Move lib/Analysis/DebugInfo.cpp to lib/VMCore/DebugInfo.cpp and
[oota-llvm.git] / lib / Transforms / Utils / CloneFunction.cpp
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner.  This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DebugInfo.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Function.h"
24 #include "llvm/LLVMContext.h"
25 #include "llvm/Metadata.h"
26 #include "llvm/Support/CFG.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Transforms/Utils/ValueMapper.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include <map>
34 using namespace llvm;
35
36 // CloneBasicBlock - See comments in Cloning.h
37 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
38                                   ValueToValueMapTy &VMap,
39                                   const Twine &NameSuffix, Function *F,
40                                   ClonedCodeInfo *CodeInfo) {
41   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
42   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
43
44   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
45   
46   // Loop over all instructions, and copy them over.
47   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
48        II != IE; ++II) {
49     Instruction *NewInst = II->clone();
50     if (II->hasName())
51       NewInst->setName(II->getName()+NameSuffix);
52     NewBB->getInstList().push_back(NewInst);
53     VMap[II] = NewInst;                // Add instruction map to value.
54     
55     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
56     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
57       if (isa<ConstantInt>(AI->getArraySize()))
58         hasStaticAllocas = true;
59       else
60         hasDynamicAllocas = true;
61     }
62   }
63   
64   if (CodeInfo) {
65     CodeInfo->ContainsCalls          |= hasCalls;
66     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
67     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
68                                         BB != &BB->getParent()->getEntryBlock();
69   }
70   return NewBB;
71 }
72
73 // Clone OldFunc into NewFunc, transforming the old arguments into references to
74 // VMap values.
75 //
76 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
77                              ValueToValueMapTy &VMap,
78                              bool ModuleLevelChanges,
79                              SmallVectorImpl<ReturnInst*> &Returns,
80                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
81                              ValueMapTypeRemapper *TypeMapper) {
82   assert(NameSuffix && "NameSuffix cannot be null!");
83
84 #ifndef NDEBUG
85   for (Function::const_arg_iterator I = OldFunc->arg_begin(), 
86        E = OldFunc->arg_end(); I != E; ++I)
87     assert(VMap.count(I) && "No mapping from source argument specified!");
88 #endif
89
90   // Clone any attributes.
91   if (NewFunc->arg_size() == OldFunc->arg_size())
92     NewFunc->copyAttributesFrom(OldFunc);
93   else {
94     //Some arguments were deleted with the VMap. Copy arguments one by one
95     for (Function::const_arg_iterator I = OldFunc->arg_begin(), 
96            E = OldFunc->arg_end(); I != E; ++I)
97       if (Argument* Anew = dyn_cast<Argument>(VMap[I]))
98         Anew->addAttr( OldFunc->getAttributes()
99                        .getParamAttributes(I->getArgNo() + 1));
100     NewFunc->setAttributes(NewFunc->getAttributes()
101                            .addAttr(0, OldFunc->getAttributes()
102                                      .getRetAttributes()));
103     NewFunc->setAttributes(NewFunc->getAttributes()
104                            .addAttr(~0, OldFunc->getAttributes()
105                                      .getFnAttributes()));
106
107   }
108
109   // Loop over all of the basic blocks in the function, cloning them as
110   // appropriate.  Note that we save BE this way in order to handle cloning of
111   // recursive functions into themselves.
112   //
113   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
114        BI != BE; ++BI) {
115     const BasicBlock &BB = *BI;
116
117     // Create a new basic block and copy instructions into it!
118     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
119
120     // Add basic block mapping.
121     VMap[&BB] = CBB;
122
123     // It is only legal to clone a function if a block address within that
124     // function is never referenced outside of the function.  Given that, we
125     // want to map block addresses from the old function to block addresses in
126     // the clone. (This is different from the generic ValueMapper
127     // implementation, which generates an invalid blockaddress when
128     // cloning a function.)
129     if (BB.hasAddressTaken()) {
130       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
131                                               const_cast<BasicBlock*>(&BB));
132       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);                                         
133     }
134
135     // Note return instructions for the caller.
136     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
137       Returns.push_back(RI);
138   }
139
140   // Loop over all of the instructions in the function, fixing up operand
141   // references as we go.  This uses VMap to do all the hard work.
142   for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
143          BE = NewFunc->end(); BB != BE; ++BB)
144     // Loop over all instructions, fixing each one as we find it...
145     for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
146       RemapInstruction(II, VMap,
147                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
148                        TypeMapper);
149 }
150
151 /// CloneFunction - Return a copy of the specified function, but without
152 /// embedding the function into another module.  Also, any references specified
153 /// in the VMap are changed to refer to their mapped value instead of the
154 /// original one.  If any of the arguments to the function are in the VMap,
155 /// the arguments are deleted from the resultant function.  The VMap is
156 /// updated to include mappings from all of the instructions and basicblocks in
157 /// the function from their old to new values.
158 ///
159 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
160                               bool ModuleLevelChanges,
161                               ClonedCodeInfo *CodeInfo) {
162   std::vector<Type*> ArgTypes;
163
164   // The user might be deleting arguments to the function by specifying them in
165   // the VMap.  If so, we need to not add the arguments to the arg ty vector
166   //
167   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
168        I != E; ++I)
169     if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
170       ArgTypes.push_back(I->getType());
171
172   // Create a new function type...
173   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
174                                     ArgTypes, F->getFunctionType()->isVarArg());
175
176   // Create the new function...
177   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
178
179   // Loop over the arguments, copying the names of the mapped arguments over...
180   Function::arg_iterator DestI = NewF->arg_begin();
181   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
182        I != E; ++I)
183     if (VMap.count(I) == 0) {   // Is this argument preserved?
184       DestI->setName(I->getName()); // Copy the name over...
185       VMap[I] = DestI++;        // Add mapping to VMap
186     }
187
188   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
189   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
190   return NewF;
191 }
192
193
194
195 namespace {
196   /// PruningFunctionCloner - This class is a private class used to implement
197   /// the CloneAndPruneFunctionInto method.
198   struct PruningFunctionCloner {
199     Function *NewFunc;
200     const Function *OldFunc;
201     ValueToValueMapTy &VMap;
202     bool ModuleLevelChanges;
203     const char *NameSuffix;
204     ClonedCodeInfo *CodeInfo;
205     const TargetData *TD;
206   public:
207     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
208                           ValueToValueMapTy &valueMap,
209                           bool moduleLevelChanges,
210                           const char *nameSuffix, 
211                           ClonedCodeInfo *codeInfo,
212                           const TargetData *td)
213     : NewFunc(newFunc), OldFunc(oldFunc),
214       VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
215       NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
216     }
217
218     /// CloneBlock - The specified block is found to be reachable, clone it and
219     /// anything that it can reach.
220     void CloneBlock(const BasicBlock *BB,
221                     std::vector<const BasicBlock*> &ToClone);
222   };
223 }
224
225 /// CloneBlock - The specified block is found to be reachable, clone it and
226 /// anything that it can reach.
227 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
228                                        std::vector<const BasicBlock*> &ToClone){
229   WeakVH &BBEntry = VMap[BB];
230
231   // Have we already cloned this block?
232   if (BBEntry) return;
233   
234   // Nope, clone it now.
235   BasicBlock *NewBB;
236   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
237   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
238
239   // It is only legal to clone a function if a block address within that
240   // function is never referenced outside of the function.  Given that, we
241   // want to map block addresses from the old function to block addresses in
242   // the clone. (This is different from the generic ValueMapper
243   // implementation, which generates an invalid blockaddress when
244   // cloning a function.)
245   //
246   // Note that we don't need to fix the mapping for unreachable blocks;
247   // the default mapping there is safe.
248   if (BB->hasAddressTaken()) {
249     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
250                                             const_cast<BasicBlock*>(BB));
251     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
252   }
253     
254
255   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
256   
257   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
258   // loop doesn't include the terminator.
259   for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
260        II != IE; ++II) {
261     Instruction *NewInst = II->clone();
262
263     // Eagerly remap operands to the newly cloned instruction, except for PHI
264     // nodes for which we defer processing until we update the CFG.
265     if (!isa<PHINode>(NewInst)) {
266       RemapInstruction(NewInst, VMap,
267                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
268
269       // If we can simplify this instruction to some other value, simply add
270       // a mapping to that value rather than inserting a new instruction into
271       // the basic block.
272       if (Value *V = SimplifyInstruction(NewInst, TD)) {
273         // On the off-chance that this simplifies to an instruction in the old
274         // function, map it back into the new function.
275         if (Value *MappedV = VMap.lookup(V))
276           V = MappedV;
277
278         VMap[II] = V;
279         delete NewInst;
280         continue;
281       }
282     }
283
284     if (II->hasName())
285       NewInst->setName(II->getName()+NameSuffix);
286     VMap[II] = NewInst;                // Add instruction map to value.
287     NewBB->getInstList().push_back(NewInst);
288     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
289     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
290       if (isa<ConstantInt>(AI->getArraySize()))
291         hasStaticAllocas = true;
292       else
293         hasDynamicAllocas = true;
294     }
295   }
296   
297   // Finally, clone over the terminator.
298   const TerminatorInst *OldTI = BB->getTerminator();
299   bool TerminatorDone = false;
300   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
301     if (BI->isConditional()) {
302       // If the condition was a known constant in the callee...
303       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
304       // Or is a known constant in the caller...
305       if (Cond == 0) {
306         Value *V = VMap[BI->getCondition()];
307         Cond = dyn_cast_or_null<ConstantInt>(V);
308       }
309
310       // Constant fold to uncond branch!
311       if (Cond) {
312         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
313         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
314         ToClone.push_back(Dest);
315         TerminatorDone = true;
316       }
317     }
318   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
319     // If switching on a value known constant in the caller.
320     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
321     if (Cond == 0) { // Or known constant after constant prop in the callee...
322       Value *V = VMap[SI->getCondition()];
323       Cond = dyn_cast_or_null<ConstantInt>(V);
324     }
325     if (Cond) {     // Constant fold to uncond branch!
326       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
327       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
328       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
329       ToClone.push_back(Dest);
330       TerminatorDone = true;
331     }
332   }
333   
334   if (!TerminatorDone) {
335     Instruction *NewInst = OldTI->clone();
336     if (OldTI->hasName())
337       NewInst->setName(OldTI->getName()+NameSuffix);
338     NewBB->getInstList().push_back(NewInst);
339     VMap[OldTI] = NewInst;             // Add instruction map to value.
340     
341     // Recursively clone any reachable successor blocks.
342     const TerminatorInst *TI = BB->getTerminator();
343     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
344       ToClone.push_back(TI->getSuccessor(i));
345   }
346   
347   if (CodeInfo) {
348     CodeInfo->ContainsCalls          |= hasCalls;
349     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
350     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
351       BB != &BB->getParent()->front();
352   }
353 }
354
355 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
356 /// except that it does some simple constant prop and DCE on the fly.  The
357 /// effect of this is to copy significantly less code in cases where (for
358 /// example) a function call with constant arguments is inlined, and those
359 /// constant arguments cause a significant amount of code in the callee to be
360 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
361 /// used for things like CloneFunction or CloneModule.
362 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
363                                      ValueToValueMapTy &VMap,
364                                      bool ModuleLevelChanges,
365                                      SmallVectorImpl<ReturnInst*> &Returns,
366                                      const char *NameSuffix, 
367                                      ClonedCodeInfo *CodeInfo,
368                                      const TargetData *TD,
369                                      Instruction *TheCall) {
370   assert(NameSuffix && "NameSuffix cannot be null!");
371   
372 #ifndef NDEBUG
373   for (Function::const_arg_iterator II = OldFunc->arg_begin(), 
374        E = OldFunc->arg_end(); II != E; ++II)
375     assert(VMap.count(II) && "No mapping from source argument specified!");
376 #endif
377
378   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
379                             NameSuffix, CodeInfo, TD);
380
381   // Clone the entry block, and anything recursively reachable from it.
382   std::vector<const BasicBlock*> CloneWorklist;
383   CloneWorklist.push_back(&OldFunc->getEntryBlock());
384   while (!CloneWorklist.empty()) {
385     const BasicBlock *BB = CloneWorklist.back();
386     CloneWorklist.pop_back();
387     PFC.CloneBlock(BB, CloneWorklist);
388   }
389   
390   // Loop over all of the basic blocks in the old function.  If the block was
391   // reachable, we have cloned it and the old block is now in the value map:
392   // insert it into the new function in the right order.  If not, ignore it.
393   //
394   // Defer PHI resolution until rest of function is resolved.
395   SmallVector<const PHINode*, 16> PHIToResolve;
396   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
397        BI != BE; ++BI) {
398     Value *V = VMap[BI];
399     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
400     if (NewBB == 0) continue;  // Dead block.
401
402     // Add the new block to the new function.
403     NewFunc->getBasicBlockList().push_back(NewBB);
404
405     // Handle PHI nodes specially, as we have to remove references to dead
406     // blocks.
407     for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
408       if (const PHINode *PN = dyn_cast<PHINode>(I))
409         PHIToResolve.push_back(PN);
410       else
411         break;
412
413     // Finally, remap the terminator instructions, as those can't be remapped
414     // until all BBs are mapped.
415     RemapInstruction(NewBB->getTerminator(), VMap,
416                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
417   }
418   
419   // Defer PHI resolution until rest of function is resolved, PHI resolution
420   // requires the CFG to be up-to-date.
421   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
422     const PHINode *OPN = PHIToResolve[phino];
423     unsigned NumPreds = OPN->getNumIncomingValues();
424     const BasicBlock *OldBB = OPN->getParent();
425     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
426
427     // Map operands for blocks that are live and remove operands for blocks
428     // that are dead.
429     for (; phino != PHIToResolve.size() &&
430          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
431       OPN = PHIToResolve[phino];
432       PHINode *PN = cast<PHINode>(VMap[OPN]);
433       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
434         Value *V = VMap[PN->getIncomingBlock(pred)];
435         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
436           Value *InVal = MapValue(PN->getIncomingValue(pred),
437                                   VMap, 
438                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
439           assert(InVal && "Unknown input value?");
440           PN->setIncomingValue(pred, InVal);
441           PN->setIncomingBlock(pred, MappedBlock);
442         } else {
443           PN->removeIncomingValue(pred, false);
444           --pred, --e;  // Revisit the next entry.
445         }
446       } 
447     }
448     
449     // The loop above has removed PHI entries for those blocks that are dead
450     // and has updated others.  However, if a block is live (i.e. copied over)
451     // but its terminator has been changed to not go to this block, then our
452     // phi nodes will have invalid entries.  Update the PHI nodes in this
453     // case.
454     PHINode *PN = cast<PHINode>(NewBB->begin());
455     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
456     if (NumPreds != PN->getNumIncomingValues()) {
457       assert(NumPreds < PN->getNumIncomingValues());
458       // Count how many times each predecessor comes to this block.
459       std::map<BasicBlock*, unsigned> PredCount;
460       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
461            PI != E; ++PI)
462         --PredCount[*PI];
463       
464       // Figure out how many entries to remove from each PHI.
465       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
466         ++PredCount[PN->getIncomingBlock(i)];
467       
468       // At this point, the excess predecessor entries are positive in the
469       // map.  Loop over all of the PHIs and remove excess predecessor
470       // entries.
471       BasicBlock::iterator I = NewBB->begin();
472       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
473         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
474              E = PredCount.end(); PCI != E; ++PCI) {
475           BasicBlock *Pred     = PCI->first;
476           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
477             PN->removeIncomingValue(Pred, false);
478         }
479       }
480     }
481     
482     // If the loops above have made these phi nodes have 0 or 1 operand,
483     // replace them with undef or the input value.  We must do this for
484     // correctness, because 0-operand phis are not valid.
485     PN = cast<PHINode>(NewBB->begin());
486     if (PN->getNumIncomingValues() == 0) {
487       BasicBlock::iterator I = NewBB->begin();
488       BasicBlock::const_iterator OldI = OldBB->begin();
489       while ((PN = dyn_cast<PHINode>(I++))) {
490         Value *NV = UndefValue::get(PN->getType());
491         PN->replaceAllUsesWith(NV);
492         assert(VMap[OldI] == PN && "VMap mismatch");
493         VMap[OldI] = NV;
494         PN->eraseFromParent();
495         ++OldI;
496       }
497     }
498   }
499
500   // Make a second pass over the PHINodes now that all of them have been
501   // remapped into the new function, simplifying the PHINode and performing any
502   // recursive simplifications exposed. This will transparently update the
503   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
504   // two PHINodes, the iteration over the old PHIs remains valid, and the
505   // mapping will just map us to the new node (which may not even be a PHI
506   // node).
507   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
508     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
509       recursivelySimplifyInstruction(PN, TD);
510
511   // Now that the inlined function body has been fully constructed, go through
512   // and zap unconditional fall-through branches.  This happen all the time when
513   // specializing code: code specialization turns conditional branches into
514   // uncond branches, and this code folds them.
515   Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
516   Function::iterator I = Begin;
517   while (I != NewFunc->end()) {
518     // Check if this block has become dead during inlining or other
519     // simplifications. Note that the first block will appear dead, as it has
520     // not yet been wired up properly.
521     if (I != Begin && (pred_begin(I) == pred_end(I) ||
522                        I->getSinglePredecessor() == I)) {
523       BasicBlock *DeadBB = I++;
524       DeleteDeadBlock(DeadBB);
525       continue;
526     }
527
528     // We need to simplify conditional branches and switches with a constant
529     // operand. We try to prune these out when cloning, but if the
530     // simplification required looking through PHI nodes, those are only
531     // available after forming the full basic block. That may leave some here,
532     // and we still want to prune the dead code as early as possible.
533     ConstantFoldTerminator(I);
534
535     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
536     if (!BI || BI->isConditional()) { ++I; continue; }
537     
538     BasicBlock *Dest = BI->getSuccessor(0);
539     if (!Dest->getSinglePredecessor()) {
540       ++I; continue;
541     }
542
543     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
544     // above should have zapped all of them..
545     assert(!isa<PHINode>(Dest->begin()));
546
547     // We know all single-entry PHI nodes in the inlined function have been
548     // removed, so we just need to splice the blocks.
549     BI->eraseFromParent();
550     
551     // Make all PHI nodes that referred to Dest now refer to I as their source.
552     Dest->replaceAllUsesWith(I);
553
554     // Move all the instructions in the succ to the pred.
555     I->getInstList().splice(I->end(), Dest->getInstList());
556     
557     // Remove the dest block.
558     Dest->eraseFromParent();
559     
560     // Do not increment I, iteratively merge all things this block branches to.
561   }
562
563   // Make a final pass over the basic blocks from theh old function to gather
564   // any return instructions which survived folding. We have to do this here
565   // because we can iteratively remove and merge returns above.
566   for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
567                           E = NewFunc->end();
568        I != E; ++I)
569     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
570       Returns.push_back(RI);
571 }