a5137e933e834b6d546148fd8ca7406d32be2563
[oota-llvm.git] / lib / Transforms / Utils / BasicBlockUtils.cpp
1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/CFG.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/ValueHandle.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include <algorithm>
32 using namespace llvm;
33
34 /// DeleteDeadBlock - Delete the specified block, which must have no
35 /// predecessors.
36 void llvm::DeleteDeadBlock(BasicBlock *BB) {
37   assert((pred_begin(BB) == pred_end(BB) ||
38          // Can delete self loop.
39          BB->getSinglePredecessor() == BB) && "Block is not dead!");
40   TerminatorInst *BBTerm = BB->getTerminator();
41
42   // Loop through all of our successors and make sure they know that one
43   // of their predecessors is going away.
44   for (BasicBlock *Succ : BBTerm->successors())
45     Succ->removePredecessor(BB);
46
47   // Zap all the instructions in the block.
48   while (!BB->empty()) {
49     Instruction &I = BB->back();
50     // If this instruction is used, replace uses with an arbitrary value.
51     // Because control flow can't get here, we don't care what we replace the
52     // value with.  Note that since this block is unreachable, and all values
53     // contained within it must dominate their uses, that all uses will
54     // eventually be removed (they are themselves dead).
55     if (!I.use_empty())
56       I.replaceAllUsesWith(UndefValue::get(I.getType()));
57     BB->getInstList().pop_back();
58   }
59
60   // Zap the block!
61   BB->eraseFromParent();
62 }
63
64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
65 /// any single-entry PHI nodes in it, fold them away.  This handles the case
66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
67 /// when the block has exactly one predecessor.
68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
69                                    MemoryDependenceAnalysis *MemDep) {
70   if (!isa<PHINode>(BB->begin())) return;
71
72   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
73     if (PN->getIncomingValue(0) != PN)
74       PN->replaceAllUsesWith(PN->getIncomingValue(0));
75     else
76       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
77
78     if (MemDep)
79       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
80
81     PN->eraseFromParent();
82   }
83 }
84
85
86 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
87 /// is dead. Also recursively delete any operands that become dead as
88 /// a result. This includes tracing the def-use list from the PHI to see if
89 /// it is ultimately unused or if it reaches an unused cycle.
90 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
91   // Recursively deleting a PHI may cause multiple PHIs to be deleted
92   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
93   SmallVector<WeakVH, 8> PHIs;
94   for (BasicBlock::iterator I = BB->begin();
95        PHINode *PN = dyn_cast<PHINode>(I); ++I)
96     PHIs.push_back(PN);
97
98   bool Changed = false;
99   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
100     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
101       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
102
103   return Changed;
104 }
105
106 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
107 /// if possible.  The return value indicates success or failure.
108 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
109                                      LoopInfo *LI,
110                                      MemoryDependenceAnalysis *MemDep) {
111   // Don't merge away blocks who have their address taken.
112   if (BB->hasAddressTaken()) return false;
113
114   // Can't merge if there are multiple predecessors, or no predecessors.
115   BasicBlock *PredBB = BB->getUniquePredecessor();
116   if (!PredBB) return false;
117
118   // Don't break self-loops.
119   if (PredBB == BB) return false;
120   // Don't break unwinding instructions.
121   if (PredBB->getTerminator()->isExceptional())
122     return false;
123
124   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
125   BasicBlock *OnlySucc = BB;
126   for (; SI != SE; ++SI)
127     if (*SI != OnlySucc) {
128       OnlySucc = nullptr;     // There are multiple distinct successors!
129       break;
130     }
131
132   // Can't merge if there are multiple successors.
133   if (!OnlySucc) return false;
134
135   // Can't merge if there is PHI loop.
136   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
137     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
138       for (Value *IncValue : PN->incoming_values())
139         if (IncValue == PN)
140           return false;
141     } else
142       break;
143   }
144
145   // Begin by getting rid of unneeded PHIs.
146   if (isa<PHINode>(BB->front()))
147     FoldSingleEntryPHINodes(BB, MemDep);
148
149   // Delete the unconditional branch from the predecessor...
150   PredBB->getInstList().pop_back();
151
152   // Make all PHI nodes that referred to BB now refer to Pred as their
153   // source...
154   BB->replaceAllUsesWith(PredBB);
155
156   // Move all definitions in the successor to the predecessor...
157   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
158
159   // Inherit predecessors name if it exists.
160   if (!PredBB->hasName())
161     PredBB->takeName(BB);
162
163   // Finally, erase the old block and update dominator info.
164   if (DT)
165     if (DomTreeNode *DTN = DT->getNode(BB)) {
166       DomTreeNode *PredDTN = DT->getNode(PredBB);
167       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
168       for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
169                                                     DE = Children.end();
170            DI != DE; ++DI)
171         DT->changeImmediateDominator(*DI, PredDTN);
172
173       DT->eraseNode(BB);
174     }
175
176   if (LI)
177     LI->removeBlock(BB);
178
179   if (MemDep)
180     MemDep->invalidateCachedPredecessors();
181
182   BB->eraseFromParent();
183   return true;
184 }
185
186 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
187 /// with a value, then remove and delete the original instruction.
188 ///
189 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
190                                 BasicBlock::iterator &BI, Value *V) {
191   Instruction &I = *BI;
192   // Replaces all of the uses of the instruction with uses of the value
193   I.replaceAllUsesWith(V);
194
195   // Make sure to propagate a name if there is one already.
196   if (I.hasName() && !V->hasName())
197     V->takeName(&I);
198
199   // Delete the unnecessary instruction now...
200   BI = BIL.erase(BI);
201 }
202
203
204 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
205 /// instruction specified by I.  The original instruction is deleted and BI is
206 /// updated to point to the new instruction.
207 ///
208 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
209                                BasicBlock::iterator &BI, Instruction *I) {
210   assert(I->getParent() == nullptr &&
211          "ReplaceInstWithInst: Instruction already inserted into basic block!");
212
213   // Copy debug location to newly added instruction, if it wasn't already set
214   // by the caller.
215   if (!I->getDebugLoc())
216     I->setDebugLoc(BI->getDebugLoc());
217
218   // Insert the new instruction into the basic block...
219   BasicBlock::iterator New = BIL.insert(BI, I);
220
221   // Replace all uses of the old instruction, and delete it.
222   ReplaceInstWithValue(BIL, BI, I);
223
224   // Move BI back to point to the newly inserted instruction
225   BI = New;
226 }
227
228 /// ReplaceInstWithInst - Replace the instruction specified by From with the
229 /// instruction specified by To.
230 ///
231 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
232   BasicBlock::iterator BI(From);
233   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
234 }
235
236 /// SplitEdge -  Split the edge connecting specified block. Pass P must
237 /// not be NULL.
238 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
239                             LoopInfo *LI) {
240   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
241
242   // If this is a critical edge, let SplitCriticalEdge do it.
243   TerminatorInst *LatchTerm = BB->getTerminator();
244   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
245                                                 .setPreserveLCSSA()))
246     return LatchTerm->getSuccessor(SuccNum);
247
248   // If the edge isn't critical, then BB has a single successor or Succ has a
249   // single pred.  Split the block.
250   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
251     // If the successor only has a single pred, split the top of the successor
252     // block.
253     assert(SP == BB && "CFG broken");
254     SP = nullptr;
255     return SplitBlock(Succ, &Succ->front(), DT, LI);
256   }
257
258   // Otherwise, if BB has a single successor, split it at the bottom of the
259   // block.
260   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
261          "Should have a single succ!");
262   return SplitBlock(BB, BB->getTerminator(), DT, LI);
263 }
264
265 unsigned
266 llvm::SplitAllCriticalEdges(Function &F,
267                             const CriticalEdgeSplittingOptions &Options) {
268   unsigned NumBroken = 0;
269   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
270     TerminatorInst *TI = I->getTerminator();
271     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
272       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
273         if (SplitCriticalEdge(TI, i, Options))
274           ++NumBroken;
275   }
276   return NumBroken;
277 }
278
279 /// SplitBlock - Split the specified block at the specified instruction - every
280 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
281 /// to a new block.  The two blocks are joined by an unconditional branch and
282 /// the loop info is updated.
283 ///
284 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
285                              DominatorTree *DT, LoopInfo *LI) {
286   BasicBlock::iterator SplitIt = SplitPt->getIterator();
287   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
288     ++SplitIt;
289   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
290
291   // The new block lives in whichever loop the old one did. This preserves
292   // LCSSA as well, because we force the split point to be after any PHI nodes.
293   if (LI)
294     if (Loop *L = LI->getLoopFor(Old))
295       L->addBasicBlockToLoop(New, *LI);
296
297   if (DT)
298     // Old dominates New. New node dominates all other nodes dominated by Old.
299     if (DomTreeNode *OldNode = DT->getNode(Old)) {
300       std::vector<DomTreeNode *> Children;
301       for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
302            I != E; ++I)
303         Children.push_back(*I);
304
305       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
306       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
307              E = Children.end(); I != E; ++I)
308         DT->changeImmediateDominator(*I, NewNode);
309     }
310
311   return New;
312 }
313
314 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
315 /// analysis information.
316 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
317                                       ArrayRef<BasicBlock *> Preds,
318                                       DominatorTree *DT, LoopInfo *LI,
319                                       bool PreserveLCSSA, bool &HasLoopExit) {
320   // Update dominator tree if available.
321   if (DT)
322     DT->splitBlock(NewBB);
323
324   // The rest of the logic is only relevant for updating the loop structures.
325   if (!LI)
326     return;
327
328   Loop *L = LI->getLoopFor(OldBB);
329
330   // If we need to preserve loop analyses, collect some information about how
331   // this split will affect loops.
332   bool IsLoopEntry = !!L;
333   bool SplitMakesNewLoopHeader = false;
334   for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end();
335        i != e; ++i) {
336     BasicBlock *Pred = *i;
337
338     // If we need to preserve LCSSA, determine if any of the preds is a loop
339     // exit.
340     if (PreserveLCSSA)
341       if (Loop *PL = LI->getLoopFor(Pred))
342         if (!PL->contains(OldBB))
343           HasLoopExit = true;
344
345     // If we need to preserve LoopInfo, note whether any of the preds crosses
346     // an interesting loop boundary.
347     if (!L)
348       continue;
349     if (L->contains(Pred))
350       IsLoopEntry = false;
351     else
352       SplitMakesNewLoopHeader = true;
353   }
354
355   // Unless we have a loop for OldBB, nothing else to do here.
356   if (!L)
357     return;
358
359   if (IsLoopEntry) {
360     // Add the new block to the nearest enclosing loop (and not an adjacent
361     // loop). To find this, examine each of the predecessors and determine which
362     // loops enclose them, and select the most-nested loop which contains the
363     // loop containing the block being split.
364     Loop *InnermostPredLoop = nullptr;
365     for (ArrayRef<BasicBlock*>::iterator
366            i = Preds.begin(), e = Preds.end(); i != e; ++i) {
367       BasicBlock *Pred = *i;
368       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
369         // Seek a loop which actually contains the block being split (to avoid
370         // adjacent loops).
371         while (PredLoop && !PredLoop->contains(OldBB))
372           PredLoop = PredLoop->getParentLoop();
373
374         // Select the most-nested of these loops which contains the block.
375         if (PredLoop && PredLoop->contains(OldBB) &&
376             (!InnermostPredLoop ||
377              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
378           InnermostPredLoop = PredLoop;
379       }
380     }
381
382     if (InnermostPredLoop)
383       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
384   } else {
385     L->addBasicBlockToLoop(NewBB, *LI);
386     if (SplitMakesNewLoopHeader)
387       L->moveToHeader(NewBB);
388   }
389 }
390
391 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
392 /// from NewBB. This also updates AliasAnalysis, if available.
393 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
394                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
395                            bool HasLoopExit) {
396   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
397   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
398   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
399     PHINode *PN = cast<PHINode>(I++);
400
401     // Check to see if all of the values coming in are the same.  If so, we
402     // don't need to create a new PHI node, unless it's needed for LCSSA.
403     Value *InVal = nullptr;
404     if (!HasLoopExit) {
405       InVal = PN->getIncomingValueForBlock(Preds[0]);
406       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
407         if (!PredSet.count(PN->getIncomingBlock(i)))
408           continue;
409         if (!InVal)
410           InVal = PN->getIncomingValue(i);
411         else if (InVal != PN->getIncomingValue(i)) {
412           InVal = nullptr;
413           break;
414         }
415       }
416     }
417
418     if (InVal) {
419       // If all incoming values for the new PHI would be the same, just don't
420       // make a new PHI.  Instead, just remove the incoming values from the old
421       // PHI.
422
423       // NOTE! This loop walks backwards for a reason! First off, this minimizes
424       // the cost of removal if we end up removing a large number of values, and
425       // second off, this ensures that the indices for the incoming values
426       // aren't invalidated when we remove one.
427       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
428         if (PredSet.count(PN->getIncomingBlock(i)))
429           PN->removeIncomingValue(i, false);
430
431       // Add an incoming value to the PHI node in the loop for the preheader
432       // edge.
433       PN->addIncoming(InVal, NewBB);
434       continue;
435     }
436
437     // If the values coming into the block are not the same, we need a new
438     // PHI.
439     // Create the new PHI node, insert it into NewBB at the end of the block
440     PHINode *NewPHI =
441         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
442
443     // NOTE! This loop walks backwards for a reason! First off, this minimizes
444     // the cost of removal if we end up removing a large number of values, and
445     // second off, this ensures that the indices for the incoming values aren't
446     // invalidated when we remove one.
447     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
448       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
449       if (PredSet.count(IncomingBB)) {
450         Value *V = PN->removeIncomingValue(i, false);
451         NewPHI->addIncoming(V, IncomingBB);
452       }
453     }
454
455     PN->addIncoming(NewPHI, NewBB);
456   }
457 }
458
459 /// SplitBlockPredecessors - This method introduces at least one new basic block
460 /// into the function and moves some of the predecessors of BB to be
461 /// predecessors of the new block. The new predecessors are indicated by the
462 /// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic
463 /// block to which predecessors from Preds are now pointing.
464 ///
465 /// If BB is a landingpad block then additional basicblock might be introduced.
466 /// It will have suffix of 'Suffix'+".split_lp".
467 /// See SplitLandingPadPredecessors for more details on this case.
468 ///
469 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
470 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
471 /// preserve LoopSimplify (because it's complicated to handle the case where one
472 /// of the edges being split is an exit of a loop with other exits).
473 ///
474 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
475                                          ArrayRef<BasicBlock *> Preds,
476                                          const char *Suffix, DominatorTree *DT,
477                                          LoopInfo *LI, bool PreserveLCSSA) {
478   // Do not attempt to split that which cannot be split.
479   if (!BB->canSplitPredecessors())
480     return nullptr;
481
482   // For the landingpads we need to act a bit differently.
483   // Delegate this work to the SplitLandingPadPredecessors.
484   if (BB->isLandingPad()) {
485     SmallVector<BasicBlock*, 2> NewBBs;
486     std::string NewName = std::string(Suffix) + ".split-lp";
487
488     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
489                                 LI, PreserveLCSSA);
490     return NewBBs[0];
491   }
492
493   // Create new basic block, insert right before the original block.
494   BasicBlock *NewBB = BasicBlock::Create(
495       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
496
497   // The new block unconditionally branches to the old block.
498   BranchInst *BI = BranchInst::Create(BB, NewBB);
499   BI->setDebugLoc(BB->getFirstNonPHI()->getDebugLoc());
500
501   // Move the edges from Preds to point to NewBB instead of BB.
502   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
503     // This is slightly more strict than necessary; the minimum requirement
504     // is that there be no more than one indirectbr branching to BB. And
505     // all BlockAddress uses would need to be updated.
506     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
507            "Cannot split an edge from an IndirectBrInst");
508     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
509   }
510
511   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
512   // node becomes an incoming value for BB's phi node.  However, if the Preds
513   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
514   // account for the newly created predecessor.
515   if (Preds.size() == 0) {
516     // Insert dummy values as the incoming value.
517     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
518       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
519     return NewBB;
520   }
521
522   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
523   bool HasLoopExit = false;
524   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
525                             HasLoopExit);
526
527   // Update the PHI nodes in BB with the values coming from NewBB.
528   UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
529   return NewBB;
530 }
531
532 /// SplitLandingPadPredecessors - This method transforms the landing pad,
533 /// OrigBB, by introducing two new basic blocks into the function. One of those
534 /// new basic blocks gets the predecessors listed in Preds. The other basic
535 /// block gets the remaining predecessors of OrigBB. The landingpad instruction
536 /// OrigBB is clone into both of the new basic blocks. The new blocks are given
537 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
538 ///
539 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
540 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
541 /// it does not preserve LoopSimplify (because it's complicated to handle the
542 /// case where one of the edges being split is an exit of a loop with other
543 /// exits).
544 ///
545 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
546                                        ArrayRef<BasicBlock *> Preds,
547                                        const char *Suffix1, const char *Suffix2,
548                                        SmallVectorImpl<BasicBlock *> &NewBBs,
549                                        DominatorTree *DT, LoopInfo *LI,
550                                        bool PreserveLCSSA) {
551   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
552
553   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
554   // it right before the original block.
555   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
556                                           OrigBB->getName() + Suffix1,
557                                           OrigBB->getParent(), OrigBB);
558   NewBBs.push_back(NewBB1);
559
560   // The new block unconditionally branches to the old block.
561   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
562   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
563
564   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
565   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
566     // This is slightly more strict than necessary; the minimum requirement
567     // is that there be no more than one indirectbr branching to BB. And
568     // all BlockAddress uses would need to be updated.
569     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
570            "Cannot split an edge from an IndirectBrInst");
571     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
572   }
573
574   bool HasLoopExit = false;
575   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
576                             HasLoopExit);
577
578   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
579   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
580
581   // Move the remaining edges from OrigBB to point to NewBB2.
582   SmallVector<BasicBlock*, 8> NewBB2Preds;
583   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
584        i != e; ) {
585     BasicBlock *Pred = *i++;
586     if (Pred == NewBB1) continue;
587     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
588            "Cannot split an edge from an IndirectBrInst");
589     NewBB2Preds.push_back(Pred);
590     e = pred_end(OrigBB);
591   }
592
593   BasicBlock *NewBB2 = nullptr;
594   if (!NewBB2Preds.empty()) {
595     // Create another basic block for the rest of OrigBB's predecessors.
596     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
597                                 OrigBB->getName() + Suffix2,
598                                 OrigBB->getParent(), OrigBB);
599     NewBBs.push_back(NewBB2);
600
601     // The new block unconditionally branches to the old block.
602     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
603     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
604
605     // Move the remaining edges from OrigBB to point to NewBB2.
606     for (SmallVectorImpl<BasicBlock*>::iterator
607            i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
608       (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
609
610     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
611     HasLoopExit = false;
612     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
613                               PreserveLCSSA, HasLoopExit);
614
615     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
616     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
617   }
618
619   LandingPadInst *LPad = OrigBB->getLandingPadInst();
620   Instruction *Clone1 = LPad->clone();
621   Clone1->setName(Twine("lpad") + Suffix1);
622   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
623
624   if (NewBB2) {
625     Instruction *Clone2 = LPad->clone();
626     Clone2->setName(Twine("lpad") + Suffix2);
627     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
628
629     // Create a PHI node for the two cloned landingpad instructions.
630     PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
631     PN->addIncoming(Clone1, NewBB1);
632     PN->addIncoming(Clone2, NewBB2);
633     LPad->replaceAllUsesWith(PN);
634     LPad->eraseFromParent();
635   } else {
636     // There is no second clone. Just replace the landing pad with the first
637     // clone.
638     LPad->replaceAllUsesWith(Clone1);
639     LPad->eraseFromParent();
640   }
641 }
642
643 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
644 /// instruction into a predecessor which ends in an unconditional branch. If
645 /// the return instruction returns a value defined by a PHI, propagate the
646 /// right value into the return. It returns the new return instruction in the
647 /// predecessor.
648 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
649                                              BasicBlock *Pred) {
650   Instruction *UncondBranch = Pred->getTerminator();
651   // Clone the return and add it to the end of the predecessor.
652   Instruction *NewRet = RI->clone();
653   Pred->getInstList().push_back(NewRet);
654
655   // If the return instruction returns a value, and if the value was a
656   // PHI node in "BB", propagate the right value into the return.
657   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
658        i != e; ++i) {
659     Value *V = *i;
660     Instruction *NewBC = nullptr;
661     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
662       // Return value might be bitcasted. Clone and insert it before the
663       // return instruction.
664       V = BCI->getOperand(0);
665       NewBC = BCI->clone();
666       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
667       *i = NewBC;
668     }
669     if (PHINode *PN = dyn_cast<PHINode>(V)) {
670       if (PN->getParent() == BB) {
671         if (NewBC)
672           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
673         else
674           *i = PN->getIncomingValueForBlock(Pred);
675       }
676     }
677   }
678
679   // Update any PHI nodes in the returning block to realize that we no
680   // longer branch to them.
681   BB->removePredecessor(Pred);
682   UncondBranch->eraseFromParent();
683   return cast<ReturnInst>(NewRet);
684 }
685
686 /// SplitBlockAndInsertIfThen - Split the containing block at the
687 /// specified instruction - everything before and including SplitBefore stays
688 /// in the old basic block, and everything after SplitBefore is moved to a
689 /// new block. The two blocks are connected by a conditional branch
690 /// (with value of Cmp being the condition).
691 /// Before:
692 ///   Head
693 ///   SplitBefore
694 ///   Tail
695 /// After:
696 ///   Head
697 ///   if (Cond)
698 ///     ThenBlock
699 ///   SplitBefore
700 ///   Tail
701 ///
702 /// If Unreachable is true, then ThenBlock ends with
703 /// UnreachableInst, otherwise it branches to Tail.
704 /// Returns the NewBasicBlock's terminator.
705
706 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond,
707                                                 Instruction *SplitBefore,
708                                                 bool Unreachable,
709                                                 MDNode *BranchWeights,
710                                                 DominatorTree *DT) {
711   BasicBlock *Head = SplitBefore->getParent();
712   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
713   TerminatorInst *HeadOldTerm = Head->getTerminator();
714   LLVMContext &C = Head->getContext();
715   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
716   TerminatorInst *CheckTerm;
717   if (Unreachable)
718     CheckTerm = new UnreachableInst(C, ThenBlock);
719   else
720     CheckTerm = BranchInst::Create(Tail, ThenBlock);
721   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
722   BranchInst *HeadNewTerm =
723     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
724   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
725   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
726
727   if (DT) {
728     if (DomTreeNode *OldNode = DT->getNode(Head)) {
729       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
730
731       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
732       for (auto Child : Children)
733         DT->changeImmediateDominator(Child, NewNode);
734
735       // Head dominates ThenBlock.
736       DT->addNewBlock(ThenBlock, Head);
737     }
738   }
739
740   return CheckTerm;
741 }
742
743 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
744 /// but also creates the ElseBlock.
745 /// Before:
746 ///   Head
747 ///   SplitBefore
748 ///   Tail
749 /// After:
750 ///   Head
751 ///   if (Cond)
752 ///     ThenBlock
753 ///   else
754 ///     ElseBlock
755 ///   SplitBefore
756 ///   Tail
757 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
758                                          TerminatorInst **ThenTerm,
759                                          TerminatorInst **ElseTerm,
760                                          MDNode *BranchWeights) {
761   BasicBlock *Head = SplitBefore->getParent();
762   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
763   TerminatorInst *HeadOldTerm = Head->getTerminator();
764   LLVMContext &C = Head->getContext();
765   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
766   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
767   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
768   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
769   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
770   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
771   BranchInst *HeadNewTerm =
772     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
773   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
774   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
775 }
776
777
778 /// GetIfCondition - Given a basic block (BB) with two predecessors,
779 /// check to see if the merge at this block is due
780 /// to an "if condition".  If so, return the boolean condition that determines
781 /// which entry into BB will be taken.  Also, return by references the block
782 /// that will be entered from if the condition is true, and the block that will
783 /// be entered if the condition is false.
784 ///
785 /// This does no checking to see if the true/false blocks have large or unsavory
786 /// instructions in them.
787 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
788                              BasicBlock *&IfFalse) {
789   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
790   BasicBlock *Pred1 = nullptr;
791   BasicBlock *Pred2 = nullptr;
792
793   if (SomePHI) {
794     if (SomePHI->getNumIncomingValues() != 2)
795       return nullptr;
796     Pred1 = SomePHI->getIncomingBlock(0);
797     Pred2 = SomePHI->getIncomingBlock(1);
798   } else {
799     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
800     if (PI == PE) // No predecessor
801       return nullptr;
802     Pred1 = *PI++;
803     if (PI == PE) // Only one predecessor
804       return nullptr;
805     Pred2 = *PI++;
806     if (PI != PE) // More than two predecessors
807       return nullptr;
808   }
809
810   // We can only handle branches.  Other control flow will be lowered to
811   // branches if possible anyway.
812   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
813   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
814   if (!Pred1Br || !Pred2Br)
815     return nullptr;
816
817   // Eliminate code duplication by ensuring that Pred1Br is conditional if
818   // either are.
819   if (Pred2Br->isConditional()) {
820     // If both branches are conditional, we don't have an "if statement".  In
821     // reality, we could transform this case, but since the condition will be
822     // required anyway, we stand no chance of eliminating it, so the xform is
823     // probably not profitable.
824     if (Pred1Br->isConditional())
825       return nullptr;
826
827     std::swap(Pred1, Pred2);
828     std::swap(Pred1Br, Pred2Br);
829   }
830
831   if (Pred1Br->isConditional()) {
832     // The only thing we have to watch out for here is to make sure that Pred2
833     // doesn't have incoming edges from other blocks.  If it does, the condition
834     // doesn't dominate BB.
835     if (!Pred2->getSinglePredecessor())
836       return nullptr;
837
838     // If we found a conditional branch predecessor, make sure that it branches
839     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
840     if (Pred1Br->getSuccessor(0) == BB &&
841         Pred1Br->getSuccessor(1) == Pred2) {
842       IfTrue = Pred1;
843       IfFalse = Pred2;
844     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
845                Pred1Br->getSuccessor(1) == BB) {
846       IfTrue = Pred2;
847       IfFalse = Pred1;
848     } else {
849       // We know that one arm of the conditional goes to BB, so the other must
850       // go somewhere unrelated, and this must not be an "if statement".
851       return nullptr;
852     }
853
854     return Pred1Br->getCondition();
855   }
856
857   // Ok, if we got here, both predecessors end with an unconditional branch to
858   // BB.  Don't panic!  If both blocks only have a single (identical)
859   // predecessor, and THAT is a conditional branch, then we're all ok!
860   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
861   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
862     return nullptr;
863
864   // Otherwise, if this is a conditional branch, then we can use it!
865   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
866   if (!BI) return nullptr;
867
868   assert(BI->isConditional() && "Two successors but not conditional?");
869   if (BI->getSuccessor(0) == Pred1) {
870     IfTrue = Pred1;
871     IfFalse = Pred2;
872   } else {
873     IfTrue = Pred2;
874     IfFalse = Pred1;
875   }
876   return BI->getCondition();
877 }