[EH] Create removeUnwindEdge utility
[oota-llvm.git] / lib / Transforms / Utils / SimplifyCFG.cpp
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/NoFolder.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/ValueMapper.h"
48 #include <algorithm>
49 #include <map>
50 #include <set>
51 using namespace llvm;
52 using namespace PatternMatch;
53
54 #define DEBUG_TYPE "simplifycfg"
55
56 // Chosen as 2 so as to be cheap, but still to have enough power to fold
57 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
58 // To catch this, we need to fold a compare and a select, hence '2' being the
59 // minimum reasonable default.
60 static cl::opt<unsigned>
61 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2),
62    cl::desc("Control the amount of phi node folding to perform (default = 2)"));
63
64 static cl::opt<bool>
65 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
66        cl::desc("Duplicate return instructions into unconditional branches"));
67
68 static cl::opt<bool>
69 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
70        cl::desc("Sink common instructions down to the end block"));
71
72 static cl::opt<bool> HoistCondStores(
73     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
74     cl::desc("Hoist conditional stores if an unconditional store precedes"));
75
76 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
77 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping");
78 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
79 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
80 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
81 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
82 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
83
84 namespace {
85   // The first field contains the value that the switch produces when a certain
86   // case group is selected, and the second field is a vector containing the
87   // cases composing the case group.
88   typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
89     SwitchCaseResultVectorTy;
90   // The first field contains the phi node that generates a result of the switch
91   // and the second field contains the value generated for a certain case in the
92   // switch for that PHI.
93   typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
94
95   /// ValueEqualityComparisonCase - Represents a case of a switch.
96   struct ValueEqualityComparisonCase {
97     ConstantInt *Value;
98     BasicBlock *Dest;
99
100     ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
101       : Value(Value), Dest(Dest) {}
102
103     bool operator<(ValueEqualityComparisonCase RHS) const {
104       // Comparing pointers is ok as we only rely on the order for uniquing.
105       return Value < RHS.Value;
106     }
107
108     bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
109   };
110
111 class SimplifyCFGOpt {
112   const TargetTransformInfo &TTI;
113   const DataLayout &DL;
114   unsigned BonusInstThreshold;
115   AssumptionCache *AC;
116   Value *isValueEqualityComparison(TerminatorInst *TI);
117   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
118                                std::vector<ValueEqualityComparisonCase> &Cases);
119   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
120                                                      BasicBlock *Pred,
121                                                      IRBuilder<> &Builder);
122   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
123                                            IRBuilder<> &Builder);
124
125   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
126   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
127   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
128   bool SimplifyUnreachable(UnreachableInst *UI);
129   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
130   bool SimplifyIndirectBr(IndirectBrInst *IBI);
131   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
132   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
133
134 public:
135   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
136                  unsigned BonusInstThreshold, AssumptionCache *AC)
137       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {}
138   bool run(BasicBlock *BB);
139 };
140 }
141
142 /// Return true if it is safe to merge these two
143 /// terminator instructions together.
144 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
145   if (SI1 == SI2) return false;  // Can't merge with self!
146
147   // It is not safe to merge these two switch instructions if they have a common
148   // successor, and if that successor has a PHI node, and if *that* PHI node has
149   // conflicting incoming values from the two switch blocks.
150   BasicBlock *SI1BB = SI1->getParent();
151   BasicBlock *SI2BB = SI2->getParent();
152   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
153
154   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
155     if (SI1Succs.count(*I))
156       for (BasicBlock::iterator BBI = (*I)->begin();
157            isa<PHINode>(BBI); ++BBI) {
158         PHINode *PN = cast<PHINode>(BBI);
159         if (PN->getIncomingValueForBlock(SI1BB) !=
160             PN->getIncomingValueForBlock(SI2BB))
161           return false;
162       }
163
164   return true;
165 }
166
167 /// Return true if it is safe and profitable to merge these two terminator
168 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
169 /// store all PHI nodes in common successors.
170 static bool isProfitableToFoldUnconditional(BranchInst *SI1,
171                                           BranchInst *SI2,
172                                           Instruction *Cond,
173                                           SmallVectorImpl<PHINode*> &PhiNodes) {
174   if (SI1 == SI2) return false;  // Can't merge with self!
175   assert(SI1->isUnconditional() && SI2->isConditional());
176
177   // We fold the unconditional branch if we can easily update all PHI nodes in
178   // common successors:
179   // 1> We have a constant incoming value for the conditional branch;
180   // 2> We have "Cond" as the incoming value for the unconditional branch;
181   // 3> SI2->getCondition() and Cond have same operands.
182   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
183   if (!Ci2) return false;
184   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
185         Cond->getOperand(1) == Ci2->getOperand(1)) &&
186       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
187         Cond->getOperand(1) == Ci2->getOperand(0)))
188     return false;
189
190   BasicBlock *SI1BB = SI1->getParent();
191   BasicBlock *SI2BB = SI2->getParent();
192   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
193   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
194     if (SI1Succs.count(*I))
195       for (BasicBlock::iterator BBI = (*I)->begin();
196            isa<PHINode>(BBI); ++BBI) {
197         PHINode *PN = cast<PHINode>(BBI);
198         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
199             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
200           return false;
201         PhiNodes.push_back(PN);
202       }
203   return true;
204 }
205
206 /// Update PHI nodes in Succ to indicate that there will now be entries in it
207 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
208 /// will be the same as those coming in from ExistPred, an existing predecessor
209 /// of Succ.
210 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
211                                   BasicBlock *ExistPred) {
212   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
213
214   PHINode *PN;
215   for (BasicBlock::iterator I = Succ->begin();
216        (PN = dyn_cast<PHINode>(I)); ++I)
217     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
218 }
219
220 /// Compute an abstract "cost" of speculating the given instruction,
221 /// which is assumed to be safe to speculate. TCC_Free means cheap,
222 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
223 /// expensive.
224 static unsigned ComputeSpeculationCost(const User *I,
225                                        const TargetTransformInfo &TTI) {
226   assert(isSafeToSpeculativelyExecute(I) &&
227          "Instruction is not safe to speculatively execute!");
228   return TTI.getUserCost(I);
229 }
230
231 /// If we have a merge point of an "if condition" as accepted above,
232 /// return true if the specified value dominates the block.  We
233 /// don't handle the true generality of domination here, just a special case
234 /// which works well enough for us.
235 ///
236 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
237 /// see if V (which must be an instruction) and its recursive operands
238 /// that do not dominate BB have a combined cost lower than CostRemaining and
239 /// are non-trapping.  If both are true, the instruction is inserted into the
240 /// set and true is returned.
241 ///
242 /// The cost for most non-trapping instructions is defined as 1 except for
243 /// Select whose cost is 2.
244 ///
245 /// After this function returns, CostRemaining is decreased by the cost of
246 /// V plus its non-dominating operands.  If that cost is greater than
247 /// CostRemaining, false is returned and CostRemaining is undefined.
248 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
249                                 SmallPtrSetImpl<Instruction*> *AggressiveInsts,
250                                 unsigned &CostRemaining,
251                                 const TargetTransformInfo &TTI) {
252   Instruction *I = dyn_cast<Instruction>(V);
253   if (!I) {
254     // Non-instructions all dominate instructions, but not all constantexprs
255     // can be executed unconditionally.
256     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
257       if (C->canTrap())
258         return false;
259     return true;
260   }
261   BasicBlock *PBB = I->getParent();
262
263   // We don't want to allow weird loops that might have the "if condition" in
264   // the bottom of this block.
265   if (PBB == BB) return false;
266
267   // If this instruction is defined in a block that contains an unconditional
268   // branch to BB, then it must be in the 'conditional' part of the "if
269   // statement".  If not, it definitely dominates the region.
270   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
271   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
272     return true;
273
274   // If we aren't allowing aggressive promotion anymore, then don't consider
275   // instructions in the 'if region'.
276   if (!AggressiveInsts) return false;
277
278   // If we have seen this instruction before, don't count it again.
279   if (AggressiveInsts->count(I)) return true;
280
281   // Okay, it looks like the instruction IS in the "condition".  Check to
282   // see if it's a cheap instruction to unconditionally compute, and if it
283   // only uses stuff defined outside of the condition.  If so, hoist it out.
284   if (!isSafeToSpeculativelyExecute(I))
285     return false;
286
287   unsigned Cost = ComputeSpeculationCost(I, TTI);
288
289   if (Cost > CostRemaining)
290     return false;
291
292   CostRemaining -= Cost;
293
294   // Okay, we can only really hoist these out if their operands do
295   // not take us over the cost threshold.
296   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
297     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI))
298       return false;
299   // Okay, it's safe to do this!  Remember this instruction.
300   AggressiveInsts->insert(I);
301   return true;
302 }
303
304 /// Extract ConstantInt from value, looking through IntToPtr
305 /// and PointerNullValue. Return NULL if value is not a constant int.
306 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
307   // Normal constant int.
308   ConstantInt *CI = dyn_cast<ConstantInt>(V);
309   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
310     return CI;
311
312   // This is some kind of pointer constant. Turn it into a pointer-sized
313   // ConstantInt if possible.
314   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
315
316   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
317   if (isa<ConstantPointerNull>(V))
318     return ConstantInt::get(PtrTy, 0);
319
320   // IntToPtr const int.
321   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
322     if (CE->getOpcode() == Instruction::IntToPtr)
323       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
324         // The constant is very likely to have the right type already.
325         if (CI->getType() == PtrTy)
326           return CI;
327         else
328           return cast<ConstantInt>
329             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
330       }
331   return nullptr;
332 }
333
334 namespace {
335
336 /// Given a chain of or (||) or and (&&) comparison of a value against a
337 /// constant, this will try to recover the information required for a switch
338 /// structure.
339 /// It will depth-first traverse the chain of comparison, seeking for patterns
340 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
341 /// representing the different cases for the switch.
342 /// Note that if the chain is composed of '||' it will build the set of elements
343 /// that matches the comparisons (i.e. any of this value validate the chain)
344 /// while for a chain of '&&' it will build the set elements that make the test
345 /// fail.
346 struct ConstantComparesGatherer {
347   const DataLayout &DL;
348   Value *CompValue; /// Value found for the switch comparison
349   Value *Extra;     /// Extra clause to be checked before the switch
350   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
351   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
352
353   /// Construct and compute the result for the comparison instruction Cond
354   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
355       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
356     gather(Cond);
357   }
358
359   /// Prevent copy
360   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
361   ConstantComparesGatherer &
362   operator=(const ConstantComparesGatherer &) = delete;
363
364 private:
365
366   /// Try to set the current value used for the comparison, it succeeds only if
367   /// it wasn't set before or if the new value is the same as the old one
368   bool setValueOnce(Value *NewVal) {
369     if(CompValue && CompValue != NewVal) return false;
370     CompValue = NewVal;
371     return (CompValue != nullptr);
372   }
373
374   /// Try to match Instruction "I" as a comparison against a constant and
375   /// populates the array Vals with the set of values that match (or do not
376   /// match depending on isEQ).
377   /// Return false on failure. On success, the Value the comparison matched
378   /// against is placed in CompValue.
379   /// If CompValue is already set, the function is expected to fail if a match
380   /// is found but the value compared to is different.
381   bool matchInstruction(Instruction *I, bool isEQ) {
382     // If this is an icmp against a constant, handle this as one of the cases.
383     ICmpInst *ICI;
384     ConstantInt *C;
385     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
386              (C = GetConstantInt(I->getOperand(1), DL)))) {
387       return false;
388     }
389
390     Value *RHSVal;
391     ConstantInt *RHSC;
392
393     // Pattern match a special case
394     // (x & ~2^x) == y --> x == y || x == y|2^x
395     // This undoes a transformation done by instcombine to fuse 2 compares.
396     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
397       if (match(ICI->getOperand(0),
398                 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
399         APInt Not = ~RHSC->getValue();
400         if (Not.isPowerOf2()) {
401           // If we already have a value for the switch, it has to match!
402           if(!setValueOnce(RHSVal))
403             return false;
404
405           Vals.push_back(C);
406           Vals.push_back(ConstantInt::get(C->getContext(),
407                                           C->getValue() | Not));
408           UsedICmps++;
409           return true;
410         }
411       }
412
413       // If we already have a value for the switch, it has to match!
414       if(!setValueOnce(ICI->getOperand(0)))
415         return false;
416
417       UsedICmps++;
418       Vals.push_back(C);
419       return ICI->getOperand(0);
420     }
421
422     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
423     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
424         ICI->getPredicate(), C->getValue());
425
426     // Shift the range if the compare is fed by an add. This is the range
427     // compare idiom as emitted by instcombine.
428     Value *CandidateVal = I->getOperand(0);
429     if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
430       Span = Span.subtract(RHSC->getValue());
431       CandidateVal = RHSVal;
432     }
433
434     // If this is an and/!= check, then we are looking to build the set of
435     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
436     // x != 0 && x != 1.
437     if (!isEQ)
438       Span = Span.inverse();
439
440     // If there are a ton of values, we don't want to make a ginormous switch.
441     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
442       return false;
443     }
444
445     // If we already have a value for the switch, it has to match!
446     if(!setValueOnce(CandidateVal))
447       return false;
448
449     // Add all values from the range to the set
450     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
451       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
452
453     UsedICmps++;
454     return true;
455
456   }
457
458   /// Given a potentially 'or'd or 'and'd together collection of icmp
459   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
460   /// the value being compared, and stick the list constants into the Vals
461   /// vector.
462   /// One "Extra" case is allowed to differ from the other.
463   void gather(Value *V) {
464     Instruction *I = dyn_cast<Instruction>(V);
465     bool isEQ = (I->getOpcode() == Instruction::Or);
466
467     // Keep a stack (SmallVector for efficiency) for depth-first traversal
468     SmallVector<Value *, 8> DFT;
469
470     // Initialize
471     DFT.push_back(V);
472
473     while(!DFT.empty()) {
474       V = DFT.pop_back_val();
475
476       if (Instruction *I = dyn_cast<Instruction>(V)) {
477         // If it is a || (or && depending on isEQ), process the operands.
478         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
479           DFT.push_back(I->getOperand(1));
480           DFT.push_back(I->getOperand(0));
481           continue;
482         }
483
484         // Try to match the current instruction
485         if (matchInstruction(I, isEQ))
486           // Match succeed, continue the loop
487           continue;
488       }
489
490       // One element of the sequence of || (or &&) could not be match as a
491       // comparison against the same value as the others.
492       // We allow only one "Extra" case to be checked before the switch
493       if (!Extra) {
494         Extra = V;
495         continue;
496       }
497       // Failed to parse a proper sequence, abort now
498       CompValue = nullptr;
499       break;
500     }
501   }
502 };
503
504 }
505
506 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
507   Instruction *Cond = nullptr;
508   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
509     Cond = dyn_cast<Instruction>(SI->getCondition());
510   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
511     if (BI->isConditional())
512       Cond = dyn_cast<Instruction>(BI->getCondition());
513   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
514     Cond = dyn_cast<Instruction>(IBI->getAddress());
515   }
516
517   TI->eraseFromParent();
518   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
519 }
520
521 /// Return true if the specified terminator checks
522 /// to see if a value is equal to constant integer value.
523 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
524   Value *CV = nullptr;
525   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
526     // Do not permit merging of large switch instructions into their
527     // predecessors unless there is only one predecessor.
528     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
529                                              pred_end(SI->getParent())) <= 128)
530       CV = SI->getCondition();
531   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
532     if (BI->isConditional() && BI->getCondition()->hasOneUse())
533       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
534         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
535           CV = ICI->getOperand(0);
536       }
537
538   // Unwrap any lossless ptrtoint cast.
539   if (CV) {
540     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
541       Value *Ptr = PTII->getPointerOperand();
542       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
543         CV = Ptr;
544     }
545   }
546   return CV;
547 }
548
549 /// Given a value comparison instruction,
550 /// decode all of the 'cases' that it represents and return the 'default' block.
551 BasicBlock *SimplifyCFGOpt::
552 GetValueEqualityComparisonCases(TerminatorInst *TI,
553                                 std::vector<ValueEqualityComparisonCase>
554                                                                        &Cases) {
555   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
556     Cases.reserve(SI->getNumCases());
557     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
558       Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
559                                                   i.getCaseSuccessor()));
560     return SI->getDefaultDest();
561   }
562
563   BranchInst *BI = cast<BranchInst>(TI);
564   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
565   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
566   Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
567                                                              DL),
568                                               Succ));
569   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
570 }
571
572
573 /// Given a vector of bb/value pairs, remove any entries
574 /// in the list that match the specified block.
575 static void EliminateBlockCases(BasicBlock *BB,
576                               std::vector<ValueEqualityComparisonCase> &Cases) {
577   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
578 }
579
580 /// Return true if there are any keys in C1 that exist in C2 as well.
581 static bool
582 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
583               std::vector<ValueEqualityComparisonCase > &C2) {
584   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
585
586   // Make V1 be smaller than V2.
587   if (V1->size() > V2->size())
588     std::swap(V1, V2);
589
590   if (V1->size() == 0) return false;
591   if (V1->size() == 1) {
592     // Just scan V2.
593     ConstantInt *TheVal = (*V1)[0].Value;
594     for (unsigned i = 0, e = V2->size(); i != e; ++i)
595       if (TheVal == (*V2)[i].Value)
596         return true;
597   }
598
599   // Otherwise, just sort both lists and compare element by element.
600   array_pod_sort(V1->begin(), V1->end());
601   array_pod_sort(V2->begin(), V2->end());
602   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
603   while (i1 != e1 && i2 != e2) {
604     if ((*V1)[i1].Value == (*V2)[i2].Value)
605       return true;
606     if ((*V1)[i1].Value < (*V2)[i2].Value)
607       ++i1;
608     else
609       ++i2;
610   }
611   return false;
612 }
613
614 /// If TI is known to be a terminator instruction and its block is known to
615 /// only have a single predecessor block, check to see if that predecessor is
616 /// also a value comparison with the same value, and if that comparison
617 /// determines the outcome of this comparison. If so, simplify TI. This does a
618 /// very limited form of jump threading.
619 bool SimplifyCFGOpt::
620 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
621                                               BasicBlock *Pred,
622                                               IRBuilder<> &Builder) {
623   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
624   if (!PredVal) return false;  // Not a value comparison in predecessor.
625
626   Value *ThisVal = isValueEqualityComparison(TI);
627   assert(ThisVal && "This isn't a value comparison!!");
628   if (ThisVal != PredVal) return false;  // Different predicates.
629
630   // TODO: Preserve branch weight metadata, similarly to how
631   // FoldValueComparisonIntoPredecessors preserves it.
632
633   // Find out information about when control will move from Pred to TI's block.
634   std::vector<ValueEqualityComparisonCase> PredCases;
635   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
636                                                         PredCases);
637   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
638
639   // Find information about how control leaves this block.
640   std::vector<ValueEqualityComparisonCase> ThisCases;
641   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
642   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
643
644   // If TI's block is the default block from Pred's comparison, potentially
645   // simplify TI based on this knowledge.
646   if (PredDef == TI->getParent()) {
647     // If we are here, we know that the value is none of those cases listed in
648     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
649     // can simplify TI.
650     if (!ValuesOverlap(PredCases, ThisCases))
651       return false;
652
653     if (isa<BranchInst>(TI)) {
654       // Okay, one of the successors of this condbr is dead.  Convert it to a
655       // uncond br.
656       assert(ThisCases.size() == 1 && "Branch can only have one case!");
657       // Insert the new branch.
658       Instruction *NI = Builder.CreateBr(ThisDef);
659       (void) NI;
660
661       // Remove PHI node entries for the dead edge.
662       ThisCases[0].Dest->removePredecessor(TI->getParent());
663
664       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
665            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
666
667       EraseTerminatorInstAndDCECond(TI);
668       return true;
669     }
670
671     SwitchInst *SI = cast<SwitchInst>(TI);
672     // Okay, TI has cases that are statically dead, prune them away.
673     SmallPtrSet<Constant*, 16> DeadCases;
674     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
675       DeadCases.insert(PredCases[i].Value);
676
677     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
678                  << "Through successor TI: " << *TI);
679
680     // Collect branch weights into a vector.
681     SmallVector<uint32_t, 8> Weights;
682     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
683     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
684     if (HasWeight)
685       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
686            ++MD_i) {
687         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
688         Weights.push_back(CI->getValue().getZExtValue());
689       }
690     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
691       --i;
692       if (DeadCases.count(i.getCaseValue())) {
693         if (HasWeight) {
694           std::swap(Weights[i.getCaseIndex()+1], Weights.back());
695           Weights.pop_back();
696         }
697         i.getCaseSuccessor()->removePredecessor(TI->getParent());
698         SI->removeCase(i);
699       }
700     }
701     if (HasWeight && Weights.size() >= 2)
702       SI->setMetadata(LLVMContext::MD_prof,
703                       MDBuilder(SI->getParent()->getContext()).
704                       createBranchWeights(Weights));
705
706     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
707     return true;
708   }
709
710   // Otherwise, TI's block must correspond to some matched value.  Find out
711   // which value (or set of values) this is.
712   ConstantInt *TIV = nullptr;
713   BasicBlock *TIBB = TI->getParent();
714   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
715     if (PredCases[i].Dest == TIBB) {
716       if (TIV)
717         return false;  // Cannot handle multiple values coming to this block.
718       TIV = PredCases[i].Value;
719     }
720   assert(TIV && "No edge from pred to succ?");
721
722   // Okay, we found the one constant that our value can be if we get into TI's
723   // BB.  Find out which successor will unconditionally be branched to.
724   BasicBlock *TheRealDest = nullptr;
725   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
726     if (ThisCases[i].Value == TIV) {
727       TheRealDest = ThisCases[i].Dest;
728       break;
729     }
730
731   // If not handled by any explicit cases, it is handled by the default case.
732   if (!TheRealDest) TheRealDest = ThisDef;
733
734   // Remove PHI node entries for dead edges.
735   BasicBlock *CheckEdge = TheRealDest;
736   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
737     if (*SI != CheckEdge)
738       (*SI)->removePredecessor(TIBB);
739     else
740       CheckEdge = nullptr;
741
742   // Insert the new branch.
743   Instruction *NI = Builder.CreateBr(TheRealDest);
744   (void) NI;
745
746   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
747             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
748
749   EraseTerminatorInstAndDCECond(TI);
750   return true;
751 }
752
753 namespace {
754   /// This class implements a stable ordering of constant
755   /// integers that does not depend on their address.  This is important for
756   /// applications that sort ConstantInt's to ensure uniqueness.
757   struct ConstantIntOrdering {
758     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
759       return LHS->getValue().ult(RHS->getValue());
760     }
761   };
762 }
763
764 static int ConstantIntSortPredicate(ConstantInt *const *P1,
765                                     ConstantInt *const *P2) {
766   const ConstantInt *LHS = *P1;
767   const ConstantInt *RHS = *P2;
768   if (LHS->getValue().ult(RHS->getValue()))
769     return 1;
770   if (LHS->getValue() == RHS->getValue())
771     return 0;
772   return -1;
773 }
774
775 static inline bool HasBranchWeights(const Instruction* I) {
776   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
777   if (ProfMD && ProfMD->getOperand(0))
778     if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
779       return MDS->getString().equals("branch_weights");
780
781   return false;
782 }
783
784 /// Get Weights of a given TerminatorInst, the default weight is at the front
785 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
786 /// metadata.
787 static void GetBranchWeights(TerminatorInst *TI,
788                              SmallVectorImpl<uint64_t> &Weights) {
789   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
790   assert(MD);
791   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
792     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
793     Weights.push_back(CI->getValue().getZExtValue());
794   }
795
796   // If TI is a conditional eq, the default case is the false case,
797   // and the corresponding branch-weight data is at index 2. We swap the
798   // default weight to be the first entry.
799   if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
800     assert(Weights.size() == 2);
801     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
802     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
803       std::swap(Weights.front(), Weights.back());
804   }
805 }
806
807 /// Keep halving the weights until all can fit in uint32_t.
808 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
809   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
810   if (Max > UINT_MAX) {
811     unsigned Offset = 32 - countLeadingZeros(Max);
812     for (uint64_t &I : Weights)
813       I >>= Offset;
814   }
815 }
816
817 /// The specified terminator is a value equality comparison instruction
818 /// (either a switch or a branch on "X == c").
819 /// See if any of the predecessors of the terminator block are value comparisons
820 /// on the same value.  If so, and if safe to do so, fold them together.
821 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
822                                                          IRBuilder<> &Builder) {
823   BasicBlock *BB = TI->getParent();
824   Value *CV = isValueEqualityComparison(TI);  // CondVal
825   assert(CV && "Not a comparison?");
826   bool Changed = false;
827
828   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
829   while (!Preds.empty()) {
830     BasicBlock *Pred = Preds.pop_back_val();
831
832     // See if the predecessor is a comparison with the same value.
833     TerminatorInst *PTI = Pred->getTerminator();
834     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
835
836     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
837       // Figure out which 'cases' to copy from SI to PSI.
838       std::vector<ValueEqualityComparisonCase> BBCases;
839       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
840
841       std::vector<ValueEqualityComparisonCase> PredCases;
842       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
843
844       // Based on whether the default edge from PTI goes to BB or not, fill in
845       // PredCases and PredDefault with the new switch cases we would like to
846       // build.
847       SmallVector<BasicBlock*, 8> NewSuccessors;
848
849       // Update the branch weight metadata along the way
850       SmallVector<uint64_t, 8> Weights;
851       bool PredHasWeights = HasBranchWeights(PTI);
852       bool SuccHasWeights = HasBranchWeights(TI);
853
854       if (PredHasWeights) {
855         GetBranchWeights(PTI, Weights);
856         // branch-weight metadata is inconsistent here.
857         if (Weights.size() != 1 + PredCases.size())
858           PredHasWeights = SuccHasWeights = false;
859       } else if (SuccHasWeights)
860         // If there are no predecessor weights but there are successor weights,
861         // populate Weights with 1, which will later be scaled to the sum of
862         // successor's weights
863         Weights.assign(1 + PredCases.size(), 1);
864
865       SmallVector<uint64_t, 8> SuccWeights;
866       if (SuccHasWeights) {
867         GetBranchWeights(TI, SuccWeights);
868         // branch-weight metadata is inconsistent here.
869         if (SuccWeights.size() != 1 + BBCases.size())
870           PredHasWeights = SuccHasWeights = false;
871       } else if (PredHasWeights)
872         SuccWeights.assign(1 + BBCases.size(), 1);
873
874       if (PredDefault == BB) {
875         // If this is the default destination from PTI, only the edges in TI
876         // that don't occur in PTI, or that branch to BB will be activated.
877         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
878         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
879           if (PredCases[i].Dest != BB)
880             PTIHandled.insert(PredCases[i].Value);
881           else {
882             // The default destination is BB, we don't need explicit targets.
883             std::swap(PredCases[i], PredCases.back());
884
885             if (PredHasWeights || SuccHasWeights) {
886               // Increase weight for the default case.
887               Weights[0] += Weights[i+1];
888               std::swap(Weights[i+1], Weights.back());
889               Weights.pop_back();
890             }
891
892             PredCases.pop_back();
893             --i; --e;
894           }
895
896         // Reconstruct the new switch statement we will be building.
897         if (PredDefault != BBDefault) {
898           PredDefault->removePredecessor(Pred);
899           PredDefault = BBDefault;
900           NewSuccessors.push_back(BBDefault);
901         }
902
903         unsigned CasesFromPred = Weights.size();
904         uint64_t ValidTotalSuccWeight = 0;
905         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
906           if (!PTIHandled.count(BBCases[i].Value) &&
907               BBCases[i].Dest != BBDefault) {
908             PredCases.push_back(BBCases[i]);
909             NewSuccessors.push_back(BBCases[i].Dest);
910             if (SuccHasWeights || PredHasWeights) {
911               // The default weight is at index 0, so weight for the ith case
912               // should be at index i+1. Scale the cases from successor by
913               // PredDefaultWeight (Weights[0]).
914               Weights.push_back(Weights[0] * SuccWeights[i+1]);
915               ValidTotalSuccWeight += SuccWeights[i+1];
916             }
917           }
918
919         if (SuccHasWeights || PredHasWeights) {
920           ValidTotalSuccWeight += SuccWeights[0];
921           // Scale the cases from predecessor by ValidTotalSuccWeight.
922           for (unsigned i = 1; i < CasesFromPred; ++i)
923             Weights[i] *= ValidTotalSuccWeight;
924           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
925           Weights[0] *= SuccWeights[0];
926         }
927       } else {
928         // If this is not the default destination from PSI, only the edges
929         // in SI that occur in PSI with a destination of BB will be
930         // activated.
931         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
932         std::map<ConstantInt*, uint64_t> WeightsForHandled;
933         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
934           if (PredCases[i].Dest == BB) {
935             PTIHandled.insert(PredCases[i].Value);
936
937             if (PredHasWeights || SuccHasWeights) {
938               WeightsForHandled[PredCases[i].Value] = Weights[i+1];
939               std::swap(Weights[i+1], Weights.back());
940               Weights.pop_back();
941             }
942
943             std::swap(PredCases[i], PredCases.back());
944             PredCases.pop_back();
945             --i; --e;
946           }
947
948         // Okay, now we know which constants were sent to BB from the
949         // predecessor.  Figure out where they will all go now.
950         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
951           if (PTIHandled.count(BBCases[i].Value)) {
952             // If this is one we are capable of getting...
953             if (PredHasWeights || SuccHasWeights)
954               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
955             PredCases.push_back(BBCases[i]);
956             NewSuccessors.push_back(BBCases[i].Dest);
957             PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
958           }
959
960         // If there are any constants vectored to BB that TI doesn't handle,
961         // they must go to the default destination of TI.
962         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
963                                     PTIHandled.begin(),
964                E = PTIHandled.end(); I != E; ++I) {
965           if (PredHasWeights || SuccHasWeights)
966             Weights.push_back(WeightsForHandled[*I]);
967           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
968           NewSuccessors.push_back(BBDefault);
969         }
970       }
971
972       // Okay, at this point, we know which new successor Pred will get.  Make
973       // sure we update the number of entries in the PHI nodes for these
974       // successors.
975       for (BasicBlock *NewSuccessor : NewSuccessors)
976         AddPredecessorToBlock(NewSuccessor, Pred, BB);
977
978       Builder.SetInsertPoint(PTI);
979       // Convert pointer to int before we switch.
980       if (CV->getType()->isPointerTy()) {
981         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
982                                     "magicptr");
983       }
984
985       // Now that the successors are updated, create the new Switch instruction.
986       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
987                                                PredCases.size());
988       NewSI->setDebugLoc(PTI->getDebugLoc());
989       for (ValueEqualityComparisonCase &V : PredCases)
990         NewSI->addCase(V.Value, V.Dest);
991
992       if (PredHasWeights || SuccHasWeights) {
993         // Halve the weights if any of them cannot fit in an uint32_t
994         FitWeights(Weights);
995
996         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
997
998         NewSI->setMetadata(LLVMContext::MD_prof,
999                            MDBuilder(BB->getContext()).
1000                            createBranchWeights(MDWeights));
1001       }
1002
1003       EraseTerminatorInstAndDCECond(PTI);
1004
1005       // Okay, last check.  If BB is still a successor of PSI, then we must
1006       // have an infinite loop case.  If so, add an infinitely looping block
1007       // to handle the case to preserve the behavior of the code.
1008       BasicBlock *InfLoopBlock = nullptr;
1009       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1010         if (NewSI->getSuccessor(i) == BB) {
1011           if (!InfLoopBlock) {
1012             // Insert it at the end of the function, because it's either code,
1013             // or it won't matter if it's hot. :)
1014             InfLoopBlock = BasicBlock::Create(BB->getContext(),
1015                                               "infloop", BB->getParent());
1016             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1017           }
1018           NewSI->setSuccessor(i, InfLoopBlock);
1019         }
1020
1021       Changed = true;
1022     }
1023   }
1024   return Changed;
1025 }
1026
1027 // If we would need to insert a select that uses the value of this invoke
1028 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1029 // can't hoist the invoke, as there is nowhere to put the select in this case.
1030 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1031                                 Instruction *I1, Instruction *I2) {
1032   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1033     PHINode *PN;
1034     for (BasicBlock::iterator BBI = SI->begin();
1035          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1036       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1037       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1038       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1039         return false;
1040       }
1041     }
1042   }
1043   return true;
1044 }
1045
1046 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1047
1048 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1049 /// in the two blocks up into the branch block. The caller of this function
1050 /// guarantees that BI's block dominates BB1 and BB2.
1051 static bool HoistThenElseCodeToIf(BranchInst *BI,
1052                                   const TargetTransformInfo &TTI) {
1053   // This does very trivial matching, with limited scanning, to find identical
1054   // instructions in the two blocks.  In particular, we don't want to get into
1055   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1056   // such, we currently just scan for obviously identical instructions in an
1057   // identical order.
1058   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1059   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1060
1061   BasicBlock::iterator BB1_Itr = BB1->begin();
1062   BasicBlock::iterator BB2_Itr = BB2->begin();
1063
1064   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1065   // Skip debug info if it is not identical.
1066   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1067   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1068   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1069     while (isa<DbgInfoIntrinsic>(I1))
1070       I1 = BB1_Itr++;
1071     while (isa<DbgInfoIntrinsic>(I2))
1072       I2 = BB2_Itr++;
1073   }
1074   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1075       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1076     return false;
1077
1078   BasicBlock *BIParent = BI->getParent();
1079
1080   bool Changed = false;
1081   do {
1082     // If we are hoisting the terminator instruction, don't move one (making a
1083     // broken BB), instead clone it, and remove BI.
1084     if (isa<TerminatorInst>(I1))
1085       goto HoistTerminator;
1086
1087     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1088       return Changed;
1089
1090     // For a normal instruction, we just move one to right before the branch,
1091     // then replace all uses of the other with the first.  Finally, we remove
1092     // the now redundant second instruction.
1093     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1094     if (!I2->use_empty())
1095       I2->replaceAllUsesWith(I1);
1096     I1->intersectOptionalDataWith(I2);
1097     unsigned KnownIDs[] = {
1098       LLVMContext::MD_tbaa,
1099       LLVMContext::MD_range,
1100       LLVMContext::MD_fpmath,
1101       LLVMContext::MD_invariant_load,
1102       LLVMContext::MD_nonnull
1103     };
1104     combineMetadata(I1, I2, KnownIDs);
1105     I2->eraseFromParent();
1106     Changed = true;
1107
1108     I1 = BB1_Itr++;
1109     I2 = BB2_Itr++;
1110     // Skip debug info if it is not identical.
1111     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1112     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1113     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1114       while (isa<DbgInfoIntrinsic>(I1))
1115         I1 = BB1_Itr++;
1116       while (isa<DbgInfoIntrinsic>(I2))
1117         I2 = BB2_Itr++;
1118     }
1119   } while (I1->isIdenticalToWhenDefined(I2));
1120
1121   return true;
1122
1123 HoistTerminator:
1124   // It may not be possible to hoist an invoke.
1125   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1126     return Changed;
1127
1128   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1129     PHINode *PN;
1130     for (BasicBlock::iterator BBI = SI->begin();
1131          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1132       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1133       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1134       if (BB1V == BB2V)
1135         continue;
1136
1137       // Check for passingValueIsAlwaysUndefined here because we would rather
1138       // eliminate undefined control flow then converting it to a select.
1139       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1140           passingValueIsAlwaysUndefined(BB2V, PN))
1141        return Changed;
1142
1143       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1144         return Changed;
1145       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1146         return Changed;
1147     }
1148   }
1149
1150   // Okay, it is safe to hoist the terminator.
1151   Instruction *NT = I1->clone();
1152   BIParent->getInstList().insert(BI, NT);
1153   if (!NT->getType()->isVoidTy()) {
1154     I1->replaceAllUsesWith(NT);
1155     I2->replaceAllUsesWith(NT);
1156     NT->takeName(I1);
1157   }
1158
1159   IRBuilder<true, NoFolder> Builder(NT);
1160   // Hoisting one of the terminators from our successor is a great thing.
1161   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1162   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1163   // nodes, so we insert select instruction to compute the final result.
1164   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1165   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1166     PHINode *PN;
1167     for (BasicBlock::iterator BBI = SI->begin();
1168          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1169       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1170       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1171       if (BB1V == BB2V) continue;
1172
1173       // These values do not agree.  Insert a select instruction before NT
1174       // that determines the right value.
1175       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1176       if (!SI)
1177         SI = cast<SelectInst>
1178           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1179                                 BB1V->getName()+"."+BB2V->getName()));
1180
1181       // Make the PHI node use the select for all incoming values for BB1/BB2
1182       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1183         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1184           PN->setIncomingValue(i, SI);
1185     }
1186   }
1187
1188   // Update any PHI nodes in our new successors.
1189   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1190     AddPredecessorToBlock(*SI, BIParent, BB1);
1191
1192   EraseTerminatorInstAndDCECond(BI);
1193   return true;
1194 }
1195
1196 /// Given an unconditional branch that goes to BBEnd,
1197 /// check whether BBEnd has only two predecessors and the other predecessor
1198 /// ends with an unconditional branch. If it is true, sink any common code
1199 /// in the two predecessors to BBEnd.
1200 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1201   assert(BI1->isUnconditional());
1202   BasicBlock *BB1 = BI1->getParent();
1203   BasicBlock *BBEnd = BI1->getSuccessor(0);
1204
1205   // Check that BBEnd has two predecessors and the other predecessor ends with
1206   // an unconditional branch.
1207   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1208   BasicBlock *Pred0 = *PI++;
1209   if (PI == PE) // Only one predecessor.
1210     return false;
1211   BasicBlock *Pred1 = *PI++;
1212   if (PI != PE) // More than two predecessors.
1213     return false;
1214   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1215   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1216   if (!BI2 || !BI2->isUnconditional())
1217     return false;
1218
1219   // Gather the PHI nodes in BBEnd.
1220   SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1221   Instruction *FirstNonPhiInBBEnd = nullptr;
1222   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1223     if (PHINode *PN = dyn_cast<PHINode>(I)) {
1224       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1225       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1226       JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1227     } else {
1228       FirstNonPhiInBBEnd = &*I;
1229       break;
1230     }
1231   }
1232   if (!FirstNonPhiInBBEnd)
1233     return false;
1234
1235   // This does very trivial matching, with limited scanning, to find identical
1236   // instructions in the two blocks.  We scan backward for obviously identical
1237   // instructions in an identical order.
1238   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1239                                              RE1 = BB1->getInstList().rend(),
1240                                              RI2 = BB2->getInstList().rbegin(),
1241                                              RE2 = BB2->getInstList().rend();
1242   // Skip debug info.
1243   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1244   if (RI1 == RE1)
1245     return false;
1246   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1247   if (RI2 == RE2)
1248     return false;
1249   // Skip the unconditional branches.
1250   ++RI1;
1251   ++RI2;
1252
1253   bool Changed = false;
1254   while (RI1 != RE1 && RI2 != RE2) {
1255     // Skip debug info.
1256     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1257     if (RI1 == RE1)
1258       return Changed;
1259     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1260     if (RI2 == RE2)
1261       return Changed;
1262
1263     Instruction *I1 = &*RI1, *I2 = &*RI2;
1264     auto InstPair = std::make_pair(I1, I2);
1265     // I1 and I2 should have a single use in the same PHI node, and they
1266     // perform the same operation.
1267     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1268     if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1269         isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1270         I1->isEHPad() || I2->isEHPad() ||
1271         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1272         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1273         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1274         !I1->hasOneUse() || !I2->hasOneUse() ||
1275         !JointValueMap.count(InstPair))
1276       return Changed;
1277
1278     // Check whether we should swap the operands of ICmpInst.
1279     // TODO: Add support of communativity.
1280     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1281     bool SwapOpnds = false;
1282     if (ICmp1 && ICmp2 &&
1283         ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1284         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1285         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1286          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1287       ICmp2->swapOperands();
1288       SwapOpnds = true;
1289     }
1290     if (!I1->isSameOperationAs(I2)) {
1291       if (SwapOpnds)
1292         ICmp2->swapOperands();
1293       return Changed;
1294     }
1295
1296     // The operands should be either the same or they need to be generated
1297     // with a PHI node after sinking. We only handle the case where there is
1298     // a single pair of different operands.
1299     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1300     unsigned Op1Idx = ~0U;
1301     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1302       if (I1->getOperand(I) == I2->getOperand(I))
1303         continue;
1304       // Early exit if we have more-than one pair of different operands or if
1305       // we need a PHI node to replace a constant.
1306       if (Op1Idx != ~0U ||
1307           isa<Constant>(I1->getOperand(I)) ||
1308           isa<Constant>(I2->getOperand(I))) {
1309         // If we can't sink the instructions, undo the swapping.
1310         if (SwapOpnds)
1311           ICmp2->swapOperands();
1312         return Changed;
1313       }
1314       DifferentOp1 = I1->getOperand(I);
1315       Op1Idx = I;
1316       DifferentOp2 = I2->getOperand(I);
1317     }
1318
1319     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1320     DEBUG(dbgs() << "                         " << *I2 << "\n");
1321
1322     // We insert the pair of different operands to JointValueMap and
1323     // remove (I1, I2) from JointValueMap.
1324     if (Op1Idx != ~0U) {
1325       auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1326       if (!NewPN) {
1327         NewPN =
1328             PHINode::Create(DifferentOp1->getType(), 2,
1329                             DifferentOp1->getName() + ".sink", BBEnd->begin());
1330         NewPN->addIncoming(DifferentOp1, BB1);
1331         NewPN->addIncoming(DifferentOp2, BB2);
1332         DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1333       }
1334       // I1 should use NewPN instead of DifferentOp1.
1335       I1->setOperand(Op1Idx, NewPN);
1336     }
1337     PHINode *OldPN = JointValueMap[InstPair];
1338     JointValueMap.erase(InstPair);
1339
1340     // We need to update RE1 and RE2 if we are going to sink the first
1341     // instruction in the basic block down.
1342     bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1343     // Sink the instruction.
1344     BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1345     if (!OldPN->use_empty())
1346       OldPN->replaceAllUsesWith(I1);
1347     OldPN->eraseFromParent();
1348
1349     if (!I2->use_empty())
1350       I2->replaceAllUsesWith(I1);
1351     I1->intersectOptionalDataWith(I2);
1352     // TODO: Use combineMetadata here to preserve what metadata we can
1353     // (analogous to the hoisting case above).
1354     I2->eraseFromParent();
1355
1356     if (UpdateRE1)
1357       RE1 = BB1->getInstList().rend();
1358     if (UpdateRE2)
1359       RE2 = BB2->getInstList().rend();
1360     FirstNonPhiInBBEnd = I1;
1361     NumSinkCommons++;
1362     Changed = true;
1363   }
1364   return Changed;
1365 }
1366
1367 /// \brief Determine if we can hoist sink a sole store instruction out of a
1368 /// conditional block.
1369 ///
1370 /// We are looking for code like the following:
1371 ///   BrBB:
1372 ///     store i32 %add, i32* %arrayidx2
1373 ///     ... // No other stores or function calls (we could be calling a memory
1374 ///     ... // function).
1375 ///     %cmp = icmp ult %x, %y
1376 ///     br i1 %cmp, label %EndBB, label %ThenBB
1377 ///   ThenBB:
1378 ///     store i32 %add5, i32* %arrayidx2
1379 ///     br label EndBB
1380 ///   EndBB:
1381 ///     ...
1382 ///   We are going to transform this into:
1383 ///   BrBB:
1384 ///     store i32 %add, i32* %arrayidx2
1385 ///     ... //
1386 ///     %cmp = icmp ult %x, %y
1387 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1388 ///     store i32 %add.add5, i32* %arrayidx2
1389 ///     ...
1390 ///
1391 /// \return The pointer to the value of the previous store if the store can be
1392 ///         hoisted into the predecessor block. 0 otherwise.
1393 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1394                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1395   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1396   if (!StoreToHoist)
1397     return nullptr;
1398
1399   // Volatile or atomic.
1400   if (!StoreToHoist->isSimple())
1401     return nullptr;
1402
1403   Value *StorePtr = StoreToHoist->getPointerOperand();
1404
1405   // Look for a store to the same pointer in BrBB.
1406   unsigned MaxNumInstToLookAt = 10;
1407   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1408        RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1409     Instruction *CurI = &*RI;
1410
1411     // Could be calling an instruction that effects memory like free().
1412     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1413       return nullptr;
1414
1415     StoreInst *SI = dyn_cast<StoreInst>(CurI);
1416     // Found the previous store make sure it stores to the same location.
1417     if (SI && SI->getPointerOperand() == StorePtr)
1418       // Found the previous store, return its value operand.
1419       return SI->getValueOperand();
1420     else if (SI)
1421       return nullptr; // Unknown store.
1422   }
1423
1424   return nullptr;
1425 }
1426
1427 /// \brief Speculate a conditional basic block flattening the CFG.
1428 ///
1429 /// Note that this is a very risky transform currently. Speculating
1430 /// instructions like this is most often not desirable. Instead, there is an MI
1431 /// pass which can do it with full awareness of the resource constraints.
1432 /// However, some cases are "obvious" and we should do directly. An example of
1433 /// this is speculating a single, reasonably cheap instruction.
1434 ///
1435 /// There is only one distinct advantage to flattening the CFG at the IR level:
1436 /// it makes very common but simplistic optimizations such as are common in
1437 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1438 /// modeling their effects with easier to reason about SSA value graphs.
1439 ///
1440 ///
1441 /// An illustration of this transform is turning this IR:
1442 /// \code
1443 ///   BB:
1444 ///     %cmp = icmp ult %x, %y
1445 ///     br i1 %cmp, label %EndBB, label %ThenBB
1446 ///   ThenBB:
1447 ///     %sub = sub %x, %y
1448 ///     br label BB2
1449 ///   EndBB:
1450 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1451 ///     ...
1452 /// \endcode
1453 ///
1454 /// Into this IR:
1455 /// \code
1456 ///   BB:
1457 ///     %cmp = icmp ult %x, %y
1458 ///     %sub = sub %x, %y
1459 ///     %cond = select i1 %cmp, 0, %sub
1460 ///     ...
1461 /// \endcode
1462 ///
1463 /// \returns true if the conditional block is removed.
1464 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1465                                    const TargetTransformInfo &TTI) {
1466   // Be conservative for now. FP select instruction can often be expensive.
1467   Value *BrCond = BI->getCondition();
1468   if (isa<FCmpInst>(BrCond))
1469     return false;
1470
1471   BasicBlock *BB = BI->getParent();
1472   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1473
1474   // If ThenBB is actually on the false edge of the conditional branch, remember
1475   // to swap the select operands later.
1476   bool Invert = false;
1477   if (ThenBB != BI->getSuccessor(0)) {
1478     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1479     Invert = true;
1480   }
1481   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1482
1483   // Keep a count of how many times instructions are used within CondBB when
1484   // they are candidates for sinking into CondBB. Specifically:
1485   // - They are defined in BB, and
1486   // - They have no side effects, and
1487   // - All of their uses are in CondBB.
1488   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1489
1490   unsigned SpeculationCost = 0;
1491   Value *SpeculatedStoreValue = nullptr;
1492   StoreInst *SpeculatedStore = nullptr;
1493   for (BasicBlock::iterator BBI = ThenBB->begin(),
1494                             BBE = std::prev(ThenBB->end());
1495        BBI != BBE; ++BBI) {
1496     Instruction *I = BBI;
1497     // Skip debug info.
1498     if (isa<DbgInfoIntrinsic>(I))
1499       continue;
1500
1501     // Only speculatively execute a single instruction (not counting the
1502     // terminator) for now.
1503     ++SpeculationCost;
1504     if (SpeculationCost > 1)
1505       return false;
1506
1507     // Don't hoist the instruction if it's unsafe or expensive.
1508     if (!isSafeToSpeculativelyExecute(I) &&
1509         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1510                                   I, BB, ThenBB, EndBB))))
1511       return false;
1512     if (!SpeculatedStoreValue &&
1513         ComputeSpeculationCost(I, TTI) >
1514             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1515       return false;
1516
1517     // Store the store speculation candidate.
1518     if (SpeculatedStoreValue)
1519       SpeculatedStore = cast<StoreInst>(I);
1520
1521     // Do not hoist the instruction if any of its operands are defined but not
1522     // used in BB. The transformation will prevent the operand from
1523     // being sunk into the use block.
1524     for (User::op_iterator i = I->op_begin(), e = I->op_end();
1525          i != e; ++i) {
1526       Instruction *OpI = dyn_cast<Instruction>(*i);
1527       if (!OpI || OpI->getParent() != BB ||
1528           OpI->mayHaveSideEffects())
1529         continue; // Not a candidate for sinking.
1530
1531       ++SinkCandidateUseCounts[OpI];
1532     }
1533   }
1534
1535   // Consider any sink candidates which are only used in CondBB as costs for
1536   // speculation. Note, while we iterate over a DenseMap here, we are summing
1537   // and so iteration order isn't significant.
1538   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1539            SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1540        I != E; ++I)
1541     if (I->first->getNumUses() == I->second) {
1542       ++SpeculationCost;
1543       if (SpeculationCost > 1)
1544         return false;
1545     }
1546
1547   // Check that the PHI nodes can be converted to selects.
1548   bool HaveRewritablePHIs = false;
1549   for (BasicBlock::iterator I = EndBB->begin();
1550        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1551     Value *OrigV = PN->getIncomingValueForBlock(BB);
1552     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1553
1554     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1555     // Skip PHIs which are trivial.
1556     if (ThenV == OrigV)
1557       continue;
1558
1559     // Don't convert to selects if we could remove undefined behavior instead.
1560     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1561         passingValueIsAlwaysUndefined(ThenV, PN))
1562       return false;
1563
1564     HaveRewritablePHIs = true;
1565     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1566     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1567     if (!OrigCE && !ThenCE)
1568       continue; // Known safe and cheap.
1569
1570     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1571         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1572       return false;
1573     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1574     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1575     unsigned MaxCost = 2 * PHINodeFoldingThreshold *
1576       TargetTransformInfo::TCC_Basic;
1577     if (OrigCost + ThenCost > MaxCost)
1578       return false;
1579
1580     // Account for the cost of an unfolded ConstantExpr which could end up
1581     // getting expanded into Instructions.
1582     // FIXME: This doesn't account for how many operations are combined in the
1583     // constant expression.
1584     ++SpeculationCost;
1585     if (SpeculationCost > 1)
1586       return false;
1587   }
1588
1589   // If there are no PHIs to process, bail early. This helps ensure idempotence
1590   // as well.
1591   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1592     return false;
1593
1594   // If we get here, we can hoist the instruction and if-convert.
1595   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1596
1597   // Insert a select of the value of the speculated store.
1598   if (SpeculatedStoreValue) {
1599     IRBuilder<true, NoFolder> Builder(BI);
1600     Value *TrueV = SpeculatedStore->getValueOperand();
1601     Value *FalseV = SpeculatedStoreValue;
1602     if (Invert)
1603       std::swap(TrueV, FalseV);
1604     Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1605                                     "." + FalseV->getName());
1606     SpeculatedStore->setOperand(0, S);
1607   }
1608
1609   // Hoist the instructions.
1610   BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1611                            std::prev(ThenBB->end()));
1612
1613   // Insert selects and rewrite the PHI operands.
1614   IRBuilder<true, NoFolder> Builder(BI);
1615   for (BasicBlock::iterator I = EndBB->begin();
1616        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1617     unsigned OrigI = PN->getBasicBlockIndex(BB);
1618     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1619     Value *OrigV = PN->getIncomingValue(OrigI);
1620     Value *ThenV = PN->getIncomingValue(ThenI);
1621
1622     // Skip PHIs which are trivial.
1623     if (OrigV == ThenV)
1624       continue;
1625
1626     // Create a select whose true value is the speculatively executed value and
1627     // false value is the preexisting value. Swap them if the branch
1628     // destinations were inverted.
1629     Value *TrueV = ThenV, *FalseV = OrigV;
1630     if (Invert)
1631       std::swap(TrueV, FalseV);
1632     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1633                                     TrueV->getName() + "." + FalseV->getName());
1634     PN->setIncomingValue(OrigI, V);
1635     PN->setIncomingValue(ThenI, V);
1636   }
1637
1638   ++NumSpeculations;
1639   return true;
1640 }
1641
1642 /// \returns True if this block contains a CallInst with the NoDuplicate
1643 /// attribute.
1644 static bool HasNoDuplicateCall(const BasicBlock *BB) {
1645   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1646     const CallInst *CI = dyn_cast<CallInst>(I);
1647     if (!CI)
1648       continue;
1649     if (CI->cannotDuplicate())
1650       return true;
1651   }
1652   return false;
1653 }
1654
1655 /// Return true if we can thread a branch across this block.
1656 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1657   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1658   unsigned Size = 0;
1659
1660   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1661     if (isa<DbgInfoIntrinsic>(BBI))
1662       continue;
1663     if (Size > 10) return false;  // Don't clone large BB's.
1664     ++Size;
1665
1666     // We can only support instructions that do not define values that are
1667     // live outside of the current basic block.
1668     for (User *U : BBI->users()) {
1669       Instruction *UI = cast<Instruction>(U);
1670       if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1671     }
1672
1673     // Looks ok, continue checking.
1674   }
1675
1676   return true;
1677 }
1678
1679 /// If we have a conditional branch on a PHI node value that is defined in the
1680 /// same block as the branch and if any PHI entries are constants, thread edges
1681 /// corresponding to that entry to be branches to their ultimate destination.
1682 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1683   BasicBlock *BB = BI->getParent();
1684   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1685   // NOTE: we currently cannot transform this case if the PHI node is used
1686   // outside of the block.
1687   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1688     return false;
1689
1690   // Degenerate case of a single entry PHI.
1691   if (PN->getNumIncomingValues() == 1) {
1692     FoldSingleEntryPHINodes(PN->getParent());
1693     return true;
1694   }
1695
1696   // Now we know that this block has multiple preds and two succs.
1697   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1698
1699   if (HasNoDuplicateCall(BB)) return false;
1700
1701   // Okay, this is a simple enough basic block.  See if any phi values are
1702   // constants.
1703   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1704     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1705     if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1706
1707     // Okay, we now know that all edges from PredBB should be revectored to
1708     // branch to RealDest.
1709     BasicBlock *PredBB = PN->getIncomingBlock(i);
1710     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1711
1712     if (RealDest == BB) continue;  // Skip self loops.
1713     // Skip if the predecessor's terminator is an indirect branch.
1714     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1715
1716     // The dest block might have PHI nodes, other predecessors and other
1717     // difficult cases.  Instead of being smart about this, just insert a new
1718     // block that jumps to the destination block, effectively splitting
1719     // the edge we are about to create.
1720     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1721                                             RealDest->getName()+".critedge",
1722                                             RealDest->getParent(), RealDest);
1723     BranchInst::Create(RealDest, EdgeBB);
1724
1725     // Update PHI nodes.
1726     AddPredecessorToBlock(RealDest, EdgeBB, BB);
1727
1728     // BB may have instructions that are being threaded over.  Clone these
1729     // instructions into EdgeBB.  We know that there will be no uses of the
1730     // cloned instructions outside of EdgeBB.
1731     BasicBlock::iterator InsertPt = EdgeBB->begin();
1732     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1733     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1734       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1735         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1736         continue;
1737       }
1738       // Clone the instruction.
1739       Instruction *N = BBI->clone();
1740       if (BBI->hasName()) N->setName(BBI->getName()+".c");
1741
1742       // Update operands due to translation.
1743       for (User::op_iterator i = N->op_begin(), e = N->op_end();
1744            i != e; ++i) {
1745         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1746         if (PI != TranslateMap.end())
1747           *i = PI->second;
1748       }
1749
1750       // Check for trivial simplification.
1751       if (Value *V = SimplifyInstruction(N, DL)) {
1752         TranslateMap[BBI] = V;
1753         delete N;   // Instruction folded away, don't need actual inst
1754       } else {
1755         // Insert the new instruction into its new home.
1756         EdgeBB->getInstList().insert(InsertPt, N);
1757         if (!BBI->use_empty())
1758           TranslateMap[BBI] = N;
1759       }
1760     }
1761
1762     // Loop over all of the edges from PredBB to BB, changing them to branch
1763     // to EdgeBB instead.
1764     TerminatorInst *PredBBTI = PredBB->getTerminator();
1765     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1766       if (PredBBTI->getSuccessor(i) == BB) {
1767         BB->removePredecessor(PredBB);
1768         PredBBTI->setSuccessor(i, EdgeBB);
1769       }
1770
1771     // Recurse, simplifying any other constants.
1772     return FoldCondBranchOnPHI(BI, DL) | true;
1773   }
1774
1775   return false;
1776 }
1777
1778 /// Given a BB that starts with the specified two-entry PHI node,
1779 /// see if we can eliminate it.
1780 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
1781                                 const DataLayout &DL) {
1782   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1783   // statement", which has a very simple dominance structure.  Basically, we
1784   // are trying to find the condition that is being branched on, which
1785   // subsequently causes this merge to happen.  We really want control
1786   // dependence information for this check, but simplifycfg can't keep it up
1787   // to date, and this catches most of the cases we care about anyway.
1788   BasicBlock *BB = PN->getParent();
1789   BasicBlock *IfTrue, *IfFalse;
1790   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1791   if (!IfCond ||
1792       // Don't bother if the branch will be constant folded trivially.
1793       isa<ConstantInt>(IfCond))
1794     return false;
1795
1796   // Okay, we found that we can merge this two-entry phi node into a select.
1797   // Doing so would require us to fold *all* two entry phi nodes in this block.
1798   // At some point this becomes non-profitable (particularly if the target
1799   // doesn't support cmov's).  Only do this transformation if there are two or
1800   // fewer PHI nodes in this block.
1801   unsigned NumPhis = 0;
1802   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1803     if (NumPhis > 2)
1804       return false;
1805
1806   // Loop over the PHI's seeing if we can promote them all to select
1807   // instructions.  While we are at it, keep track of the instructions
1808   // that need to be moved to the dominating block.
1809   SmallPtrSet<Instruction*, 4> AggressiveInsts;
1810   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1811            MaxCostVal1 = PHINodeFoldingThreshold;
1812   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
1813   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
1814
1815   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1816     PHINode *PN = cast<PHINode>(II++);
1817     if (Value *V = SimplifyInstruction(PN, DL)) {
1818       PN->replaceAllUsesWith(V);
1819       PN->eraseFromParent();
1820       continue;
1821     }
1822
1823     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1824                              MaxCostVal0, TTI) ||
1825         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1826                              MaxCostVal1, TTI))
1827       return false;
1828   }
1829
1830   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1831   // we ran out of PHIs then we simplified them all.
1832   PN = dyn_cast<PHINode>(BB->begin());
1833   if (!PN) return true;
1834
1835   // Don't fold i1 branches on PHIs which contain binary operators.  These can
1836   // often be turned into switches and other things.
1837   if (PN->getType()->isIntegerTy(1) &&
1838       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1839        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1840        isa<BinaryOperator>(IfCond)))
1841     return false;
1842
1843   // If we all PHI nodes are promotable, check to make sure that all
1844   // instructions in the predecessor blocks can be promoted as well.  If
1845   // not, we won't be able to get rid of the control flow, so it's not
1846   // worth promoting to select instructions.
1847   BasicBlock *DomBlock = nullptr;
1848   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1849   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1850   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1851     IfBlock1 = nullptr;
1852   } else {
1853     DomBlock = *pred_begin(IfBlock1);
1854     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1855       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1856         // This is not an aggressive instruction that we can promote.
1857         // Because of this, we won't be able to get rid of the control
1858         // flow, so the xform is not worth it.
1859         return false;
1860       }
1861   }
1862
1863   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1864     IfBlock2 = nullptr;
1865   } else {
1866     DomBlock = *pred_begin(IfBlock2);
1867     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1868       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1869         // This is not an aggressive instruction that we can promote.
1870         // Because of this, we won't be able to get rid of the control
1871         // flow, so the xform is not worth it.
1872         return false;
1873       }
1874   }
1875
1876   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1877                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1878
1879   // If we can still promote the PHI nodes after this gauntlet of tests,
1880   // do all of the PHI's now.
1881   Instruction *InsertPt = DomBlock->getTerminator();
1882   IRBuilder<true, NoFolder> Builder(InsertPt);
1883
1884   // Move all 'aggressive' instructions, which are defined in the
1885   // conditional parts of the if's up to the dominating block.
1886   if (IfBlock1)
1887     DomBlock->getInstList().splice(InsertPt,
1888                                    IfBlock1->getInstList(), IfBlock1->begin(),
1889                                    IfBlock1->getTerminator());
1890   if (IfBlock2)
1891     DomBlock->getInstList().splice(InsertPt,
1892                                    IfBlock2->getInstList(), IfBlock2->begin(),
1893                                    IfBlock2->getTerminator());
1894
1895   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1896     // Change the PHI node into a select instruction.
1897     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1898     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1899
1900     SelectInst *NV =
1901       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1902     PN->replaceAllUsesWith(NV);
1903     NV->takeName(PN);
1904     PN->eraseFromParent();
1905   }
1906
1907   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1908   // has been flattened.  Change DomBlock to jump directly to our new block to
1909   // avoid other simplifycfg's kicking in on the diamond.
1910   TerminatorInst *OldTI = DomBlock->getTerminator();
1911   Builder.SetInsertPoint(OldTI);
1912   Builder.CreateBr(BB);
1913   OldTI->eraseFromParent();
1914   return true;
1915 }
1916
1917 /// If we found a conditional branch that goes to two returning blocks,
1918 /// try to merge them together into one return,
1919 /// introducing a select if the return values disagree.
1920 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1921                                            IRBuilder<> &Builder) {
1922   assert(BI->isConditional() && "Must be a conditional branch");
1923   BasicBlock *TrueSucc = BI->getSuccessor(0);
1924   BasicBlock *FalseSucc = BI->getSuccessor(1);
1925   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1926   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1927
1928   // Check to ensure both blocks are empty (just a return) or optionally empty
1929   // with PHI nodes.  If there are other instructions, merging would cause extra
1930   // computation on one path or the other.
1931   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1932     return false;
1933   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1934     return false;
1935
1936   Builder.SetInsertPoint(BI);
1937   // Okay, we found a branch that is going to two return nodes.  If
1938   // there is no return value for this function, just change the
1939   // branch into a return.
1940   if (FalseRet->getNumOperands() == 0) {
1941     TrueSucc->removePredecessor(BI->getParent());
1942     FalseSucc->removePredecessor(BI->getParent());
1943     Builder.CreateRetVoid();
1944     EraseTerminatorInstAndDCECond(BI);
1945     return true;
1946   }
1947
1948   // Otherwise, figure out what the true and false return values are
1949   // so we can insert a new select instruction.
1950   Value *TrueValue = TrueRet->getReturnValue();
1951   Value *FalseValue = FalseRet->getReturnValue();
1952
1953   // Unwrap any PHI nodes in the return blocks.
1954   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1955     if (TVPN->getParent() == TrueSucc)
1956       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1957   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1958     if (FVPN->getParent() == FalseSucc)
1959       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1960
1961   // In order for this transformation to be safe, we must be able to
1962   // unconditionally execute both operands to the return.  This is
1963   // normally the case, but we could have a potentially-trapping
1964   // constant expression that prevents this transformation from being
1965   // safe.
1966   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1967     if (TCV->canTrap())
1968       return false;
1969   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1970     if (FCV->canTrap())
1971       return false;
1972
1973   // Okay, we collected all the mapped values and checked them for sanity, and
1974   // defined to really do this transformation.  First, update the CFG.
1975   TrueSucc->removePredecessor(BI->getParent());
1976   FalseSucc->removePredecessor(BI->getParent());
1977
1978   // Insert select instructions where needed.
1979   Value *BrCond = BI->getCondition();
1980   if (TrueValue) {
1981     // Insert a select if the results differ.
1982     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1983     } else if (isa<UndefValue>(TrueValue)) {
1984       TrueValue = FalseValue;
1985     } else {
1986       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1987                                        FalseValue, "retval");
1988     }
1989   }
1990
1991   Value *RI = !TrueValue ?
1992     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1993
1994   (void) RI;
1995
1996   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1997                << "\n  " << *BI << "NewRet = " << *RI
1998                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1999
2000   EraseTerminatorInstAndDCECond(BI);
2001
2002   return true;
2003 }
2004
2005 /// Given a conditional BranchInstruction, retrieve the probabilities of the
2006 /// branch taking each edge. Fills in the two APInt parameters and returns true,
2007 /// or returns false if no or invalid metadata was found.
2008 static bool ExtractBranchMetadata(BranchInst *BI,
2009                                   uint64_t &ProbTrue, uint64_t &ProbFalse) {
2010   assert(BI->isConditional() &&
2011          "Looking for probabilities on unconditional branch?");
2012   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
2013   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
2014   ConstantInt *CITrue =
2015       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
2016   ConstantInt *CIFalse =
2017       mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
2018   if (!CITrue || !CIFalse) return false;
2019   ProbTrue = CITrue->getValue().getZExtValue();
2020   ProbFalse = CIFalse->getValue().getZExtValue();
2021   return true;
2022 }
2023
2024 /// Return true if the given instruction is available
2025 /// in its predecessor block. If yes, the instruction will be removed.
2026 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2027   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2028     return false;
2029   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
2030     Instruction *PBI = &*I;
2031     // Check whether Inst and PBI generate the same value.
2032     if (Inst->isIdenticalTo(PBI)) {
2033       Inst->replaceAllUsesWith(PBI);
2034       Inst->eraseFromParent();
2035       return true;
2036     }
2037   }
2038   return false;
2039 }
2040
2041 /// If this basic block is simple enough, and if a predecessor branches to us
2042 /// and one of our successors, fold the block into the predecessor and use
2043 /// logical operations to pick the right destination.
2044 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2045   BasicBlock *BB = BI->getParent();
2046
2047   Instruction *Cond = nullptr;
2048   if (BI->isConditional())
2049     Cond = dyn_cast<Instruction>(BI->getCondition());
2050   else {
2051     // For unconditional branch, check for a simple CFG pattern, where
2052     // BB has a single predecessor and BB's successor is also its predecessor's
2053     // successor. If such pattern exisits, check for CSE between BB and its
2054     // predecessor.
2055     if (BasicBlock *PB = BB->getSinglePredecessor())
2056       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2057         if (PBI->isConditional() &&
2058             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2059              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2060           for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2061                I != E; ) {
2062             Instruction *Curr = I++;
2063             if (isa<CmpInst>(Curr)) {
2064               Cond = Curr;
2065               break;
2066             }
2067             // Quit if we can't remove this instruction.
2068             if (!checkCSEInPredecessor(Curr, PB))
2069               return false;
2070           }
2071         }
2072
2073     if (!Cond)
2074       return false;
2075   }
2076
2077   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2078       Cond->getParent() != BB || !Cond->hasOneUse())
2079   return false;
2080
2081   // Make sure the instruction after the condition is the cond branch.
2082   BasicBlock::iterator CondIt = Cond; ++CondIt;
2083
2084   // Ignore dbg intrinsics.
2085   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2086
2087   if (&*CondIt != BI)
2088     return false;
2089
2090   // Only allow this transformation if computing the condition doesn't involve
2091   // too many instructions and these involved instructions can be executed
2092   // unconditionally. We denote all involved instructions except the condition
2093   // as "bonus instructions", and only allow this transformation when the
2094   // number of the bonus instructions does not exceed a certain threshold.
2095   unsigned NumBonusInsts = 0;
2096   for (auto I = BB->begin(); Cond != I; ++I) {
2097     // Ignore dbg intrinsics.
2098     if (isa<DbgInfoIntrinsic>(I))
2099       continue;
2100     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
2101       return false;
2102     // I has only one use and can be executed unconditionally.
2103     Instruction *User = dyn_cast<Instruction>(I->user_back());
2104     if (User == nullptr || User->getParent() != BB)
2105       return false;
2106     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2107     // to use any other instruction, User must be an instruction between next(I)
2108     // and Cond.
2109     ++NumBonusInsts;
2110     // Early exits once we reach the limit.
2111     if (NumBonusInsts > BonusInstThreshold)
2112       return false;
2113   }
2114
2115   // Cond is known to be a compare or binary operator.  Check to make sure that
2116   // neither operand is a potentially-trapping constant expression.
2117   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2118     if (CE->canTrap())
2119       return false;
2120   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2121     if (CE->canTrap())
2122       return false;
2123
2124   // Finally, don't infinitely unroll conditional loops.
2125   BasicBlock *TrueDest  = BI->getSuccessor(0);
2126   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2127   if (TrueDest == BB || FalseDest == BB)
2128     return false;
2129
2130   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2131     BasicBlock *PredBlock = *PI;
2132     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2133
2134     // Check that we have two conditional branches.  If there is a PHI node in
2135     // the common successor, verify that the same value flows in from both
2136     // blocks.
2137     SmallVector<PHINode*, 4> PHIs;
2138     if (!PBI || PBI->isUnconditional() ||
2139         (BI->isConditional() &&
2140          !SafeToMergeTerminators(BI, PBI)) ||
2141         (!BI->isConditional() &&
2142          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2143       continue;
2144
2145     // Determine if the two branches share a common destination.
2146     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2147     bool InvertPredCond = false;
2148
2149     if (BI->isConditional()) {
2150       if (PBI->getSuccessor(0) == TrueDest)
2151         Opc = Instruction::Or;
2152       else if (PBI->getSuccessor(1) == FalseDest)
2153         Opc = Instruction::And;
2154       else if (PBI->getSuccessor(0) == FalseDest)
2155         Opc = Instruction::And, InvertPredCond = true;
2156       else if (PBI->getSuccessor(1) == TrueDest)
2157         Opc = Instruction::Or, InvertPredCond = true;
2158       else
2159         continue;
2160     } else {
2161       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2162         continue;
2163     }
2164
2165     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2166     IRBuilder<> Builder(PBI);
2167
2168     // If we need to invert the condition in the pred block to match, do so now.
2169     if (InvertPredCond) {
2170       Value *NewCond = PBI->getCondition();
2171
2172       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2173         CmpInst *CI = cast<CmpInst>(NewCond);
2174         CI->setPredicate(CI->getInversePredicate());
2175       } else {
2176         NewCond = Builder.CreateNot(NewCond,
2177                                     PBI->getCondition()->getName()+".not");
2178       }
2179
2180       PBI->setCondition(NewCond);
2181       PBI->swapSuccessors();
2182     }
2183
2184     // If we have bonus instructions, clone them into the predecessor block.
2185     // Note that there may be multiple predecessor blocks, so we cannot move
2186     // bonus instructions to a predecessor block.
2187     ValueToValueMapTy VMap; // maps original values to cloned values
2188     // We already make sure Cond is the last instruction before BI. Therefore,
2189     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2190     // instructions.
2191     for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) {
2192       if (isa<DbgInfoIntrinsic>(BonusInst))
2193         continue;
2194       Instruction *NewBonusInst = BonusInst->clone();
2195       RemapInstruction(NewBonusInst, VMap,
2196                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2197       VMap[BonusInst] = NewBonusInst;
2198
2199       // If we moved a load, we cannot any longer claim any knowledge about
2200       // its potential value. The previous information might have been valid
2201       // only given the branch precondition.
2202       // For an analogous reason, we must also drop all the metadata whose
2203       // semantics we don't understand.
2204       NewBonusInst->dropUnknownNonDebugMetadata();
2205
2206       PredBlock->getInstList().insert(PBI, NewBonusInst);
2207       NewBonusInst->takeName(BonusInst);
2208       BonusInst->setName(BonusInst->getName() + ".old");
2209     }
2210
2211     // Clone Cond into the predecessor basic block, and or/and the
2212     // two conditions together.
2213     Instruction *New = Cond->clone();
2214     RemapInstruction(New, VMap,
2215                      RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
2216     PredBlock->getInstList().insert(PBI, New);
2217     New->takeName(Cond);
2218     Cond->setName(New->getName() + ".old");
2219
2220     if (BI->isConditional()) {
2221       Instruction *NewCond =
2222         cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2223                                             New, "or.cond"));
2224       PBI->setCondition(NewCond);
2225
2226       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2227       bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2228                                                   PredFalseWeight);
2229       bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2230                                                   SuccFalseWeight);
2231       SmallVector<uint64_t, 8> NewWeights;
2232
2233       if (PBI->getSuccessor(0) == BB) {
2234         if (PredHasWeights && SuccHasWeights) {
2235           // PBI: br i1 %x, BB, FalseDest
2236           // BI:  br i1 %y, TrueDest, FalseDest
2237           //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2238           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2239           //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2240           //               TrueWeight for PBI * FalseWeight for BI.
2241           // We assume that total weights of a BranchInst can fit into 32 bits.
2242           // Therefore, we will not have overflow using 64-bit arithmetic.
2243           NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2244                SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2245         }
2246         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2247         PBI->setSuccessor(0, TrueDest);
2248       }
2249       if (PBI->getSuccessor(1) == BB) {
2250         if (PredHasWeights && SuccHasWeights) {
2251           // PBI: br i1 %x, TrueDest, BB
2252           // BI:  br i1 %y, TrueDest, FalseDest
2253           //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2254           //              FalseWeight for PBI * TrueWeight for BI.
2255           NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2256               SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2257           //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2258           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2259         }
2260         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2261         PBI->setSuccessor(1, FalseDest);
2262       }
2263       if (NewWeights.size() == 2) {
2264         // Halve the weights if any of them cannot fit in an uint32_t
2265         FitWeights(NewWeights);
2266
2267         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2268         PBI->setMetadata(LLVMContext::MD_prof,
2269                          MDBuilder(BI->getContext()).
2270                          createBranchWeights(MDWeights));
2271       } else
2272         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2273     } else {
2274       // Update PHI nodes in the common successors.
2275       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2276         ConstantInt *PBI_C = cast<ConstantInt>(
2277           PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2278         assert(PBI_C->getType()->isIntegerTy(1));
2279         Instruction *MergedCond = nullptr;
2280         if (PBI->getSuccessor(0) == TrueDest) {
2281           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2282           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2283           //       is false: !PBI_Cond and BI_Value
2284           Instruction *NotCond =
2285             cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2286                                 "not.cond"));
2287           MergedCond =
2288             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2289                                 NotCond, New,
2290                                 "and.cond"));
2291           if (PBI_C->isOne())
2292             MergedCond =
2293               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2294                                   PBI->getCondition(), MergedCond,
2295                                   "or.cond"));
2296         } else {
2297           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2298           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2299           //       is false: PBI_Cond and BI_Value
2300           MergedCond =
2301             cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2302                                 PBI->getCondition(), New,
2303                                 "and.cond"));
2304           if (PBI_C->isOne()) {
2305             Instruction *NotCond =
2306               cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2307                                   "not.cond"));
2308             MergedCond =
2309               cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2310                                   NotCond, MergedCond,
2311                                   "or.cond"));
2312           }
2313         }
2314         // Update PHI Node.
2315         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2316                                   MergedCond);
2317       }
2318       // Change PBI from Conditional to Unconditional.
2319       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2320       EraseTerminatorInstAndDCECond(PBI);
2321       PBI = New_PBI;
2322     }
2323
2324     // TODO: If BB is reachable from all paths through PredBlock, then we
2325     // could replace PBI's branch probabilities with BI's.
2326
2327     // Copy any debug value intrinsics into the end of PredBlock.
2328     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2329       if (isa<DbgInfoIntrinsic>(*I))
2330         I->clone()->insertBefore(PBI);
2331
2332     return true;
2333   }
2334   return false;
2335 }
2336
2337 /// If we have a conditional branch as a predecessor of another block,
2338 /// this function tries to simplify it.  We know
2339 /// that PBI and BI are both conditional branches, and BI is in one of the
2340 /// successor blocks of PBI - PBI branches to BI.
2341 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2342   assert(PBI->isConditional() && BI->isConditional());
2343   BasicBlock *BB = BI->getParent();
2344
2345   // If this block ends with a branch instruction, and if there is a
2346   // predecessor that ends on a branch of the same condition, make
2347   // this conditional branch redundant.
2348   if (PBI->getCondition() == BI->getCondition() &&
2349       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2350     // Okay, the outcome of this conditional branch is statically
2351     // knowable.  If this block had a single pred, handle specially.
2352     if (BB->getSinglePredecessor()) {
2353       // Turn this into a branch on constant.
2354       bool CondIsTrue = PBI->getSuccessor(0) == BB;
2355       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2356                                         CondIsTrue));
2357       return true;  // Nuke the branch on constant.
2358     }
2359
2360     // Otherwise, if there are multiple predecessors, insert a PHI that merges
2361     // in the constant and simplify the block result.  Subsequent passes of
2362     // simplifycfg will thread the block.
2363     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2364       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2365       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2366                                        std::distance(PB, PE),
2367                                        BI->getCondition()->getName() + ".pr",
2368                                        BB->begin());
2369       // Okay, we're going to insert the PHI node.  Since PBI is not the only
2370       // predecessor, compute the PHI'd conditional value for all of the preds.
2371       // Any predecessor where the condition is not computable we keep symbolic.
2372       for (pred_iterator PI = PB; PI != PE; ++PI) {
2373         BasicBlock *P = *PI;
2374         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2375             PBI != BI && PBI->isConditional() &&
2376             PBI->getCondition() == BI->getCondition() &&
2377             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2378           bool CondIsTrue = PBI->getSuccessor(0) == BB;
2379           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2380                                               CondIsTrue), P);
2381         } else {
2382           NewPN->addIncoming(BI->getCondition(), P);
2383         }
2384       }
2385
2386       BI->setCondition(NewPN);
2387       return true;
2388     }
2389   }
2390
2391   // If this is a conditional branch in an empty block, and if any
2392   // predecessors are a conditional branch to one of our destinations,
2393   // fold the conditions into logical ops and one cond br.
2394   BasicBlock::iterator BBI = BB->begin();
2395   // Ignore dbg intrinsics.
2396   while (isa<DbgInfoIntrinsic>(BBI))
2397     ++BBI;
2398   if (&*BBI != BI)
2399     return false;
2400
2401
2402   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2403     if (CE->canTrap())
2404       return false;
2405
2406   int PBIOp, BIOp;
2407   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2408     PBIOp = BIOp = 0;
2409   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2410     PBIOp = 0, BIOp = 1;
2411   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2412     PBIOp = 1, BIOp = 0;
2413   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2414     PBIOp = BIOp = 1;
2415   else
2416     return false;
2417
2418   // Check to make sure that the other destination of this branch
2419   // isn't BB itself.  If so, this is an infinite loop that will
2420   // keep getting unwound.
2421   if (PBI->getSuccessor(PBIOp) == BB)
2422     return false;
2423
2424   // Do not perform this transformation if it would require
2425   // insertion of a large number of select instructions. For targets
2426   // without predication/cmovs, this is a big pessimization.
2427
2428   // Also do not perform this transformation if any phi node in the common
2429   // destination block can trap when reached by BB or PBB (PR17073). In that
2430   // case, it would be unsafe to hoist the operation into a select instruction.
2431
2432   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2433   unsigned NumPhis = 0;
2434   for (BasicBlock::iterator II = CommonDest->begin();
2435        isa<PHINode>(II); ++II, ++NumPhis) {
2436     if (NumPhis > 2) // Disable this xform.
2437       return false;
2438
2439     PHINode *PN = cast<PHINode>(II);
2440     Value *BIV = PN->getIncomingValueForBlock(BB);
2441     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2442       if (CE->canTrap())
2443         return false;
2444
2445     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2446     Value *PBIV = PN->getIncomingValue(PBBIdx);
2447     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2448       if (CE->canTrap())
2449         return false;
2450   }
2451
2452   // Finally, if everything is ok, fold the branches to logical ops.
2453   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2454
2455   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2456                << "AND: " << *BI->getParent());
2457
2458
2459   // If OtherDest *is* BB, then BB is a basic block with a single conditional
2460   // branch in it, where one edge (OtherDest) goes back to itself but the other
2461   // exits.  We don't *know* that the program avoids the infinite loop
2462   // (even though that seems likely).  If we do this xform naively, we'll end up
2463   // recursively unpeeling the loop.  Since we know that (after the xform is
2464   // done) that the block *is* infinite if reached, we just make it an obviously
2465   // infinite loop with no cond branch.
2466   if (OtherDest == BB) {
2467     // Insert it at the end of the function, because it's either code,
2468     // or it won't matter if it's hot. :)
2469     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2470                                                   "infloop", BB->getParent());
2471     BranchInst::Create(InfLoopBlock, InfLoopBlock);
2472     OtherDest = InfLoopBlock;
2473   }
2474
2475   DEBUG(dbgs() << *PBI->getParent()->getParent());
2476
2477   // BI may have other predecessors.  Because of this, we leave
2478   // it alone, but modify PBI.
2479
2480   // Make sure we get to CommonDest on True&True directions.
2481   Value *PBICond = PBI->getCondition();
2482   IRBuilder<true, NoFolder> Builder(PBI);
2483   if (PBIOp)
2484     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2485
2486   Value *BICond = BI->getCondition();
2487   if (BIOp)
2488     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2489
2490   // Merge the conditions.
2491   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2492
2493   // Modify PBI to branch on the new condition to the new dests.
2494   PBI->setCondition(Cond);
2495   PBI->setSuccessor(0, CommonDest);
2496   PBI->setSuccessor(1, OtherDest);
2497
2498   // Update branch weight for PBI.
2499   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2500   bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2501                                               PredFalseWeight);
2502   bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2503                                               SuccFalseWeight);
2504   if (PredHasWeights && SuccHasWeights) {
2505     uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2506     uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2507     uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2508     uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2509     // The weight to CommonDest should be PredCommon * SuccTotal +
2510     //                                    PredOther * SuccCommon.
2511     // The weight to OtherDest should be PredOther * SuccOther.
2512     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
2513                                   PredOther * SuccCommon,
2514                               PredOther * SuccOther};
2515     // Halve the weights if any of them cannot fit in an uint32_t
2516     FitWeights(NewWeights);
2517
2518     PBI->setMetadata(LLVMContext::MD_prof,
2519                      MDBuilder(BI->getContext())
2520                          .createBranchWeights(NewWeights[0], NewWeights[1]));
2521   }
2522
2523   // OtherDest may have phi nodes.  If so, add an entry from PBI's
2524   // block that are identical to the entries for BI's block.
2525   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2526
2527   // We know that the CommonDest already had an edge from PBI to
2528   // it.  If it has PHIs though, the PHIs may have different
2529   // entries for BB and PBI's BB.  If so, insert a select to make
2530   // them agree.
2531   PHINode *PN;
2532   for (BasicBlock::iterator II = CommonDest->begin();
2533        (PN = dyn_cast<PHINode>(II)); ++II) {
2534     Value *BIV = PN->getIncomingValueForBlock(BB);
2535     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2536     Value *PBIV = PN->getIncomingValue(PBBIdx);
2537     if (BIV != PBIV) {
2538       // Insert a select in PBI to pick the right value.
2539       Value *NV = cast<SelectInst>
2540         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2541       PN->setIncomingValue(PBBIdx, NV);
2542     }
2543   }
2544
2545   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2546   DEBUG(dbgs() << *PBI->getParent()->getParent());
2547
2548   // This basic block is probably dead.  We know it has at least
2549   // one fewer predecessor.
2550   return true;
2551 }
2552
2553 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
2554 // true or to FalseBB if Cond is false.
2555 // Takes care of updating the successors and removing the old terminator.
2556 // Also makes sure not to introduce new successors by assuming that edges to
2557 // non-successor TrueBBs and FalseBBs aren't reachable.
2558 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2559                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
2560                                        uint32_t TrueWeight,
2561                                        uint32_t FalseWeight){
2562   // Remove any superfluous successor edges from the CFG.
2563   // First, figure out which successors to preserve.
2564   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2565   // successor.
2566   BasicBlock *KeepEdge1 = TrueBB;
2567   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2568
2569   // Then remove the rest.
2570   for (BasicBlock *Succ : OldTerm->successors()) {
2571     // Make sure only to keep exactly one copy of each edge.
2572     if (Succ == KeepEdge1)
2573       KeepEdge1 = nullptr;
2574     else if (Succ == KeepEdge2)
2575       KeepEdge2 = nullptr;
2576     else
2577       Succ->removePredecessor(OldTerm->getParent());
2578   }
2579
2580   IRBuilder<> Builder(OldTerm);
2581   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2582
2583   // Insert an appropriate new terminator.
2584   if (!KeepEdge1 && !KeepEdge2) {
2585     if (TrueBB == FalseBB)
2586       // We were only looking for one successor, and it was present.
2587       // Create an unconditional branch to it.
2588       Builder.CreateBr(TrueBB);
2589     else {
2590       // We found both of the successors we were looking for.
2591       // Create a conditional branch sharing the condition of the select.
2592       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2593       if (TrueWeight != FalseWeight)
2594         NewBI->setMetadata(LLVMContext::MD_prof,
2595                            MDBuilder(OldTerm->getContext()).
2596                            createBranchWeights(TrueWeight, FalseWeight));
2597     }
2598   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2599     // Neither of the selected blocks were successors, so this
2600     // terminator must be unreachable.
2601     new UnreachableInst(OldTerm->getContext(), OldTerm);
2602   } else {
2603     // One of the selected values was a successor, but the other wasn't.
2604     // Insert an unconditional branch to the one that was found;
2605     // the edge to the one that wasn't must be unreachable.
2606     if (!KeepEdge1)
2607       // Only TrueBB was found.
2608       Builder.CreateBr(TrueBB);
2609     else
2610       // Only FalseBB was found.
2611       Builder.CreateBr(FalseBB);
2612   }
2613
2614   EraseTerminatorInstAndDCECond(OldTerm);
2615   return true;
2616 }
2617
2618 // Replaces
2619 //   (switch (select cond, X, Y)) on constant X, Y
2620 // with a branch - conditional if X and Y lead to distinct BBs,
2621 // unconditional otherwise.
2622 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2623   // Check for constant integer values in the select.
2624   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2625   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2626   if (!TrueVal || !FalseVal)
2627     return false;
2628
2629   // Find the relevant condition and destinations.
2630   Value *Condition = Select->getCondition();
2631   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2632   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2633
2634   // Get weight for TrueBB and FalseBB.
2635   uint32_t TrueWeight = 0, FalseWeight = 0;
2636   SmallVector<uint64_t, 8> Weights;
2637   bool HasWeights = HasBranchWeights(SI);
2638   if (HasWeights) {
2639     GetBranchWeights(SI, Weights);
2640     if (Weights.size() == 1 + SI->getNumCases()) {
2641       TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2642                                      getSuccessorIndex()];
2643       FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2644                                       getSuccessorIndex()];
2645     }
2646   }
2647
2648   // Perform the actual simplification.
2649   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2650                                     TrueWeight, FalseWeight);
2651 }
2652
2653 // Replaces
2654 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
2655 //                             blockaddress(@fn, BlockB)))
2656 // with
2657 //   (br cond, BlockA, BlockB).
2658 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2659   // Check that both operands of the select are block addresses.
2660   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2661   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2662   if (!TBA || !FBA)
2663     return false;
2664
2665   // Extract the actual blocks.
2666   BasicBlock *TrueBB = TBA->getBasicBlock();
2667   BasicBlock *FalseBB = FBA->getBasicBlock();
2668
2669   // Perform the actual simplification.
2670   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2671                                     0, 0);
2672 }
2673
2674 /// This is called when we find an icmp instruction
2675 /// (a seteq/setne with a constant) as the only instruction in a
2676 /// block that ends with an uncond branch.  We are looking for a very specific
2677 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2678 /// this case, we merge the first two "or's of icmp" into a switch, but then the
2679 /// default value goes to an uncond block with a seteq in it, we get something
2680 /// like:
2681 ///
2682 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2683 /// DEFAULT:
2684 ///   %tmp = icmp eq i8 %A, 92
2685 ///   br label %end
2686 /// end:
2687 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2688 ///
2689 /// We prefer to split the edge to 'end' so that there is a true/false entry to
2690 /// the PHI, merging the third icmp into the switch.
2691 static bool TryToSimplifyUncondBranchWithICmpInIt(
2692     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
2693     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
2694     AssumptionCache *AC) {
2695   BasicBlock *BB = ICI->getParent();
2696
2697   // If the block has any PHIs in it or the icmp has multiple uses, it is too
2698   // complex.
2699   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2700
2701   Value *V = ICI->getOperand(0);
2702   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2703
2704   // The pattern we're looking for is where our only predecessor is a switch on
2705   // 'V' and this block is the default case for the switch.  In this case we can
2706   // fold the compared value into the switch to simplify things.
2707   BasicBlock *Pred = BB->getSinglePredecessor();
2708   if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
2709
2710   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2711   if (SI->getCondition() != V)
2712     return false;
2713
2714   // If BB is reachable on a non-default case, then we simply know the value of
2715   // V in this block.  Substitute it and constant fold the icmp instruction
2716   // away.
2717   if (SI->getDefaultDest() != BB) {
2718     ConstantInt *VVal = SI->findCaseDest(BB);
2719     assert(VVal && "Should have a unique destination value");
2720     ICI->setOperand(0, VVal);
2721
2722     if (Value *V = SimplifyInstruction(ICI, DL)) {
2723       ICI->replaceAllUsesWith(V);
2724       ICI->eraseFromParent();
2725     }
2726     // BB is now empty, so it is likely to simplify away.
2727     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
2728   }
2729
2730   // Ok, the block is reachable from the default dest.  If the constant we're
2731   // comparing exists in one of the other edges, then we can constant fold ICI
2732   // and zap it.
2733   if (SI->findCaseValue(Cst) != SI->case_default()) {
2734     Value *V;
2735     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2736       V = ConstantInt::getFalse(BB->getContext());
2737     else
2738       V = ConstantInt::getTrue(BB->getContext());
2739
2740     ICI->replaceAllUsesWith(V);
2741     ICI->eraseFromParent();
2742     // BB is now empty, so it is likely to simplify away.
2743     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
2744   }
2745
2746   // The use of the icmp has to be in the 'end' block, by the only PHI node in
2747   // the block.
2748   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2749   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
2750   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
2751       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2752     return false;
2753
2754   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2755   // true in the PHI.
2756   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2757   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2758
2759   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2760     std::swap(DefaultCst, NewCst);
2761
2762   // Replace ICI (which is used by the PHI for the default value) with true or
2763   // false depending on if it is EQ or NE.
2764   ICI->replaceAllUsesWith(DefaultCst);
2765   ICI->eraseFromParent();
2766
2767   // Okay, the switch goes to this block on a default value.  Add an edge from
2768   // the switch to the merge point on the compared value.
2769   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2770                                          BB->getParent(), BB);
2771   SmallVector<uint64_t, 8> Weights;
2772   bool HasWeights = HasBranchWeights(SI);
2773   if (HasWeights) {
2774     GetBranchWeights(SI, Weights);
2775     if (Weights.size() == 1 + SI->getNumCases()) {
2776       // Split weight for default case to case for "Cst".
2777       Weights[0] = (Weights[0]+1) >> 1;
2778       Weights.push_back(Weights[0]);
2779
2780       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2781       SI->setMetadata(LLVMContext::MD_prof,
2782                       MDBuilder(SI->getContext()).
2783                       createBranchWeights(MDWeights));
2784     }
2785   }
2786   SI->addCase(Cst, NewBB);
2787
2788   // NewBB branches to the phi block, add the uncond branch and the phi entry.
2789   Builder.SetInsertPoint(NewBB);
2790   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2791   Builder.CreateBr(SuccBlock);
2792   PHIUse->addIncoming(NewCst, NewBB);
2793   return true;
2794 }
2795
2796 /// The specified branch is a conditional branch.
2797 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2798 /// fold it into a switch instruction if so.
2799 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
2800                                       const DataLayout &DL) {
2801   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2802   if (!Cond) return false;
2803
2804   // Change br (X == 0 | X == 1), T, F into a switch instruction.
2805   // If this is a bunch of seteq's or'd together, or if it's a bunch of
2806   // 'setne's and'ed together, collect them.
2807
2808   // Try to gather values from a chain of and/or to be turned into a switch
2809   ConstantComparesGatherer ConstantCompare(Cond, DL);
2810   // Unpack the result
2811   SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals;
2812   Value *CompVal = ConstantCompare.CompValue;
2813   unsigned UsedICmps = ConstantCompare.UsedICmps;
2814   Value *ExtraCase = ConstantCompare.Extra;
2815
2816   // If we didn't have a multiply compared value, fail.
2817   if (!CompVal) return false;
2818
2819   // Avoid turning single icmps into a switch.
2820   if (UsedICmps <= 1)
2821     return false;
2822
2823   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
2824
2825   // There might be duplicate constants in the list, which the switch
2826   // instruction can't handle, remove them now.
2827   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2828   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2829
2830   // If Extra was used, we require at least two switch values to do the
2831   // transformation.  A switch with one value is just a conditional branch.
2832   if (ExtraCase && Values.size() < 2) return false;
2833
2834   // TODO: Preserve branch weight metadata, similarly to how
2835   // FoldValueComparisonIntoPredecessors preserves it.
2836
2837   // Figure out which block is which destination.
2838   BasicBlock *DefaultBB = BI->getSuccessor(1);
2839   BasicBlock *EdgeBB    = BI->getSuccessor(0);
2840   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2841
2842   BasicBlock *BB = BI->getParent();
2843
2844   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2845                << " cases into SWITCH.  BB is:\n" << *BB);
2846
2847   // If there are any extra values that couldn't be folded into the switch
2848   // then we evaluate them with an explicit branch first.  Split the block
2849   // right before the condbr to handle it.
2850   if (ExtraCase) {
2851     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2852     // Remove the uncond branch added to the old block.
2853     TerminatorInst *OldTI = BB->getTerminator();
2854     Builder.SetInsertPoint(OldTI);
2855
2856     if (TrueWhenEqual)
2857       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2858     else
2859       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2860
2861     OldTI->eraseFromParent();
2862
2863     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2864     // for the edge we just added.
2865     AddPredecessorToBlock(EdgeBB, BB, NewBB);
2866
2867     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2868           << "\nEXTRABB = " << *BB);
2869     BB = NewBB;
2870   }
2871
2872   Builder.SetInsertPoint(BI);
2873   // Convert pointer to int before we switch.
2874   if (CompVal->getType()->isPointerTy()) {
2875     CompVal = Builder.CreatePtrToInt(
2876         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
2877   }
2878
2879   // Create the new switch instruction now.
2880   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2881
2882   // Add all of the 'cases' to the switch instruction.
2883   for (unsigned i = 0, e = Values.size(); i != e; ++i)
2884     New->addCase(Values[i], EdgeBB);
2885
2886   // We added edges from PI to the EdgeBB.  As such, if there were any
2887   // PHI nodes in EdgeBB, they need entries to be added corresponding to
2888   // the number of edges added.
2889   for (BasicBlock::iterator BBI = EdgeBB->begin();
2890        isa<PHINode>(BBI); ++BBI) {
2891     PHINode *PN = cast<PHINode>(BBI);
2892     Value *InVal = PN->getIncomingValueForBlock(BB);
2893     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2894       PN->addIncoming(InVal, BB);
2895   }
2896
2897   // Erase the old branch instruction.
2898   EraseTerminatorInstAndDCECond(BI);
2899
2900   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2901   return true;
2902 }
2903
2904 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2905   // If this is a trivial landing pad that just continues unwinding the caught
2906   // exception then zap the landing pad, turning its invokes into calls.
2907   BasicBlock *BB = RI->getParent();
2908   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2909   if (RI->getValue() != LPInst)
2910     // Not a landing pad, or the resume is not unwinding the exception that
2911     // caused control to branch here.
2912     return false;
2913
2914   // Check that there are no other instructions except for debug intrinsics.
2915   BasicBlock::iterator I = LPInst, E = RI;
2916   while (++I != E)
2917     if (!isa<DbgInfoIntrinsic>(I))
2918       return false;
2919
2920   // Turn all invokes that unwind here into calls and delete the basic block.
2921   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2922     BasicBlock *Pred = *PI++;
2923     removeUnwindEdge(Pred);
2924   }
2925
2926   // The landingpad is now unreachable.  Zap it.
2927   BB->eraseFromParent();
2928   return true;
2929 }
2930
2931 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
2932   // If this is a trivial cleanup pad that executes no instructions, it can be
2933   // eliminated.  If the cleanup pad continues to the caller, any predecessor
2934   // that is an EH pad will be updated to continue to the caller and any
2935   // predecessor that terminates with an invoke instruction will have its invoke
2936   // instruction converted to a call instruction.  If the cleanup pad being
2937   // simplified does not continue to the caller, each predecessor will be
2938   // updated to continue to the unwind destination of the cleanup pad being
2939   // simplified.
2940   BasicBlock *BB = RI->getParent();
2941   Instruction *CPInst = dyn_cast<CleanupPadInst>(BB->getFirstNonPHI());
2942   if (!CPInst)
2943     // This isn't an empty cleanup.
2944     return false;
2945
2946   // Check that there are no other instructions except for debug intrinsics.
2947   BasicBlock::iterator I = CPInst, E = RI;
2948   while (++I != E)
2949     if (!isa<DbgInfoIntrinsic>(I))
2950       return false;
2951
2952   // If the cleanup return we are simplifying unwinds to the caller, this
2953   // will set UnwindDest to nullptr.
2954   BasicBlock *UnwindDest = RI->getUnwindDest();
2955
2956   // We're about to remove BB from the control flow.  Before we do, sink any
2957   // PHINodes into the unwind destination.  Doing this before changing the
2958   // control flow avoids some potentially slow checks, since we can currently
2959   // be certain that UnwindDest and BB have no common predecessors (since they
2960   // are both EH pads).
2961   if (UnwindDest) {
2962     // First, go through the PHI nodes in UnwindDest and update any nodes that
2963     // reference the block we are removing
2964     for (BasicBlock::iterator I = UnwindDest->begin(), 
2965            IE = UnwindDest->getFirstNonPHI();
2966          I != IE; ++I) {
2967       PHINode *DestPN = cast<PHINode>(I);
2968  
2969       int Idx = DestPN->getBasicBlockIndex(BB);
2970       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
2971       assert(Idx != -1);
2972       // This PHI node has an incoming value that corresponds to a control
2973       // path through the cleanup pad we are removing.  If the incoming
2974       // value is in the cleanup pad, it must be a PHINode (because we
2975       // verified above that the block is otherwise empty).  Otherwise, the
2976       // value is either a constant or a value that dominates the cleanup
2977       // pad being removed.
2978       //
2979       // Because BB and UnwindDest are both EH pads, all of their
2980       // predecessors must unwind to these blocks, and since no instruction
2981       // can have multiple unwind destinations, there will be no overlap in
2982       // incoming blocks between SrcPN and DestPN.
2983       Value *SrcVal = DestPN->getIncomingValue(Idx);
2984       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
2985
2986       // Remove the entry for the block we are deleting.
2987       DestPN->removeIncomingValue(Idx, false);
2988
2989       if (SrcPN && SrcPN->getParent() == BB) {
2990         // If the incoming value was a PHI node in the cleanup pad we are
2991         // removing, we need to merge that PHI node's incoming values into
2992         // DestPN.
2993         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 
2994               SrcIdx != SrcE; ++SrcIdx) {
2995           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
2996                               SrcPN->getIncomingBlock(SrcIdx));
2997         }
2998       } else {
2999         // Otherwise, the incoming value came from above BB and
3000         // so we can just reuse it.  We must associate all of BB's
3001         // predecessors with this value.
3002         for (auto *pred : predecessors(BB)) {
3003           DestPN->addIncoming(SrcVal, pred);
3004         }
3005       }
3006     }
3007
3008     // Sink any remaining PHI nodes directly into UnwindDest.
3009     Instruction *InsertPt = UnwindDest->getFirstNonPHI();
3010     for (BasicBlock::iterator I = BB->begin(), IE = BB->getFirstNonPHI();
3011          I != IE;) {
3012       // The iterator must be incremented here because the instructions are
3013       // being moved to another block.
3014       PHINode *PN = cast<PHINode>(I++);
3015       if (PN->use_empty())
3016         // If the PHI node has no uses, just leave it.  It will be erased
3017         // when we erase BB below.
3018         continue;
3019
3020       // Otherwise, sink this PHI node into UnwindDest.
3021       // Any predecessors to UnwindDest which are not already represented
3022       // must be back edges which inherit the value from the path through
3023       // BB.  In this case, the PHI value must reference itself.
3024       for (auto *pred : predecessors(UnwindDest))
3025         if (pred != BB)
3026           PN->addIncoming(PN, pred);
3027       PN->moveBefore(InsertPt);
3028     }
3029   }
3030
3031   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3032     // The iterator must be updated here because we are removing this pred.
3033     BasicBlock *PredBB = *PI++;
3034     if (UnwindDest == nullptr) {
3035       removeUnwindEdge(PredBB);
3036     } else {
3037       TerminatorInst *TI = PredBB->getTerminator();
3038       TI->replaceUsesOfWith(BB, UnwindDest);
3039     }
3040   }
3041
3042   // The cleanup pad is now unreachable.  Zap it.
3043   BB->eraseFromParent();
3044   return true;
3045 }
3046
3047 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3048   BasicBlock *BB = RI->getParent();
3049   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
3050
3051   // Find predecessors that end with branches.
3052   SmallVector<BasicBlock*, 8> UncondBranchPreds;
3053   SmallVector<BranchInst*, 8> CondBranchPreds;
3054   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3055     BasicBlock *P = *PI;
3056     TerminatorInst *PTI = P->getTerminator();
3057     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3058       if (BI->isUnconditional())
3059         UncondBranchPreds.push_back(P);
3060       else
3061         CondBranchPreds.push_back(BI);
3062     }
3063   }
3064
3065   // If we found some, do the transformation!
3066   if (!UncondBranchPreds.empty() && DupRet) {
3067     while (!UncondBranchPreds.empty()) {
3068       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3069       DEBUG(dbgs() << "FOLDING: " << *BB
3070             << "INTO UNCOND BRANCH PRED: " << *Pred);
3071       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3072     }
3073
3074     // If we eliminated all predecessors of the block, delete the block now.
3075     if (pred_empty(BB))
3076       // We know there are no successors, so just nuke the block.
3077       BB->eraseFromParent();
3078
3079     return true;
3080   }
3081
3082   // Check out all of the conditional branches going to this return
3083   // instruction.  If any of them just select between returns, change the
3084   // branch itself into a select/return pair.
3085   while (!CondBranchPreds.empty()) {
3086     BranchInst *BI = CondBranchPreds.pop_back_val();
3087
3088     // Check to see if the non-BB successor is also a return block.
3089     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3090         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3091         SimplifyCondBranchToTwoReturns(BI, Builder))
3092       return true;
3093   }
3094   return false;
3095 }
3096
3097 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3098   BasicBlock *BB = UI->getParent();
3099
3100   bool Changed = false;
3101
3102   // If there are any instructions immediately before the unreachable that can
3103   // be removed, do so.
3104   while (UI != BB->begin()) {
3105     BasicBlock::iterator BBI = UI;
3106     --BBI;
3107     // Do not delete instructions that can have side effects which might cause
3108     // the unreachable to not be reachable; specifically, calls and volatile
3109     // operations may have this effect.
3110     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
3111
3112     if (BBI->mayHaveSideEffects()) {
3113       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
3114         if (SI->isVolatile())
3115           break;
3116       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
3117         if (LI->isVolatile())
3118           break;
3119       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3120         if (RMWI->isVolatile())
3121           break;
3122       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3123         if (CXI->isVolatile())
3124           break;
3125       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3126                  !isa<LandingPadInst>(BBI)) {
3127         break;
3128       }
3129       // Note that deleting LandingPad's here is in fact okay, although it
3130       // involves a bit of subtle reasoning. If this inst is a LandingPad,
3131       // all the predecessors of this block will be the unwind edges of Invokes,
3132       // and we can therefore guarantee this block will be erased.
3133     }
3134
3135     // Delete this instruction (any uses are guaranteed to be dead)
3136     if (!BBI->use_empty())
3137       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3138     BBI->eraseFromParent();
3139     Changed = true;
3140   }
3141
3142   // If the unreachable instruction is the first in the block, take a gander
3143   // at all of the predecessors of this instruction, and simplify them.
3144   if (&BB->front() != UI) return Changed;
3145
3146   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3147   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3148     TerminatorInst *TI = Preds[i]->getTerminator();
3149     IRBuilder<> Builder(TI);
3150     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3151       if (BI->isUnconditional()) {
3152         if (BI->getSuccessor(0) == BB) {
3153           new UnreachableInst(TI->getContext(), TI);
3154           TI->eraseFromParent();
3155           Changed = true;
3156         }
3157       } else {
3158         if (BI->getSuccessor(0) == BB) {
3159           Builder.CreateBr(BI->getSuccessor(1));
3160           EraseTerminatorInstAndDCECond(BI);
3161         } else if (BI->getSuccessor(1) == BB) {
3162           Builder.CreateBr(BI->getSuccessor(0));
3163           EraseTerminatorInstAndDCECond(BI);
3164           Changed = true;
3165         }
3166       }
3167     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3168       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3169            i != e; ++i)
3170         if (i.getCaseSuccessor() == BB) {
3171           BB->removePredecessor(SI->getParent());
3172           SI->removeCase(i);
3173           --i; --e;
3174           Changed = true;
3175         }
3176     } else if ((isa<InvokeInst>(TI) &&
3177                 cast<InvokeInst>(TI)->getUnwindDest() == BB) ||
3178                isa<CatchEndPadInst>(TI) || isa<TerminatePadInst>(TI)) {
3179       removeUnwindEdge(TI->getParent());
3180       Changed = true;
3181     } else if (isa<CleanupReturnInst>(TI) || isa<CleanupEndPadInst>(TI) ||
3182                isa<CatchReturnInst>(TI)) {
3183       new UnreachableInst(TI->getContext(), TI);
3184       TI->eraseFromParent();
3185       Changed = true;
3186     }
3187     // TODO: If TI is a CatchPadInst, then (BB must be its normal dest and)
3188     // we can eliminate it, redirecting its preds to its unwind successor,
3189     // or to the next outer handler if the removed catch is the last for its
3190     // catchendpad.
3191   }
3192
3193   // If this block is now dead, remove it.
3194   if (pred_empty(BB) &&
3195       BB != &BB->getParent()->getEntryBlock()) {
3196     // We know there are no successors, so just nuke the block.
3197     BB->eraseFromParent();
3198     return true;
3199   }
3200
3201   return Changed;
3202 }
3203
3204 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3205   assert(Cases.size() >= 1);
3206
3207   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3208   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3209     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3210       return false;
3211   }
3212   return true;
3213 }
3214
3215 /// Turn a switch with two reachable destinations into an integer range
3216 /// comparison and branch.
3217 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3218   assert(SI->getNumCases() > 1 && "Degenerate switch?");
3219
3220   bool HasDefault =
3221       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3222
3223   // Partition the cases into two sets with different destinations.
3224   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3225   BasicBlock *DestB = nullptr;
3226   SmallVector <ConstantInt *, 16> CasesA;
3227   SmallVector <ConstantInt *, 16> CasesB;
3228
3229   for (SwitchInst::CaseIt I : SI->cases()) {
3230     BasicBlock *Dest = I.getCaseSuccessor();
3231     if (!DestA) DestA = Dest;
3232     if (Dest == DestA) {
3233       CasesA.push_back(I.getCaseValue());
3234       continue;
3235     }
3236     if (!DestB) DestB = Dest;
3237     if (Dest == DestB) {
3238       CasesB.push_back(I.getCaseValue());
3239       continue;
3240     }
3241     return false;  // More than two destinations.
3242   }
3243
3244   assert(DestA && DestB && "Single-destination switch should have been folded.");
3245   assert(DestA != DestB);
3246   assert(DestB != SI->getDefaultDest());
3247   assert(!CasesB.empty() && "There must be non-default cases.");
3248   assert(!CasesA.empty() || HasDefault);
3249
3250   // Figure out if one of the sets of cases form a contiguous range.
3251   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3252   BasicBlock *ContiguousDest = nullptr;
3253   BasicBlock *OtherDest = nullptr;
3254   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
3255     ContiguousCases = &CasesA;
3256     ContiguousDest = DestA;
3257     OtherDest = DestB;
3258   } else if (CasesAreContiguous(CasesB)) {
3259     ContiguousCases = &CasesB;
3260     ContiguousDest = DestB;
3261     OtherDest = DestA;
3262   } else
3263     return false;
3264
3265   // Start building the compare and branch.
3266
3267   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
3268   Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size());
3269
3270   Value *Sub = SI->getCondition();
3271   if (!Offset->isNullValue())
3272     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
3273
3274   Value *Cmp;
3275   // If NumCases overflowed, then all possible values jump to the successor.
3276   if (NumCases->isNullValue() && !ContiguousCases->empty())
3277     Cmp = ConstantInt::getTrue(SI->getContext());
3278   else
3279     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3280   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
3281
3282   // Update weight for the newly-created conditional branch.
3283   if (HasBranchWeights(SI)) {
3284     SmallVector<uint64_t, 8> Weights;
3285     GetBranchWeights(SI, Weights);
3286     if (Weights.size() == 1 + SI->getNumCases()) {
3287       uint64_t TrueWeight = 0;
3288       uint64_t FalseWeight = 0;
3289       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
3290         if (SI->getSuccessor(I) == ContiguousDest)
3291           TrueWeight += Weights[I];
3292         else
3293           FalseWeight += Weights[I];
3294       }
3295       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
3296         TrueWeight /= 2;
3297         FalseWeight /= 2;
3298       }
3299       NewBI->setMetadata(LLVMContext::MD_prof,
3300                          MDBuilder(SI->getContext()).createBranchWeights(
3301                              (uint32_t)TrueWeight, (uint32_t)FalseWeight));
3302     }
3303   }
3304
3305   // Prune obsolete incoming values off the successors' PHI nodes.
3306   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
3307     unsigned PreviousEdges = ContiguousCases->size();
3308     if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges;
3309     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3310       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3311   }
3312   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
3313     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
3314     if (OtherDest == SI->getDefaultDest()) ++PreviousEdges;
3315     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3316       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3317   }
3318
3319   // Drop the switch.
3320   SI->eraseFromParent();
3321
3322   return true;
3323 }
3324
3325 /// Compute masked bits for the condition of a switch
3326 /// and use it to remove dead cases.
3327 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
3328                                      const DataLayout &DL) {
3329   Value *Cond = SI->getCondition();
3330   unsigned Bits = Cond->getType()->getIntegerBitWidth();
3331   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3332   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3333
3334   // Gather dead cases.
3335   SmallVector<ConstantInt*, 8> DeadCases;
3336   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3337     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3338         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3339       DeadCases.push_back(I.getCaseValue());
3340       DEBUG(dbgs() << "SimplifyCFG: switch case '"
3341                    << I.getCaseValue() << "' is dead.\n");
3342     }
3343   }
3344
3345   // If we can prove that the cases must cover all possible values, the 
3346   // default destination becomes dead and we can remove it.  If we know some 
3347   // of the bits in the value, we can use that to more precisely compute the
3348   // number of possible unique case values.
3349   bool HasDefault =
3350     !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3351   const unsigned NumUnknownBits = Bits - 
3352     (KnownZero.Or(KnownOne)).countPopulation();
3353   assert(NumUnknownBits <= Bits);
3354   if (HasDefault && DeadCases.empty() &&
3355       NumUnknownBits < 64 /* avoid overflow */ &&  
3356       SI->getNumCases() == (1ULL << NumUnknownBits)) {
3357     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
3358     BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(),
3359                                                     SI->getParent(), "");
3360     SI->setDefaultDest(NewDefault);
3361     SplitBlock(NewDefault, NewDefault->begin());
3362     auto *OldTI = NewDefault->getTerminator();
3363     new UnreachableInst(SI->getContext(), OldTI);
3364     EraseTerminatorInstAndDCECond(OldTI);
3365     return true;
3366   }
3367
3368   SmallVector<uint64_t, 8> Weights;
3369   bool HasWeight = HasBranchWeights(SI);
3370   if (HasWeight) {
3371     GetBranchWeights(SI, Weights);
3372     HasWeight = (Weights.size() == 1 + SI->getNumCases());
3373   }
3374
3375   // Remove dead cases from the switch.
3376   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3377     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3378     assert(Case != SI->case_default() &&
3379            "Case was not found. Probably mistake in DeadCases forming.");
3380     if (HasWeight) {
3381       std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3382       Weights.pop_back();
3383     }
3384
3385     // Prune unused values from PHI nodes.
3386     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3387     SI->removeCase(Case);
3388   }
3389   if (HasWeight && Weights.size() >= 2) {
3390     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3391     SI->setMetadata(LLVMContext::MD_prof,
3392                     MDBuilder(SI->getParent()->getContext()).
3393                     createBranchWeights(MDWeights));
3394   }
3395
3396   return !DeadCases.empty();
3397 }
3398
3399 /// If BB would be eligible for simplification by
3400 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3401 /// by an unconditional branch), look at the phi node for BB in the successor
3402 /// block and see if the incoming value is equal to CaseValue. If so, return
3403 /// the phi node, and set PhiIndex to BB's index in the phi node.
3404 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3405                                               BasicBlock *BB,
3406                                               int *PhiIndex) {
3407   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3408     return nullptr; // BB must be empty to be a candidate for simplification.
3409   if (!BB->getSinglePredecessor())
3410     return nullptr; // BB must be dominated by the switch.
3411
3412   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3413   if (!Branch || !Branch->isUnconditional())
3414     return nullptr; // Terminator must be unconditional branch.
3415
3416   BasicBlock *Succ = Branch->getSuccessor(0);
3417
3418   BasicBlock::iterator I = Succ->begin();
3419   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3420     int Idx = PHI->getBasicBlockIndex(BB);
3421     assert(Idx >= 0 && "PHI has no entry for predecessor?");
3422
3423     Value *InValue = PHI->getIncomingValue(Idx);
3424     if (InValue != CaseValue) continue;
3425
3426     *PhiIndex = Idx;
3427     return PHI;
3428   }
3429
3430   return nullptr;
3431 }
3432
3433 /// Try to forward the condition of a switch instruction to a phi node
3434 /// dominated by the switch, if that would mean that some of the destination
3435 /// blocks of the switch can be folded away.
3436 /// Returns true if a change is made.
3437 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3438   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3439   ForwardingNodesMap ForwardingNodes;
3440
3441   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3442     ConstantInt *CaseValue = I.getCaseValue();
3443     BasicBlock *CaseDest = I.getCaseSuccessor();
3444
3445     int PhiIndex;
3446     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3447                                                  &PhiIndex);
3448     if (!PHI) continue;
3449
3450     ForwardingNodes[PHI].push_back(PhiIndex);
3451   }
3452
3453   bool Changed = false;
3454
3455   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3456        E = ForwardingNodes.end(); I != E; ++I) {
3457     PHINode *Phi = I->first;
3458     SmallVectorImpl<int> &Indexes = I->second;
3459
3460     if (Indexes.size() < 2) continue;
3461
3462     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3463       Phi->setIncomingValue(Indexes[I], SI->getCondition());
3464     Changed = true;
3465   }
3466
3467   return Changed;
3468 }
3469
3470 /// Return true if the backend will be able to handle
3471 /// initializing an array of constants like C.
3472 static bool ValidLookupTableConstant(Constant *C) {
3473   if (C->isThreadDependent())
3474     return false;
3475   if (C->isDLLImportDependent())
3476     return false;
3477
3478   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3479     return CE->isGEPWithNoNotionalOverIndexing();
3480
3481   return isa<ConstantFP>(C) ||
3482       isa<ConstantInt>(C) ||
3483       isa<ConstantPointerNull>(C) ||
3484       isa<GlobalValue>(C) ||
3485       isa<UndefValue>(C);
3486 }
3487
3488 /// If V is a Constant, return it. Otherwise, try to look up
3489 /// its constant value in ConstantPool, returning 0 if it's not there.
3490 static Constant *LookupConstant(Value *V,
3491                          const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3492   if (Constant *C = dyn_cast<Constant>(V))
3493     return C;
3494   return ConstantPool.lookup(V);
3495 }
3496
3497 /// Try to fold instruction I into a constant. This works for
3498 /// simple instructions such as binary operations where both operands are
3499 /// constant or can be replaced by constants from the ConstantPool. Returns the
3500 /// resulting constant on success, 0 otherwise.
3501 static Constant *
3502 ConstantFold(Instruction *I, const DataLayout &DL,
3503              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
3504   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3505     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3506     if (!A)
3507       return nullptr;
3508     if (A->isAllOnesValue())
3509       return LookupConstant(Select->getTrueValue(), ConstantPool);
3510     if (A->isNullValue())
3511       return LookupConstant(Select->getFalseValue(), ConstantPool);
3512     return nullptr;
3513   }
3514
3515   SmallVector<Constant *, 4> COps;
3516   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
3517     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
3518       COps.push_back(A);
3519     else
3520       return nullptr;
3521   }
3522
3523   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
3524     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
3525                                            COps[1], DL);
3526   }
3527
3528   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
3529 }
3530
3531 /// Try to determine the resulting constant values in phi nodes
3532 /// at the common destination basic block, *CommonDest, for one of the case
3533 /// destionations CaseDest corresponding to value CaseVal (0 for the default
3534 /// case), of a switch instruction SI.
3535 static bool
3536 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
3537                BasicBlock **CommonDest,
3538                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
3539                const DataLayout &DL) {
3540   // The block from which we enter the common destination.
3541   BasicBlock *Pred = SI->getParent();
3542
3543   // If CaseDest is empty except for some side-effect free instructions through
3544   // which we can constant-propagate the CaseVal, continue to its successor.
3545   SmallDenseMap<Value*, Constant*> ConstantPool;
3546   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3547   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3548        ++I) {
3549     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3550       // If the terminator is a simple branch, continue to the next block.
3551       if (T->getNumSuccessors() != 1)
3552         return false;
3553       Pred = CaseDest;
3554       CaseDest = T->getSuccessor(0);
3555     } else if (isa<DbgInfoIntrinsic>(I)) {
3556       // Skip debug intrinsic.
3557       continue;
3558     } else if (Constant *C = ConstantFold(I, DL, ConstantPool)) {
3559       // Instruction is side-effect free and constant.
3560
3561       // If the instruction has uses outside this block or a phi node slot for
3562       // the block, it is not safe to bypass the instruction since it would then
3563       // no longer dominate all its uses.
3564       for (auto &Use : I->uses()) {
3565         User *User = Use.getUser();
3566         if (Instruction *I = dyn_cast<Instruction>(User))
3567           if (I->getParent() == CaseDest)
3568             continue;
3569         if (PHINode *Phi = dyn_cast<PHINode>(User))
3570           if (Phi->getIncomingBlock(Use) == CaseDest)
3571             continue;
3572         return false;
3573       }
3574
3575       ConstantPool.insert(std::make_pair(I, C));
3576     } else {
3577       break;
3578     }
3579   }
3580
3581   // If we did not have a CommonDest before, use the current one.
3582   if (!*CommonDest)
3583     *CommonDest = CaseDest;
3584   // If the destination isn't the common one, abort.
3585   if (CaseDest != *CommonDest)
3586     return false;
3587
3588   // Get the values for this case from phi nodes in the destination block.
3589   BasicBlock::iterator I = (*CommonDest)->begin();
3590   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3591     int Idx = PHI->getBasicBlockIndex(Pred);
3592     if (Idx == -1)
3593       continue;
3594
3595     Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3596                                         ConstantPool);
3597     if (!ConstVal)
3598       return false;
3599
3600     // Be conservative about which kinds of constants we support.
3601     if (!ValidLookupTableConstant(ConstVal))
3602       return false;
3603
3604     Res.push_back(std::make_pair(PHI, ConstVal));
3605   }
3606
3607   return Res.size() > 0;
3608 }
3609
3610 // Helper function used to add CaseVal to the list of cases that generate
3611 // Result.
3612 static void MapCaseToResult(ConstantInt *CaseVal,
3613     SwitchCaseResultVectorTy &UniqueResults,
3614     Constant *Result) {
3615   for (auto &I : UniqueResults) {
3616     if (I.first == Result) {
3617       I.second.push_back(CaseVal);
3618       return;
3619     }
3620   }
3621   UniqueResults.push_back(std::make_pair(Result,
3622         SmallVector<ConstantInt*, 4>(1, CaseVal)));
3623 }
3624
3625 // Helper function that initializes a map containing
3626 // results for the PHI node of the common destination block for a switch
3627 // instruction. Returns false if multiple PHI nodes have been found or if
3628 // there is not a common destination block for the switch.
3629 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
3630                                   BasicBlock *&CommonDest,
3631                                   SwitchCaseResultVectorTy &UniqueResults,
3632                                   Constant *&DefaultResult,
3633                                   const DataLayout &DL) {
3634   for (auto &I : SI->cases()) {
3635     ConstantInt *CaseVal = I.getCaseValue();
3636
3637     // Resulting value at phi nodes for this case value.
3638     SwitchCaseResultsTy Results;
3639     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
3640                         DL))
3641       return false;
3642
3643     // Only one value per case is permitted
3644     if (Results.size() > 1)
3645       return false;
3646     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
3647
3648     // Check the PHI consistency.
3649     if (!PHI)
3650       PHI = Results[0].first;
3651     else if (PHI != Results[0].first)
3652       return false;
3653   }
3654   // Find the default result value.
3655   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
3656   BasicBlock *DefaultDest = SI->getDefaultDest();
3657   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
3658                  DL);
3659   // If the default value is not found abort unless the default destination
3660   // is unreachable.
3661   DefaultResult =
3662       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
3663   if ((!DefaultResult &&
3664         !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
3665     return false;
3666
3667   return true;
3668 }
3669
3670 // Helper function that checks if it is possible to transform a switch with only
3671 // two cases (or two cases + default) that produces a result into a select.
3672 // Example:
3673 // switch (a) {
3674 //   case 10:                %0 = icmp eq i32 %a, 10
3675 //     return 10;            %1 = select i1 %0, i32 10, i32 4
3676 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
3677 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
3678 //   default:
3679 //     return 4;
3680 // }
3681 static Value *
3682 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
3683                      Constant *DefaultResult, Value *Condition,
3684                      IRBuilder<> &Builder) {
3685   assert(ResultVector.size() == 2 &&
3686       "We should have exactly two unique results at this point");
3687   // If we are selecting between only two cases transform into a simple
3688   // select or a two-way select if default is possible.
3689   if (ResultVector[0].second.size() == 1 &&
3690       ResultVector[1].second.size() == 1) {
3691     ConstantInt *const FirstCase = ResultVector[0].second[0];
3692     ConstantInt *const SecondCase = ResultVector[1].second[0];
3693
3694     bool DefaultCanTrigger = DefaultResult;
3695     Value *SelectValue = ResultVector[1].first;
3696     if (DefaultCanTrigger) {
3697       Value *const ValueCompare =
3698           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
3699       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
3700                                          DefaultResult, "switch.select");
3701     }
3702     Value *const ValueCompare =
3703         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
3704     return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue,
3705                                 "switch.select");
3706   }
3707
3708   return nullptr;
3709 }
3710
3711 // Helper function to cleanup a switch instruction that has been converted into
3712 // a select, fixing up PHI nodes and basic blocks.
3713 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
3714                                               Value *SelectValue,
3715                                               IRBuilder<> &Builder) {
3716   BasicBlock *SelectBB = SI->getParent();
3717   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
3718     PHI->removeIncomingValue(SelectBB);
3719   PHI->addIncoming(SelectValue, SelectBB);
3720
3721   Builder.CreateBr(PHI->getParent());
3722
3723   // Remove the switch.
3724   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
3725     BasicBlock *Succ = SI->getSuccessor(i);
3726
3727     if (Succ == PHI->getParent())
3728       continue;
3729     Succ->removePredecessor(SelectBB);
3730   }
3731   SI->eraseFromParent();
3732 }
3733
3734 /// If the switch is only used to initialize one or more
3735 /// phi nodes in a common successor block with only two different
3736 /// constant values, replace the switch with select.
3737 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
3738                            AssumptionCache *AC, const DataLayout &DL) {
3739   Value *const Cond = SI->getCondition();
3740   PHINode *PHI = nullptr;
3741   BasicBlock *CommonDest = nullptr;
3742   Constant *DefaultResult;
3743   SwitchCaseResultVectorTy UniqueResults;
3744   // Collect all the cases that will deliver the same value from the switch.
3745   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
3746                              DL))
3747     return false;
3748   // Selects choose between maximum two values.
3749   if (UniqueResults.size() != 2)
3750     return false;
3751   assert(PHI != nullptr && "PHI for value select not found");
3752
3753   Builder.SetInsertPoint(SI);
3754   Value *SelectValue = ConvertTwoCaseSwitch(
3755       UniqueResults,
3756       DefaultResult, Cond, Builder);
3757   if (SelectValue) {
3758     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
3759     return true;
3760   }
3761   // The switch couldn't be converted into a select.
3762   return false;
3763 }
3764
3765 namespace {
3766   /// This class represents a lookup table that can be used to replace a switch.
3767   class SwitchLookupTable {
3768   public:
3769     /// Create a lookup table to use as a switch replacement with the contents
3770     /// of Values, using DefaultValue to fill any holes in the table.
3771     SwitchLookupTable(
3772         Module &M, uint64_t TableSize, ConstantInt *Offset,
3773         const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
3774         Constant *DefaultValue, const DataLayout &DL);
3775
3776     /// Build instructions with Builder to retrieve the value at
3777     /// the position given by Index in the lookup table.
3778     Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3779
3780     /// Return true if a table with TableSize elements of
3781     /// type ElementType would fit in a target-legal register.
3782     static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
3783                                    Type *ElementType);
3784
3785   private:
3786     // Depending on the contents of the table, it can be represented in
3787     // different ways.
3788     enum {
3789       // For tables where each element contains the same value, we just have to
3790       // store that single value and return it for each lookup.
3791       SingleValueKind,
3792
3793       // For tables where there is a linear relationship between table index
3794       // and values. We calculate the result with a simple multiplication
3795       // and addition instead of a table lookup.
3796       LinearMapKind,
3797
3798       // For small tables with integer elements, we can pack them into a bitmap
3799       // that fits into a target-legal register. Values are retrieved by
3800       // shift and mask operations.
3801       BitMapKind,
3802
3803       // The table is stored as an array of values. Values are retrieved by load
3804       // instructions from the table.
3805       ArrayKind
3806     } Kind;
3807
3808     // For SingleValueKind, this is the single value.
3809     Constant *SingleValue;
3810
3811     // For BitMapKind, this is the bitmap.
3812     ConstantInt *BitMap;
3813     IntegerType *BitMapElementTy;
3814
3815     // For LinearMapKind, these are the constants used to derive the value.
3816     ConstantInt *LinearOffset;
3817     ConstantInt *LinearMultiplier;
3818
3819     // For ArrayKind, this is the array.
3820     GlobalVariable *Array;
3821   };
3822 }
3823
3824 SwitchLookupTable::SwitchLookupTable(
3825     Module &M, uint64_t TableSize, ConstantInt *Offset,
3826     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
3827     Constant *DefaultValue, const DataLayout &DL)
3828     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
3829       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
3830   assert(Values.size() && "Can't build lookup table without values!");
3831   assert(TableSize >= Values.size() && "Can't fit values in table!");
3832
3833   // If all values in the table are equal, this is that value.
3834   SingleValue = Values.begin()->second;
3835
3836   Type *ValueType = Values.begin()->second->getType();
3837
3838   // Build up the table contents.
3839   SmallVector<Constant*, 64> TableContents(TableSize);
3840   for (size_t I = 0, E = Values.size(); I != E; ++I) {
3841     ConstantInt *CaseVal = Values[I].first;
3842     Constant *CaseRes = Values[I].second;
3843     assert(CaseRes->getType() == ValueType);
3844
3845     uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3846                    .getLimitedValue();
3847     TableContents[Idx] = CaseRes;
3848
3849     if (CaseRes != SingleValue)
3850       SingleValue = nullptr;
3851   }
3852
3853   // Fill in any holes in the table with the default result.
3854   if (Values.size() < TableSize) {
3855     assert(DefaultValue &&
3856            "Need a default value to fill the lookup table holes.");
3857     assert(DefaultValue->getType() == ValueType);
3858     for (uint64_t I = 0; I < TableSize; ++I) {
3859       if (!TableContents[I])
3860         TableContents[I] = DefaultValue;
3861     }
3862
3863     if (DefaultValue != SingleValue)
3864       SingleValue = nullptr;
3865   }
3866
3867   // If each element in the table contains the same value, we only need to store
3868   // that single value.
3869   if (SingleValue) {
3870     Kind = SingleValueKind;
3871     return;
3872   }
3873
3874   // Check if we can derive the value with a linear transformation from the
3875   // table index.
3876   if (isa<IntegerType>(ValueType)) {
3877     bool LinearMappingPossible = true;
3878     APInt PrevVal;
3879     APInt DistToPrev;
3880     assert(TableSize >= 2 && "Should be a SingleValue table.");
3881     // Check if there is the same distance between two consecutive values.
3882     for (uint64_t I = 0; I < TableSize; ++I) {
3883       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
3884       if (!ConstVal) {
3885         // This is an undef. We could deal with it, but undefs in lookup tables
3886         // are very seldom. It's probably not worth the additional complexity.
3887         LinearMappingPossible = false;
3888         break;
3889       }
3890       APInt Val = ConstVal->getValue();
3891       if (I != 0) {
3892         APInt Dist = Val - PrevVal;
3893         if (I == 1) {
3894           DistToPrev = Dist;
3895         } else if (Dist != DistToPrev) {
3896           LinearMappingPossible = false;
3897           break;
3898         }
3899       }
3900       PrevVal = Val;
3901     }
3902     if (LinearMappingPossible) {
3903       LinearOffset = cast<ConstantInt>(TableContents[0]);
3904       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
3905       Kind = LinearMapKind;
3906       ++NumLinearMaps;
3907       return;
3908     }
3909   }
3910
3911   // If the type is integer and the table fits in a register, build a bitmap.
3912   if (WouldFitInRegister(DL, TableSize, ValueType)) {
3913     IntegerType *IT = cast<IntegerType>(ValueType);
3914     APInt TableInt(TableSize * IT->getBitWidth(), 0);
3915     for (uint64_t I = TableSize; I > 0; --I) {
3916       TableInt <<= IT->getBitWidth();
3917       // Insert values into the bitmap. Undef values are set to zero.
3918       if (!isa<UndefValue>(TableContents[I - 1])) {
3919         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3920         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3921       }
3922     }
3923     BitMap = ConstantInt::get(M.getContext(), TableInt);
3924     BitMapElementTy = IT;
3925     Kind = BitMapKind;
3926     ++NumBitMaps;
3927     return;
3928   }
3929
3930   // Store the table in an array.
3931   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
3932   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3933
3934   Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3935                              GlobalVariable::PrivateLinkage,
3936                              Initializer,
3937                              "switch.table");
3938   Array->setUnnamedAddr(true);
3939   Kind = ArrayKind;
3940 }
3941
3942 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3943   switch (Kind) {
3944     case SingleValueKind:
3945       return SingleValue;
3946     case LinearMapKind: {
3947       // Derive the result value from the input value.
3948       Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
3949                                             false, "switch.idx.cast");
3950       if (!LinearMultiplier->isOne())
3951         Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
3952       if (!LinearOffset->isZero())
3953         Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
3954       return Result;
3955     }
3956     case BitMapKind: {
3957       // Type of the bitmap (e.g. i59).
3958       IntegerType *MapTy = BitMap->getType();
3959
3960       // Cast Index to the same type as the bitmap.
3961       // Note: The Index is <= the number of elements in the table, so
3962       // truncating it to the width of the bitmask is safe.
3963       Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3964
3965       // Multiply the shift amount by the element width.
3966       ShiftAmt = Builder.CreateMul(ShiftAmt,
3967                       ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3968                                    "switch.shiftamt");
3969
3970       // Shift down.
3971       Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3972                                               "switch.downshift");
3973       // Mask off.
3974       return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3975                                  "switch.masked");
3976     }
3977     case ArrayKind: {
3978       // Make sure the table index will not overflow when treated as signed.
3979       IntegerType *IT = cast<IntegerType>(Index->getType());
3980       uint64_t TableSize = Array->getInitializer()->getType()
3981                                 ->getArrayNumElements();
3982       if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
3983         Index = Builder.CreateZExt(Index,
3984                                    IntegerType::get(IT->getContext(),
3985                                                     IT->getBitWidth() + 1),
3986                                    "switch.tableidx.zext");
3987
3988       Value *GEPIndices[] = { Builder.getInt32(0), Index };
3989       Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
3990                                              GEPIndices, "switch.gep");
3991       return Builder.CreateLoad(GEP, "switch.load");
3992     }
3993   }
3994   llvm_unreachable("Unknown lookup table kind!");
3995 }
3996
3997 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
3998                                            uint64_t TableSize,
3999                                            Type *ElementType) {
4000   auto *IT = dyn_cast<IntegerType>(ElementType);
4001   if (!IT)
4002     return false;
4003   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4004   // are <= 15, we could try to narrow the type.
4005
4006   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4007   if (TableSize >= UINT_MAX/IT->getBitWidth())
4008     return false;
4009   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4010 }
4011
4012 /// Determine whether a lookup table should be built for this switch, based on
4013 /// the number of cases, size of the table, and the types of the results.
4014 static bool
4015 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4016                        const TargetTransformInfo &TTI, const DataLayout &DL,
4017                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4018   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4019     return false; // TableSize overflowed, or mul below might overflow.
4020
4021   bool AllTablesFitInRegister = true;
4022   bool HasIllegalType = false;
4023   for (const auto &I : ResultTypes) {
4024     Type *Ty = I.second;
4025
4026     // Saturate this flag to true.
4027     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4028
4029     // Saturate this flag to false.
4030     AllTablesFitInRegister = AllTablesFitInRegister &&
4031       SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4032
4033     // If both flags saturate, we're done. NOTE: This *only* works with
4034     // saturating flags, and all flags have to saturate first due to the
4035     // non-deterministic behavior of iterating over a dense map.
4036     if (HasIllegalType && !AllTablesFitInRegister)
4037       break;
4038   }
4039
4040   // If each table would fit in a register, we should build it anyway.
4041   if (AllTablesFitInRegister)
4042     return true;
4043
4044   // Don't build a table that doesn't fit in-register if it has illegal types.
4045   if (HasIllegalType)
4046     return false;
4047
4048   // The table density should be at least 40%. This is the same criterion as for
4049   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4050   // FIXME: Find the best cut-off.
4051   return SI->getNumCases() * 10 >= TableSize * 4;
4052 }
4053
4054 /// Try to reuse the switch table index compare. Following pattern:
4055 /// \code
4056 ///     if (idx < tablesize)
4057 ///        r = table[idx]; // table does not contain default_value
4058 ///     else
4059 ///        r = default_value;
4060 ///     if (r != default_value)
4061 ///        ...
4062 /// \endcode
4063 /// Is optimized to:
4064 /// \code
4065 ///     cond = idx < tablesize;
4066 ///     if (cond)
4067 ///        r = table[idx];
4068 ///     else
4069 ///        r = default_value;
4070 ///     if (cond)
4071 ///        ...
4072 /// \endcode
4073 /// Jump threading will then eliminate the second if(cond).
4074 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock,
4075           BranchInst *RangeCheckBranch, Constant *DefaultValue,
4076           const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) {
4077
4078   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
4079   if (!CmpInst)
4080     return;
4081
4082   // We require that the compare is in the same block as the phi so that jump
4083   // threading can do its work afterwards.
4084   if (CmpInst->getParent() != PhiBlock)
4085     return;
4086
4087   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
4088   if (!CmpOp1)
4089     return;
4090
4091   Value *RangeCmp = RangeCheckBranch->getCondition();
4092   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
4093   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
4094
4095   // Check if the compare with the default value is constant true or false.
4096   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4097                                                  DefaultValue, CmpOp1, true);
4098   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
4099     return;
4100
4101   // Check if the compare with the case values is distinct from the default
4102   // compare result.
4103   for (auto ValuePair : Values) {
4104     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4105                               ValuePair.second, CmpOp1, true);
4106     if (!CaseConst || CaseConst == DefaultConst)
4107       return;
4108     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4109            "Expect true or false as compare result.");
4110   }
4111  
4112   // Check if the branch instruction dominates the phi node. It's a simple
4113   // dominance check, but sufficient for our needs.
4114   // Although this check is invariant in the calling loops, it's better to do it
4115   // at this late stage. Practically we do it at most once for a switch.
4116   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4117   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4118     BasicBlock *Pred = *PI;
4119     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4120       return;
4121   }
4122
4123   if (DefaultConst == FalseConst) {
4124     // The compare yields the same result. We can replace it.
4125     CmpInst->replaceAllUsesWith(RangeCmp);
4126     ++NumTableCmpReuses;
4127   } else {
4128     // The compare yields the same result, just inverted. We can replace it.
4129     Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp,
4130                 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4131                 RangeCheckBranch);
4132     CmpInst->replaceAllUsesWith(InvertedTableCmp);
4133     ++NumTableCmpReuses;
4134   }
4135 }
4136
4137 /// If the switch is only used to initialize one or more phi nodes in a common
4138 /// successor block with different constant values, replace the switch with
4139 /// lookup tables.
4140 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4141                                 const DataLayout &DL,
4142                                 const TargetTransformInfo &TTI) {
4143   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4144
4145   // Only build lookup table when we have a target that supports it.
4146   if (!TTI.shouldBuildLookupTables())
4147     return false;
4148
4149   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4150   // split off a dense part and build a lookup table for that.
4151
4152   // FIXME: This creates arrays of GEPs to constant strings, which means each
4153   // GEP needs a runtime relocation in PIC code. We should just build one big
4154   // string and lookup indices into that.
4155
4156   // Ignore switches with less than three cases. Lookup tables will not make them
4157   // faster, so we don't analyze them.
4158   if (SI->getNumCases() < 3)
4159     return false;
4160
4161   // Figure out the corresponding result for each case value and phi node in the
4162   // common destination, as well as the min and max case values.
4163   assert(SI->case_begin() != SI->case_end());
4164   SwitchInst::CaseIt CI = SI->case_begin();
4165   ConstantInt *MinCaseVal = CI.getCaseValue();
4166   ConstantInt *MaxCaseVal = CI.getCaseValue();
4167
4168   BasicBlock *CommonDest = nullptr;
4169   typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
4170   SmallDenseMap<PHINode*, ResultListTy> ResultLists;
4171   SmallDenseMap<PHINode*, Constant*> DefaultResults;
4172   SmallDenseMap<PHINode*, Type*> ResultTypes;
4173   SmallVector<PHINode*, 4> PHIs;
4174
4175   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4176     ConstantInt *CaseVal = CI.getCaseValue();
4177     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4178       MinCaseVal = CaseVal;
4179     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4180       MaxCaseVal = CaseVal;
4181
4182     // Resulting value at phi nodes for this case value.
4183     typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
4184     ResultsTy Results;
4185     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4186                         Results, DL))
4187       return false;
4188
4189     // Append the result from this case to the list for each phi.
4190     for (const auto &I : Results) {
4191       PHINode *PHI = I.first;
4192       Constant *Value = I.second;
4193       if (!ResultLists.count(PHI))
4194         PHIs.push_back(PHI);
4195       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4196     }
4197   }
4198
4199   // Keep track of the result types.
4200   for (PHINode *PHI : PHIs) {
4201     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4202   }
4203
4204   uint64_t NumResults = ResultLists[PHIs[0]].size();
4205   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4206   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4207   bool TableHasHoles = (NumResults < TableSize);
4208
4209   // If the table has holes, we need a constant result for the default case
4210   // or a bitmask that fits in a register.
4211   SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
4212   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4213                                           &CommonDest, DefaultResultsList, DL);
4214
4215   bool NeedMask = (TableHasHoles && !HasDefaultResults);
4216   if (NeedMask) {
4217     // As an extra penalty for the validity test we require more cases.
4218     if (SI->getNumCases() < 4)  // FIXME: Find best threshold value (benchmark).
4219       return false;
4220     if (!DL.fitsInLegalInteger(TableSize))
4221       return false;
4222   }
4223
4224   for (const auto &I : DefaultResultsList) {
4225     PHINode *PHI = I.first;
4226     Constant *Result = I.second;
4227     DefaultResults[PHI] = Result;
4228   }
4229
4230   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4231     return false;
4232
4233   // Create the BB that does the lookups.
4234   Module &Mod = *CommonDest->getParent()->getParent();
4235   BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
4236                                             "switch.lookup",
4237                                             CommonDest->getParent(),
4238                                             CommonDest);
4239
4240   // Compute the table index value.
4241   Builder.SetInsertPoint(SI);
4242   Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
4243                                         "switch.tableidx");
4244
4245   // Compute the maximum table size representable by the integer type we are
4246   // switching upon.
4247   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4248   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4249   assert(MaxTableSize >= TableSize &&
4250          "It is impossible for a switch to have more entries than the max "
4251          "representable value of its input integer type's size.");
4252
4253   // If the default destination is unreachable, or if the lookup table covers
4254   // all values of the conditional variable, branch directly to the lookup table
4255   // BB. Otherwise, check that the condition is within the case range.
4256   const bool DefaultIsReachable =
4257       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4258   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
4259   BranchInst *RangeCheckBranch = nullptr;
4260
4261   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4262     Builder.CreateBr(LookupBB);
4263     // Note: We call removeProdecessor later since we need to be able to get the
4264     // PHI value for the default case in case we're using a bit mask.
4265   } else {
4266     Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
4267                                        MinCaseVal->getType(), TableSize));
4268     RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4269   }
4270
4271   // Populate the BB that does the lookups.
4272   Builder.SetInsertPoint(LookupBB);
4273
4274   if (NeedMask) {
4275     // Before doing the lookup we do the hole check.
4276     // The LookupBB is therefore re-purposed to do the hole check
4277     // and we create a new LookupBB.
4278     BasicBlock *MaskBB = LookupBB;
4279     MaskBB->setName("switch.hole_check");
4280     LookupBB = BasicBlock::Create(Mod.getContext(),
4281                                   "switch.lookup",
4282                                   CommonDest->getParent(),
4283                                   CommonDest);
4284
4285     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4286     // unnecessary illegal types.
4287     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4288     APInt MaskInt(TableSizePowOf2, 0);
4289     APInt One(TableSizePowOf2, 1);
4290     // Build bitmask; fill in a 1 bit for every case.
4291     const ResultListTy &ResultList = ResultLists[PHIs[0]];
4292     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4293       uint64_t Idx = (ResultList[I].first->getValue() -
4294                       MinCaseVal->getValue()).getLimitedValue();
4295       MaskInt |= One << Idx;
4296     }
4297     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4298
4299     // Get the TableIndex'th bit of the bitmask.
4300     // If this bit is 0 (meaning hole) jump to the default destination,
4301     // else continue with table lookup.
4302     IntegerType *MapTy = TableMask->getType();
4303     Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
4304                                                  "switch.maskindex");
4305     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
4306                                         "switch.shifted");
4307     Value *LoBit = Builder.CreateTrunc(Shifted,
4308                                        Type::getInt1Ty(Mod.getContext()),
4309                                        "switch.lobit");
4310     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4311
4312     Builder.SetInsertPoint(LookupBB);
4313     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4314   }
4315
4316   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4317     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4318     // do not delete PHINodes here.
4319     SI->getDefaultDest()->removePredecessor(SI->getParent(),
4320                                             /*DontDeleteUselessPHIs=*/true);
4321   }
4322
4323   bool ReturnedEarly = false;
4324   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4325     PHINode *PHI = PHIs[I];
4326     const ResultListTy &ResultList = ResultLists[PHI];
4327
4328     // If using a bitmask, use any value to fill the lookup table holes.
4329     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4330     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4331
4332     Value *Result = Table.BuildLookup(TableIndex, Builder);
4333
4334     // If the result is used to return immediately from the function, we want to
4335     // do that right here.
4336     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
4337         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
4338       Builder.CreateRet(Result);
4339       ReturnedEarly = true;
4340       break;
4341     }
4342
4343     // Do a small peephole optimization: re-use the switch table compare if
4344     // possible.
4345     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
4346       BasicBlock *PhiBlock = PHI->getParent();
4347       // Search for compare instructions which use the phi.
4348       for (auto *User : PHI->users()) {
4349         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
4350       }
4351     }
4352
4353     PHI->addIncoming(Result, LookupBB);
4354   }
4355
4356   if (!ReturnedEarly)
4357     Builder.CreateBr(CommonDest);
4358
4359   // Remove the switch.
4360   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4361     BasicBlock *Succ = SI->getSuccessor(i);
4362
4363     if (Succ == SI->getDefaultDest())
4364       continue;
4365     Succ->removePredecessor(SI->getParent());
4366   }
4367   SI->eraseFromParent();
4368
4369   ++NumLookupTables;
4370   if (NeedMask)
4371     ++NumLookupTablesHoles;
4372   return true;
4373 }
4374
4375 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
4376   BasicBlock *BB = SI->getParent();
4377
4378   if (isValueEqualityComparison(SI)) {
4379     // If we only have one predecessor, and if it is a branch on this value,
4380     // see if that predecessor totally determines the outcome of this switch.
4381     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4382       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
4383         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4384
4385     Value *Cond = SI->getCondition();
4386     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
4387       if (SimplifySwitchOnSelect(SI, Select))
4388         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4389
4390     // If the block only contains the switch, see if we can fold the block
4391     // away into any preds.
4392     BasicBlock::iterator BBI = BB->begin();
4393     // Ignore dbg intrinsics.
4394     while (isa<DbgInfoIntrinsic>(BBI))
4395       ++BBI;
4396     if (SI == &*BBI)
4397       if (FoldValueComparisonIntoPredecessors(SI, Builder))
4398         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4399   }
4400
4401   // Try to transform the switch into an icmp and a branch.
4402   if (TurnSwitchRangeIntoICmp(SI, Builder))
4403     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4404
4405   // Remove unreachable cases.
4406   if (EliminateDeadSwitchCases(SI, AC, DL))
4407     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4408
4409   if (SwitchToSelect(SI, Builder, AC, DL))
4410     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4411
4412   if (ForwardSwitchConditionToPHI(SI))
4413     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4414
4415   if (SwitchToLookupTable(SI, Builder, DL, TTI))
4416     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4417
4418   return false;
4419 }
4420
4421 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
4422   BasicBlock *BB = IBI->getParent();
4423   bool Changed = false;
4424
4425   // Eliminate redundant destinations.
4426   SmallPtrSet<Value *, 8> Succs;
4427   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
4428     BasicBlock *Dest = IBI->getDestination(i);
4429     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
4430       Dest->removePredecessor(BB);
4431       IBI->removeDestination(i);
4432       --i; --e;
4433       Changed = true;
4434     }
4435   }
4436
4437   if (IBI->getNumDestinations() == 0) {
4438     // If the indirectbr has no successors, change it to unreachable.
4439     new UnreachableInst(IBI->getContext(), IBI);
4440     EraseTerminatorInstAndDCECond(IBI);
4441     return true;
4442   }
4443
4444   if (IBI->getNumDestinations() == 1) {
4445     // If the indirectbr has one successor, change it to a direct branch.
4446     BranchInst::Create(IBI->getDestination(0), IBI);
4447     EraseTerminatorInstAndDCECond(IBI);
4448     return true;
4449   }
4450
4451   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
4452     if (SimplifyIndirectBrOnSelect(IBI, SI))
4453       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4454   }
4455   return Changed;
4456 }
4457
4458 /// Given an block with only a single landing pad and a unconditional branch
4459 /// try to find another basic block which this one can be merged with.  This
4460 /// handles cases where we have multiple invokes with unique landing pads, but
4461 /// a shared handler.
4462 ///
4463 /// We specifically choose to not worry about merging non-empty blocks
4464 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
4465 /// practice, the optimizer produces empty landing pad blocks quite frequently
4466 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
4467 /// sinking in this file)
4468 ///
4469 /// This is primarily a code size optimization.  We need to avoid performing
4470 /// any transform which might inhibit optimization (such as our ability to
4471 /// specialize a particular handler via tail commoning).  We do this by not
4472 /// merging any blocks which require us to introduce a phi.  Since the same
4473 /// values are flowing through both blocks, we don't loose any ability to
4474 /// specialize.  If anything, we make such specialization more likely.
4475 ///
4476 /// TODO - This transformation could remove entries from a phi in the target
4477 /// block when the inputs in the phi are the same for the two blocks being
4478 /// merged.  In some cases, this could result in removal of the PHI entirely.
4479 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
4480                                  BasicBlock *BB) {
4481   auto Succ = BB->getUniqueSuccessor();
4482   assert(Succ);
4483   // If there's a phi in the successor block, we'd likely have to introduce
4484   // a phi into the merged landing pad block.
4485   if (isa<PHINode>(*Succ->begin()))
4486     return false;
4487
4488   for (BasicBlock *OtherPred : predecessors(Succ)) {
4489     if (BB == OtherPred)
4490       continue;
4491     BasicBlock::iterator I = OtherPred->begin();
4492     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
4493     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
4494       continue;
4495     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
4496     BranchInst *BI2 = dyn_cast<BranchInst>(I);
4497     if (!BI2 || !BI2->isIdenticalTo(BI))
4498       continue;
4499
4500     // We've found an identical block.  Update our predeccessors to take that
4501     // path instead and make ourselves dead.
4502     SmallSet<BasicBlock *, 16> Preds;
4503     Preds.insert(pred_begin(BB), pred_end(BB));
4504     for (BasicBlock *Pred : Preds) {
4505       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
4506       assert(II->getNormalDest() != BB &&
4507              II->getUnwindDest() == BB && "unexpected successor");
4508       II->setUnwindDest(OtherPred);
4509     }
4510
4511     // The debug info in OtherPred doesn't cover the merged control flow that
4512     // used to go through BB.  We need to delete it or update it.
4513     for (auto I = OtherPred->begin(), E = OtherPred->end();
4514          I != E;) {
4515       Instruction &Inst = *I; I++;
4516       if (isa<DbgInfoIntrinsic>(Inst))
4517         Inst.eraseFromParent();
4518     }
4519
4520     SmallSet<BasicBlock *, 16> Succs;
4521     Succs.insert(succ_begin(BB), succ_end(BB));
4522     for (BasicBlock *Succ : Succs) {
4523       Succ->removePredecessor(BB);
4524     }
4525
4526     IRBuilder<> Builder(BI);
4527     Builder.CreateUnreachable();
4528     BI->eraseFromParent();
4529     return true;
4530   }
4531   return false;
4532 }
4533
4534 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
4535   BasicBlock *BB = BI->getParent();
4536
4537   if (SinkCommon && SinkThenElseCodeToEnd(BI))
4538     return true;
4539
4540   // If the Terminator is the only non-phi instruction, simplify the block.
4541   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
4542   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
4543       TryToSimplifyUncondBranchFromEmptyBlock(BB))
4544     return true;
4545
4546   // If the only instruction in the block is a seteq/setne comparison
4547   // against a constant, try to simplify the block.
4548   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
4549     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
4550       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
4551         ;
4552       if (I->isTerminator() &&
4553           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
4554                                                 BonusInstThreshold, AC))
4555         return true;
4556     }
4557
4558   // See if we can merge an empty landing pad block with another which is
4559   // equivalent.
4560   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
4561     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {}
4562     if (I->isTerminator() &&
4563         TryToMergeLandingPad(LPad, BI, BB))
4564       return true;
4565   }
4566
4567   // If this basic block is ONLY a compare and a branch, and if a predecessor
4568   // branches to us and our successor, fold the comparison into the
4569   // predecessor and use logical operations to update the incoming value
4570   // for PHI nodes in common successor.
4571   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
4572     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4573   return false;
4574 }
4575
4576
4577 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
4578   BasicBlock *BB = BI->getParent();
4579
4580   // Conditional branch
4581   if (isValueEqualityComparison(BI)) {
4582     // If we only have one predecessor, and if it is a branch on this value,
4583     // see if that predecessor totally determines the outcome of this
4584     // switch.
4585     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4586       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
4587         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4588
4589     // This block must be empty, except for the setcond inst, if it exists.
4590     // Ignore dbg intrinsics.
4591     BasicBlock::iterator I = BB->begin();
4592     // Ignore dbg intrinsics.
4593     while (isa<DbgInfoIntrinsic>(I))
4594       ++I;
4595     if (&*I == BI) {
4596       if (FoldValueComparisonIntoPredecessors(BI, Builder))
4597         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4598     } else if (&*I == cast<Instruction>(BI->getCondition())){
4599       ++I;
4600       // Ignore dbg intrinsics.
4601       while (isa<DbgInfoIntrinsic>(I))
4602         ++I;
4603       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
4604         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4605     }
4606   }
4607
4608   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
4609   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
4610     return true;
4611
4612   // If this basic block is ONLY a compare and a branch, and if a predecessor
4613   // branches to us and one of our successors, fold the comparison into the
4614   // predecessor and use logical operations to pick the right destination.
4615   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
4616     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4617
4618   // We have a conditional branch to two blocks that are only reachable
4619   // from BI.  We know that the condbr dominates the two blocks, so see if
4620   // there is any identical code in the "then" and "else" blocks.  If so, we
4621   // can hoist it up to the branching block.
4622   if (BI->getSuccessor(0)->getSinglePredecessor()) {
4623     if (BI->getSuccessor(1)->getSinglePredecessor()) {
4624       if (HoistThenElseCodeToIf(BI, TTI))
4625         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4626     } else {
4627       // If Successor #1 has multiple preds, we may be able to conditionally
4628       // execute Successor #0 if it branches to Successor #1.
4629       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
4630       if (Succ0TI->getNumSuccessors() == 1 &&
4631           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
4632         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
4633           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4634     }
4635   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
4636     // If Successor #0 has multiple preds, we may be able to conditionally
4637     // execute Successor #1 if it branches to Successor #0.
4638     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
4639     if (Succ1TI->getNumSuccessors() == 1 &&
4640         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
4641       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
4642         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4643   }
4644
4645   // If this is a branch on a phi node in the current block, thread control
4646   // through this block if any PHI node entries are constants.
4647   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4648     if (PN->getParent() == BI->getParent())
4649       if (FoldCondBranchOnPHI(BI, DL))
4650         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4651
4652   // Scan predecessor blocks for conditional branches.
4653   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4654     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
4655       if (PBI != BI && PBI->isConditional())
4656         if (SimplifyCondBranchToCondBranch(PBI, BI))
4657           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4658
4659   return false;
4660 }
4661
4662 /// Check if passing a value to an instruction will cause undefined behavior.
4663 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
4664   Constant *C = dyn_cast<Constant>(V);
4665   if (!C)
4666     return false;
4667
4668   if (I->use_empty())
4669     return false;
4670
4671   if (C->isNullValue()) {
4672     // Only look at the first use, avoid hurting compile time with long uselists
4673     User *Use = *I->user_begin();
4674
4675     // Now make sure that there are no instructions in between that can alter
4676     // control flow (eg. calls)
4677     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
4678       if (i == I->getParent()->end() || i->mayHaveSideEffects())
4679         return false;
4680
4681     // Look through GEPs. A load from a GEP derived from NULL is still undefined
4682     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
4683       if (GEP->getPointerOperand() == I)
4684         return passingValueIsAlwaysUndefined(V, GEP);
4685
4686     // Look through bitcasts.
4687     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
4688       return passingValueIsAlwaysUndefined(V, BC);
4689
4690     // Load from null is undefined.
4691     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
4692       if (!LI->isVolatile())
4693         return LI->getPointerAddressSpace() == 0;
4694
4695     // Store to null is undefined.
4696     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
4697       if (!SI->isVolatile())
4698         return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
4699   }
4700   return false;
4701 }
4702
4703 /// If BB has an incoming value that will always trigger undefined behavior
4704 /// (eg. null pointer dereference), remove the branch leading here.
4705 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
4706   for (BasicBlock::iterator i = BB->begin();
4707        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
4708     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
4709       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
4710         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
4711         IRBuilder<> Builder(T);
4712         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
4713           BB->removePredecessor(PHI->getIncomingBlock(i));
4714           // Turn uncoditional branches into unreachables and remove the dead
4715           // destination from conditional branches.
4716           if (BI->isUnconditional())
4717             Builder.CreateUnreachable();
4718           else
4719             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
4720                                                          BI->getSuccessor(0));
4721           BI->eraseFromParent();
4722           return true;
4723         }
4724         // TODO: SwitchInst.
4725       }
4726
4727   return false;
4728 }
4729
4730 bool SimplifyCFGOpt::run(BasicBlock *BB) {
4731   bool Changed = false;
4732
4733   assert(BB && BB->getParent() && "Block not embedded in function!");
4734   assert(BB->getTerminator() && "Degenerate basic block encountered!");
4735
4736   // Remove basic blocks that have no predecessors (except the entry block)...
4737   // or that just have themself as a predecessor.  These are unreachable.
4738   if ((pred_empty(BB) &&
4739        BB != &BB->getParent()->getEntryBlock()) ||
4740       BB->getSinglePredecessor() == BB) {
4741     DEBUG(dbgs() << "Removing BB: \n" << *BB);
4742     DeleteDeadBlock(BB);
4743     return true;
4744   }
4745
4746   // Check to see if we can constant propagate this terminator instruction
4747   // away...
4748   Changed |= ConstantFoldTerminator(BB, true);
4749
4750   // Check for and eliminate duplicate PHI nodes in this block.
4751   Changed |= EliminateDuplicatePHINodes(BB);
4752
4753   // Check for and remove branches that will always cause undefined behavior.
4754   Changed |= removeUndefIntroducingPredecessor(BB);
4755
4756   // Merge basic blocks into their predecessor if there is only one distinct
4757   // pred, and if there is only one distinct successor of the predecessor, and
4758   // if there are no PHI nodes.
4759   //
4760   if (MergeBlockIntoPredecessor(BB))
4761     return true;
4762
4763   IRBuilder<> Builder(BB);
4764
4765   // If there is a trivial two-entry PHI node in this basic block, and we can
4766   // eliminate it, do so now.
4767   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4768     if (PN->getNumIncomingValues() == 2)
4769       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
4770
4771   Builder.SetInsertPoint(BB->getTerminator());
4772   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4773     if (BI->isUnconditional()) {
4774       if (SimplifyUncondBranch(BI, Builder)) return true;
4775     } else {
4776       if (SimplifyCondBranch(BI, Builder)) return true;
4777     }
4778   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4779     if (SimplifyReturn(RI, Builder)) return true;
4780   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4781     if (SimplifyResume(RI, Builder)) return true;
4782   } else if (CleanupReturnInst *RI =
4783                dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
4784     if (SimplifyCleanupReturn(RI)) return true;
4785   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4786     if (SimplifySwitch(SI, Builder)) return true;
4787   } else if (UnreachableInst *UI =
4788                dyn_cast<UnreachableInst>(BB->getTerminator())) {
4789     if (SimplifyUnreachable(UI)) return true;
4790   } else if (IndirectBrInst *IBI =
4791                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4792     if (SimplifyIndirectBr(IBI)) return true;
4793   }
4794
4795   return Changed;
4796 }
4797
4798 /// This function is used to do simplification of a CFG.
4799 /// For example, it adjusts branches to branches to eliminate the extra hop,
4800 /// eliminates unreachable basic blocks, and does other "peephole" optimization
4801 /// of the CFG.  It returns true if a modification was made.
4802 ///
4803 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
4804                        unsigned BonusInstThreshold, AssumptionCache *AC) {
4805   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
4806                         BonusInstThreshold, AC).run(BB);
4807 }