44dc7b7ec8f655e0d6f551cc4639d6babf830249
[oota-llvm.git] / lib / Transforms / Utils / SSAUpdater.cpp
1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SSAUpdater class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/SSAUpdater.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/TinyPtrVector.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/IR/CFG.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
27
28 using namespace llvm;
29
30 #define DEBUG_TYPE "ssaupdater"
31
32 typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
33 static AvailableValsTy &getAvailableVals(void *AV) {
34   return *static_cast<AvailableValsTy*>(AV);
35 }
36
37 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
38   : AV(nullptr), ProtoType(nullptr), ProtoName(), InsertedPHIs(NewPHI) {}
39
40 SSAUpdater::~SSAUpdater() {
41   delete static_cast<AvailableValsTy*>(AV);
42 }
43
44 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
45   if (!AV)
46     AV = new AvailableValsTy();
47   else
48     getAvailableVals(AV).clear();
49   ProtoType = Ty;
50   ProtoName = Name;
51 }
52
53 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
54   return getAvailableVals(AV).count(BB);
55 }
56
57 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
58   assert(ProtoType != 0 && "Need to initialize SSAUpdater");
59   assert(ProtoType == V->getType() &&
60          "All rewritten values must have the same type");
61   getAvailableVals(AV)[BB] = V;
62 }
63
64 static bool IsEquivalentPHI(PHINode *PHI,
65                           SmallDenseMap<BasicBlock*, Value*, 8> &ValueMapping) {
66   unsigned PHINumValues = PHI->getNumIncomingValues();
67   if (PHINumValues != ValueMapping.size())
68     return false;
69
70   // Scan the phi to see if it matches.
71   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
72     if (ValueMapping[PHI->getIncomingBlock(i)] !=
73         PHI->getIncomingValue(i)) {
74       return false;
75     }
76
77   return true;
78 }
79
80 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
81   Value *Res = GetValueAtEndOfBlockInternal(BB);
82   return Res;
83 }
84
85 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
86   // If there is no definition of the renamed variable in this block, just use
87   // GetValueAtEndOfBlock to do our work.
88   if (!HasValueForBlock(BB))
89     return GetValueAtEndOfBlock(BB);
90
91   // Otherwise, we have the hard case.  Get the live-in values for each
92   // predecessor.
93   SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
94   Value *SingularValue = nullptr;
95
96   // We can get our predecessor info by walking the pred_iterator list, but it
97   // is relatively slow.  If we already have PHI nodes in this block, walk one
98   // of them to get the predecessor list instead.
99   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
100     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
101       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
102       Value *PredVal = GetValueAtEndOfBlock(PredBB);
103       PredValues.push_back(std::make_pair(PredBB, PredVal));
104
105       // Compute SingularValue.
106       if (i == 0)
107         SingularValue = PredVal;
108       else if (PredVal != SingularValue)
109         SingularValue = nullptr;
110     }
111   } else {
112     bool isFirstPred = true;
113     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
114       BasicBlock *PredBB = *PI;
115       Value *PredVal = GetValueAtEndOfBlock(PredBB);
116       PredValues.push_back(std::make_pair(PredBB, PredVal));
117
118       // Compute SingularValue.
119       if (isFirstPred) {
120         SingularValue = PredVal;
121         isFirstPred = false;
122       } else if (PredVal != SingularValue)
123         SingularValue = nullptr;
124     }
125   }
126
127   // If there are no predecessors, just return undef.
128   if (PredValues.empty())
129     return UndefValue::get(ProtoType);
130
131   // Otherwise, if all the merged values are the same, just use it.
132   if (SingularValue)
133     return SingularValue;
134
135   // Otherwise, we do need a PHI: check to see if we already have one available
136   // in this block that produces the right value.
137   if (isa<PHINode>(BB->begin())) {
138     SmallDenseMap<BasicBlock*, Value*, 8> ValueMapping(PredValues.begin(),
139                                                        PredValues.end());
140     PHINode *SomePHI;
141     for (BasicBlock::iterator It = BB->begin();
142          (SomePHI = dyn_cast<PHINode>(It)); ++It) {
143       if (IsEquivalentPHI(SomePHI, ValueMapping))
144         return SomePHI;
145     }
146   }
147
148   // Ok, we have no way out, insert a new one now.
149   PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
150                                          ProtoName, &BB->front());
151
152   // Fill in all the predecessors of the PHI.
153   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
154     InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
155
156   // See if the PHI node can be merged to a single value.  This can happen in
157   // loop cases when we get a PHI of itself and one other value.
158   if (Value *V = SimplifyInstruction(InsertedPHI)) {
159     InsertedPHI->eraseFromParent();
160     return V;
161   }
162
163   // Set the DebugLoc of the inserted PHI, if available.
164   DebugLoc DL;
165   if (const Instruction *I = BB->getFirstNonPHI())
166       DL = I->getDebugLoc();
167   InsertedPHI->setDebugLoc(DL);
168
169   // If the client wants to know about all new instructions, tell it.
170   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
171
172   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
173   return InsertedPHI;
174 }
175
176 void SSAUpdater::RewriteUse(Use &U) {
177   Instruction *User = cast<Instruction>(U.getUser());
178
179   Value *V;
180   if (PHINode *UserPN = dyn_cast<PHINode>(User))
181     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
182   else
183     V = GetValueInMiddleOfBlock(User->getParent());
184
185   // Notify that users of the existing value that it is being replaced.
186   Value *OldVal = U.get();
187   if (OldVal != V && OldVal->hasValueHandle())
188     ValueHandleBase::ValueIsRAUWd(OldVal, V);
189
190   U.set(V);
191 }
192
193 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
194   Instruction *User = cast<Instruction>(U.getUser());
195   
196   Value *V;
197   if (PHINode *UserPN = dyn_cast<PHINode>(User))
198     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
199   else
200     V = GetValueAtEndOfBlock(User->getParent());
201   
202   U.set(V);
203 }
204
205 namespace llvm {
206 template<>
207 class SSAUpdaterTraits<SSAUpdater> {
208 public:
209   typedef BasicBlock BlkT;
210   typedef Value *ValT;
211   typedef PHINode PhiT;
212
213   typedef succ_iterator BlkSucc_iterator;
214   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
215   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
216
217   class PHI_iterator {
218   private:
219     PHINode *PHI;
220     unsigned idx;
221
222   public:
223     explicit PHI_iterator(PHINode *P) // begin iterator
224       : PHI(P), idx(0) {}
225     PHI_iterator(PHINode *P, bool) // end iterator
226       : PHI(P), idx(PHI->getNumIncomingValues()) {}
227
228     PHI_iterator &operator++() { ++idx; return *this; } 
229     bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
230     bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
231     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
232     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
233   };
234
235   static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
236   static PHI_iterator PHI_end(PhiT *PHI) {
237     return PHI_iterator(PHI, true);
238   }
239
240   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
241   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
242   static void FindPredecessorBlocks(BasicBlock *BB,
243                                     SmallVectorImpl<BasicBlock*> *Preds) {
244     // We can get our predecessor info by walking the pred_iterator list,
245     // but it is relatively slow.  If we already have PHI nodes in this
246     // block, walk one of them to get the predecessor list instead.
247     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
248       for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
249         Preds->push_back(SomePhi->getIncomingBlock(PI));
250     } else {
251       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
252         Preds->push_back(*PI);
253     }
254   }
255
256   /// GetUndefVal - Get an undefined value of the same type as the value
257   /// being handled.
258   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
259     return UndefValue::get(Updater->ProtoType);
260   }
261
262   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
263   /// Reserve space for the operands but do not fill them in yet.
264   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
265                                SSAUpdater *Updater) {
266     PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
267                                    Updater->ProtoName, &BB->front());
268     return PHI;
269   }
270
271   /// AddPHIOperand - Add the specified value as an operand of the PHI for
272   /// the specified predecessor block.
273   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
274     PHI->addIncoming(Val, Pred);
275   }
276
277   /// InstrIsPHI - Check if an instruction is a PHI.
278   ///
279   static PHINode *InstrIsPHI(Instruction *I) {
280     return dyn_cast<PHINode>(I);
281   }
282
283   /// ValueIsPHI - Check if a value is a PHI.
284   ///
285   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
286     return dyn_cast<PHINode>(Val);
287   }
288
289   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
290   /// operands, i.e., it was just added.
291   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
292     PHINode *PHI = ValueIsPHI(Val, Updater);
293     if (PHI && PHI->getNumIncomingValues() == 0)
294       return PHI;
295     return nullptr;
296   }
297
298   /// GetPHIValue - For the specified PHI instruction, return the value
299   /// that it defines.
300   static Value *GetPHIValue(PHINode *PHI) {
301     return PHI;
302   }
303 };
304
305 } // End llvm namespace
306
307 /// Check to see if AvailableVals has an entry for the specified BB and if so,
308 /// return it.  If not, construct SSA form by first calculating the required
309 /// placement of PHIs and then inserting new PHIs where needed.
310 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
311   AvailableValsTy &AvailableVals = getAvailableVals(AV);
312   if (Value *V = AvailableVals[BB])
313     return V;
314
315   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
316   return Impl.GetValue(BB);
317 }
318
319 //===----------------------------------------------------------------------===//
320 // LoadAndStorePromoter Implementation
321 //===----------------------------------------------------------------------===//
322
323 LoadAndStorePromoter::
324 LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
325                      SSAUpdater &S, StringRef BaseName) : SSA(S) {
326   if (Insts.empty()) return;
327   
328   Value *SomeVal;
329   if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
330     SomeVal = LI;
331   else
332     SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
333
334   if (BaseName.empty())
335     BaseName = SomeVal->getName();
336   SSA.Initialize(SomeVal->getType(), BaseName);
337 }
338
339
340 void LoadAndStorePromoter::
341 run(const SmallVectorImpl<Instruction*> &Insts) const {
342   
343   // First step: bucket up uses of the alloca by the block they occur in.
344   // This is important because we have to handle multiple defs/uses in a block
345   // ourselves: SSAUpdater is purely for cross-block references.
346   DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
347   
348   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
349     Instruction *User = Insts[i];
350     UsesByBlock[User->getParent()].push_back(User);
351   }
352   
353   // Okay, now we can iterate over all the blocks in the function with uses,
354   // processing them.  Keep track of which loads are loading a live-in value.
355   // Walk the uses in the use-list order to be determinstic.
356   SmallVector<LoadInst*, 32> LiveInLoads;
357   DenseMap<Value*, Value*> ReplacedLoads;
358   
359   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
360     Instruction *User = Insts[i];
361     BasicBlock *BB = User->getParent();
362     TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
363     
364     // If this block has already been processed, ignore this repeat use.
365     if (BlockUses.empty()) continue;
366     
367     // Okay, this is the first use in the block.  If this block just has a
368     // single user in it, we can rewrite it trivially.
369     if (BlockUses.size() == 1) {
370       // If it is a store, it is a trivial def of the value in the block.
371       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
372         updateDebugInfo(SI);
373         SSA.AddAvailableValue(BB, SI->getOperand(0));
374       } else 
375         // Otherwise it is a load, queue it to rewrite as a live-in load.
376         LiveInLoads.push_back(cast<LoadInst>(User));
377       BlockUses.clear();
378       continue;
379     }
380     
381     // Otherwise, check to see if this block is all loads.
382     bool HasStore = false;
383     for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
384       if (isa<StoreInst>(BlockUses[i])) {
385         HasStore = true;
386         break;
387       }
388     }
389     
390     // If so, we can queue them all as live in loads.  We don't have an
391     // efficient way to tell which on is first in the block and don't want to
392     // scan large blocks, so just add all loads as live ins.
393     if (!HasStore) {
394       for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
395         LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
396       BlockUses.clear();
397       continue;
398     }
399     
400     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
401     // Since SSAUpdater is purely for cross-block values, we need to determine
402     // the order of these instructions in the block.  If the first use in the
403     // block is a load, then it uses the live in value.  The last store defines
404     // the live out value.  We handle this by doing a linear scan of the block.
405     Value *StoredValue = nullptr;
406     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
407       if (LoadInst *L = dyn_cast<LoadInst>(II)) {
408         // If this is a load from an unrelated pointer, ignore it.
409         if (!isInstInList(L, Insts)) continue;
410         
411         // If we haven't seen a store yet, this is a live in use, otherwise
412         // use the stored value.
413         if (StoredValue) {
414           replaceLoadWithValue(L, StoredValue);
415           L->replaceAllUsesWith(StoredValue);
416           ReplacedLoads[L] = StoredValue;
417         } else {
418           LiveInLoads.push_back(L);
419         }
420         continue;
421       }
422       
423       if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
424         // If this is a store to an unrelated pointer, ignore it.
425         if (!isInstInList(SI, Insts)) continue;
426         updateDebugInfo(SI);
427
428         // Remember that this is the active value in the block.
429         StoredValue = SI->getOperand(0);
430       }
431     }
432     
433     // The last stored value that happened is the live-out for the block.
434     assert(StoredValue && "Already checked that there is a store in block");
435     SSA.AddAvailableValue(BB, StoredValue);
436     BlockUses.clear();
437   }
438   
439   // Okay, now we rewrite all loads that use live-in values in the loop,
440   // inserting PHI nodes as necessary.
441   for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
442     LoadInst *ALoad = LiveInLoads[i];
443     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
444     replaceLoadWithValue(ALoad, NewVal);
445
446     // Avoid assertions in unreachable code.
447     if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
448     ALoad->replaceAllUsesWith(NewVal);
449     ReplacedLoads[ALoad] = NewVal;
450   }
451   
452   // Allow the client to do stuff before we start nuking things.
453   doExtraRewritesBeforeFinalDeletion();
454   
455   // Now that everything is rewritten, delete the old instructions from the
456   // function.  They should all be dead now.
457   for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
458     Instruction *User = Insts[i];
459     
460     // If this is a load that still has uses, then the load must have been added
461     // as a live value in the SSAUpdate data structure for a block (e.g. because
462     // the loaded value was stored later).  In this case, we need to recursively
463     // propagate the updates until we get to the real value.
464     if (!User->use_empty()) {
465       Value *NewVal = ReplacedLoads[User];
466       assert(NewVal && "not a replaced load?");
467       
468       // Propagate down to the ultimate replacee.  The intermediately loads
469       // could theoretically already have been deleted, so we don't want to
470       // dereference the Value*'s.
471       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
472       while (RLI != ReplacedLoads.end()) {
473         NewVal = RLI->second;
474         RLI = ReplacedLoads.find(NewVal);
475       }
476       
477       replaceLoadWithValue(cast<LoadInst>(User), NewVal);
478       User->replaceAllUsesWith(NewVal);
479     }
480     
481     instructionDeleted(User);
482     User->eraseFromParent();
483   }
484 }
485
486 bool
487 LoadAndStorePromoter::isInstInList(Instruction *I,
488                                    const SmallVectorImpl<Instruction*> &Insts)
489                                    const {
490   return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
491 }