiply compared value, fail.
2788 if (!CompVal) return false;
2790 // Avoid turning single icmps into a switch.
2794 // There might be duplicate constants in the list, which the switch
2795 // instruction can't handle, remove them now.
2796 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2797 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2799 // If Extra was used, we require at least two switch values to do the
2800 // transformation. A switch with one value is just an cond branch.
2801 if (ExtraCase && Values.size() < 2) return false;
2803 // TODO: Preserve branch weight metadata, similarly to how
2804 // FoldValueComparisonIntoPredecessors preserves it.
2806 // Figure out which block is which destination.
2807 BasicBlock *DefaultBB = BI->getSuccessor(1);
2808 BasicBlock *EdgeBB = BI->getSuccessor(0);
2809 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2811 BasicBlock *BB = BI->getParent();
2813 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2814 << " cases into SWITCH. BB is:\n" << *BB);
2816 // If there are any extra values that couldn't be folded into the switch
2817 // then we evaluate them with an explicit branch first. Split the block
2818 // right before the condbr to handle it.
2820 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2821 // Remove the uncond branch added to the old block.
2822 TerminatorInst *OldTI = BB->getTerminator();
2823 Builder.SetInsertPoint(OldTI);
2826 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2828 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2830 OldTI->eraseFromParent();
2832 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2833 // for the edge we just added.
2834 AddPredecessorToBlock(EdgeBB, BB, NewBB);
2836 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
2837 << "\nEXTRABB = " << *BB);
2841 Builder.SetInsertPoint(BI);
2842 // Convert pointer to int before we switch.
2843 if (CompVal->getType()->isPointerTy()) {
2844 assert(DL && "Cannot switch on pointer without DataLayout");
2845 CompVal = Builder.CreatePtrToInt(CompVal,
2846 DL->getIntPtrType(CompVal->getType()),
2850 // Create the new switch instruction now.
2851 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2853 // Add all of the 'cases' to the switch instruction.
2854 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2855 New->addCase(Values[i], EdgeBB);
2857 // We added edges from PI to the EdgeBB. As such, if there were any
2858 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2859 // the number of edges added.
2860 for (BasicBlock::iterator BBI = EdgeBB->begin();
2861 isa<PHINode>(BBI); ++BBI) {
2862 PHINode *PN = cast<PHINode>(BBI);
2863 Value *InVal = PN->getIncomingValueForBlock(BB);
2864 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2865 PN->addIncoming(InVal, BB);
2868 // Erase the old branch instruction.
2869 EraseTerminatorInstAndDCECond(BI);
2871 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
2875 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2876 // If this is a trivial landing pad that just continues unwinding the caught
2877 // exception then zap the landing pad, turning its invokes into calls.
2878 BasicBlock *BB = RI->getParent();
2879 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2880 if (RI->getValue() != LPInst)
2881 // Not a landing pad, or the resume is not unwinding the exception that
2882 // caused control to branch here.
2885 // Check that there are no other instructions except for debug intrinsics.
2886 BasicBlock::iterator I = LPInst, E = RI;
2888 if (!isa<DbgInfoIntrinsic>(I))
2891 // Turn all invokes that unwind here into calls and delete the basic block.
2892 bool InvokeRequiresTableEntry = false;
2893 bool Changed = false;
2894 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2895 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2897 if (II->hasFnAttr(Attribute::UWTable)) {
2898 // Don't remove an `invoke' instruction if the ABI requires an entry into
2900 InvokeRequiresTableEntry = true;
2904 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2906 // Insert a call instruction before the invoke.
2907 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2909 Call->setCallingConv(II->getCallingConv());
2910 Call->setAttributes(II->getAttributes());
2911 Call->setDebugLoc(II->getDebugLoc());
2913 // Anything that used the value produced by the invoke instruction now uses
2914 // the value produced by the call instruction. Note that we do this even
2915 // for void functions and calls with no uses so that the callgraph edge is
2917 II->replaceAllUsesWith(Call);
2918 BB->removePredecessor(II->getParent());
2920 // Insert a branch to the normal destination right before the invoke.
2921 BranchInst::Create(II->getNormalDest(), II);
2923 // Finally, delete the invoke instruction!
2924 II->eraseFromParent();
2928 if (!InvokeRequiresTableEntry)
2929 // The landingpad is now unreachable. Zap it.
2930 BB->eraseFromParent();
2935 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2936 BasicBlock *BB = RI->getParent();
2937 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2939 // Find predecessors that end with branches.
2940 SmallVector<BasicBlock*, 8> UncondBranchPreds;
2941 SmallVector<BranchInst*, 8> CondBranchPreds;
2942 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2943 BasicBlock *P = *PI;
2944 TerminatorInst *PTI = P->getTerminator();
2945 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2946 if (BI->isUnconditional())
2947 UncondBranchPreds.push_back(P);
2949 CondBranchPreds.push_back(BI);
2953 // If we found some, do the transformation!
2954 if (!UncondBranchPreds.empty() && DupRet) {
2955 while (!UncondBranchPreds.empty()) {
2956 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2957 DEBUG(dbgs() << "FOLDING: " << *BB
2958 << "INTO UNCOND BRANCH PRED: " << *Pred);
2959 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2962 // If we eliminated all predecessors of the block, delete the block now.
2963 if (pred_begin(BB) == pred_end(BB))
2964 // We know there are no successors, so just nuke the block.
2965 BB->eraseFromParent();
2970 // Check out all of the conditional branches going to this return
2971 // instruction. If any of them just select between returns, change the
2972 // branch itself into a select/return pair.
2973 while (!CondBranchPreds.empty()) {
2974 BranchInst *BI = CondBranchPreds.pop_back_val();
2976 // Check to see if the non-BB successor is also a return block.
2977 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2978 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2979 SimplifyCondBranchToTwoReturns(BI, Builder))
2985 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2986 BasicBlock *BB = UI->getParent();
2988 bool Changed = false;
2990 // If there are any instructions immediately before the unreachable that can
2991 // be removed, do so.
2992 while (UI != BB->begin()) {
2993 BasicBlock::iterator BBI = UI;
2995 // Do not delete instructions that can have side effects which might cause
2996 // the unreachable to not be reachable; specifically, calls and volatile
2997 // operations may have this effect.
2998 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
3000 if (BBI->mayHaveSideEffects()) {
3001 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
3002 if (SI->isVolatile())
3004 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
3005 if (LI->isVolatile())
3007 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3008 if (RMWI->isVolatile())
3010 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3011 if (CXI->isVolatile())
3013 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3014 !isa<LandingPadInst>(BBI)) {
3017 // Note that deleting LandingPad's here is in fact okay, although it
3018 // involves a bit of subtle reasoning. If this inst is a LandingPad,
3019 // all the predecessors of this block will be the unwind edges of Invokes,
3020 // and we can therefore guarantee this block will be erased.
3023 // Delete this instruction (any uses are guaranteed to be dead)
3024 if (!BBI->use_empty())
3025 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3026 BBI->eraseFromParent();
3030 // If the unreachable instruction is the first in the block, take a gander
3031 // at all of the predecessors of this instruction, and simplify them.
3032 if (&BB->front() != UI) return Changed;
3034 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3035 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3036 TerminatorInst *TI = Preds[i]->getTerminator();
3037 IRBuilder<> Builder(TI);
3038 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3039 if (BI->isUnconditional()) {
3040 if (BI->getSuccessor(0) == BB) {
3041 new UnreachableInst(TI->getContext(), TI);
3042 TI->eraseFromParent();
3046 if (BI->getSuccessor(0) == BB) {
3047 Builder.CreateBr(BI->getSuccessor(1));
3048 EraseTerminatorInstAndDCECond(BI);
3049 } else if (BI->getSuccessor(1) == BB) {
3050 Builder.CreateBr(BI->getSuccessor(0));
3051 EraseTerminatorInstAndDCECond(BI);
3055 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3056 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3058 if (i.getCaseSuccessor() == BB) {
3059 BB->removePredecessor(SI->getParent());
3064 // If the default value is unreachable, figure out the most popular
3065 // destination and make it the default.
3066 if (SI->getDefaultDest() == BB) {
3067 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
3068 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3070 std::pair<unsigned, unsigned> &entry =
3071 Popularity[i.getCaseSuccessor()];
3072 if (entry.first == 0) {
3074 entry.second = i.getCaseIndex();
3080 // Find the most popular block.
3081 unsigned MaxPop = 0;
3082 unsigned MaxIndex = 0;
3083 BasicBlock *MaxBlock = nullptr;
3084 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
3085 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
3086 if (I->second.first > MaxPop ||
3087 (I->second.first == MaxPop && MaxIndex > I->second.second)) {
3088 MaxPop = I->second.first;
3089 MaxIndex = I->second.second;
3090 MaxBlock = I->first;
3094 // Make this the new default, allowing us to delete any explicit
3096 SI->setDefaultDest(MaxBlock);
3099 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
3101 if (isa<PHINode>(MaxBlock->begin()))
3102 for (unsigned i = 0; i != MaxPop-1; ++i)
3103 MaxBlock->removePredecessor(SI->getParent());
3105 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3107 if (i.getCaseSuccessor() == MaxBlock) {
3113 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
3114 if (II->getUnwindDest() == BB) {
3115 // Convert the invoke to a call instruction. This would be a good
3116 // place to note that the call does not throw though.
3117 BranchInst *BI = Builder.CreateBr(II->getNormalDest());
3118 II->removeFromParent(); // Take out of symbol table
3120 // Insert the call now...
3121 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
3122 Builder.SetInsertPoint(BI);
3123 CallInst *CI = Builder.CreateCall(II->getCalledValue(),
3124 Args, II->getName());
3125 CI->setCallingConv(II->getCallingConv());
3126 CI->setAttributes(II->getAttributes());
3127 // If the invoke produced a value, the call does now instead.
3128 II->replaceAllUsesWith(CI);
3135 // If this block is now dead, remove it.
3136 if (pred_begin(BB) == pred_end(BB) &&
3137 BB != &BB->getParent()->getEntryBlock()) {
3138 // We know there are no successors, so just nuke the block.
3139 BB->eraseFromParent();
3146 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3147 /// integer range comparison into a sub, an icmp and a branch.
3148 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3149 assert(SI->getNumCases() > 1 && "Degenerate switch?");
3151 // Make sure all cases point to the same destination and gather the values.
3152 SmallVector<ConstantInt *, 16> Cases;
3153 SwitchInst::CaseIt I = SI->case_begin();
3154 Cases.push_back(I.getCaseValue());
3155 SwitchInst::CaseIt PrevI = I++;
3156 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3157 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3159 Cases.push_back(I.getCaseValue());
3161 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3163 // Sort the case values, then check if they form a range we can transform.
3164 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3165 for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3166 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3170 Constant *Offset = ConstantExpr::getNeg(Cases.back());
3171 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3173 Value *Sub = SI->getCondition();
3174 if (!Offset->isNullValue())
3175 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3177 // If NumCases overflowed, then all possible values jump to the successor.
3178 if (NumCases->isNullValue() && SI->getNumCases() != 0)
3179 Cmp = ConstantInt::getTrue(SI->getContext());
3181 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3182 BranchInst *NewBI = Builder.CreateCondBr(
3183 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3185 // Update weight for the newly-created conditional branch.
3186 SmallVector<uint64_t, 8> Weights;
3187 bool HasWeights = HasBranchWeights(SI);
3189 GetBranchWeights(SI, Weights);
3190 if (Weights.size() == 1 + SI->getNumCases()) {
3191 // Combine all weights for the cases to be the true weight of NewBI.
3192 // We assume that the sum of all weights for a Terminator can fit into 32
3194 uint32_t NewTrueWeight = 0;
3195 for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3196 NewTrueWeight += (uint32_t)Weights[I];
3197 NewBI->setMetadata(LLVMContext::MD_prof,
3198 MDBuilder(SI->getContext()).
3199 createBranchWeights(NewTrueWeight,
3200 (uint32_t)Weights[0]));
3204 // Prune obsolete incoming values off the successor's PHI nodes.
3205 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3206 isa<PHINode>(BBI); ++BBI) {
3207 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3208 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3210 SI->eraseFromParent();
3215 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3216 /// and use it to remove dead cases.
3217 static bool EliminateDeadSwitchCases(SwitchInst *SI, const DataLayout *DL,
3218 AssumptionTracker *AT) {
3219 Value *Cond = SI->getCondition();
3220 unsigned Bits = Cond->getType()->getIntegerBitWidth();
3221 APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3222 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AT, SI);
3224 // Gather dead cases.
3225 SmallVector<ConstantInt*, 8> DeadCases;
3226 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3227 if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3228 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3229 DeadCases.push_back(I.getCaseValue());
3230 DEBUG(dbgs() << "SimplifyCFG: switch case '"
3231 << I.getCaseValue() << "' is dead.\n");
3235 SmallVector<uint64_t, 8> Weights;
3236 bool HasWeight = HasBranchWeights(SI);
3238 GetBranchWeights(SI, Weights);
3239 HasWeight = (Weights.size() == 1 + SI->getNumCases());
3242 // Remove dead cases from the switch.
3243 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3244 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3245 assert(Case != SI->case_default() &&
3246 "Case was not found. Probably mistake in DeadCases forming.");
3248 std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3252 // Prune unused values from PHI nodes.
3253 Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3254 SI->removeCase(Case);
3256 if (HasWeight && Weights.size() >= 2) {
3257 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3258 SI->setMetadata(LLVMContext::MD_prof,
3259 MDBuilder(SI->getParent()->getContext()).
3260 createBranchWeights(MDWeights));
3263 return !DeadCases.empty();
3266 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
3267 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3268 /// by an unconditional branch), look at the phi node for BB in the successor
3269 /// block and see if the incoming value is equal to CaseValue. If so, return
3270 /// the phi node, and set PhiIndex to BB's index in the phi node.
3271 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3274 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3275 return nullptr; // BB must be empty to be a candidate for simplification.
3276 if (!BB->getSinglePredecessor())
3277 return nullptr; // BB must be dominated by the switch.
3279 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3280 if (!Branch || !Branch->isUnconditional())
3281 return nullptr; // Terminator must be unconditional branch.
3283 BasicBlock *Succ = Branch->getSuccessor(0);
3285 BasicBlock::iterator I = Succ->begin();
3286 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3287 int Idx = PHI->getBasicBlockIndex(BB);
3288 assert(Idx >= 0 && "PHI has no entry for predecessor?");
3290 Value *InValue = PHI->getIncomingValue(Idx);
3291 if (InValue != CaseValue) continue;
3300 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3301 /// instruction to a phi node dominated by the switch, if that would mean that
3302 /// some of the destination blocks of the switch can be folded away.
3303 /// Returns true if a change is made.
3304 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3305 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3306 ForwardingNodesMap ForwardingNodes;
3308 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3309 ConstantInt *CaseValue = I.getCaseValue();
3310 BasicBlock *CaseDest = I.getCaseSuccessor();
3313 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3317 ForwardingNodes[PHI].push_back(PhiIndex);
3320 bool Changed = false;
3322 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3323 E = ForwardingNodes.end(); I != E; ++I) {
3324 PHINode *Phi = I->first;
3325 SmallVectorImpl<int> &Indexes = I->second;
3327 if (Indexes.size() < 2) continue;
3329 for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3330 Phi->setIncomingValue(Indexes[I], SI->getCondition());
3337 /// ValidLookupTableConstant - Return true if the backend will be able to handle
3338 /// initializing an array of constants like C.
3339 static bool ValidLookupTableConstant(Constant *C) {
3340 if (C->isThreadDependent())