DataLayout is mandatory, update the API to reflect it with references.
[oota-llvm.git] / lib / Transforms / Scalar / SimplifyCFGPass.cpp
1 //===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements dead code elimination and basic block merging, along
11 // with a collection of other peephole control flow optimizations.  For example:
12 //
13 //   * Removes basic blocks with no predecessors.
14 //   * Merges a basic block into its predecessor if there is only one and the
15 //     predecessor only has one successor.
16 //   * Eliminates PHI nodes for basic blocks with a single predecessor.
17 //   * Eliminates a basic block that only contains an unconditional branch.
18 //   * Changes invoke instructions to nounwind functions to be calls.
19 //   * Change things like "if (x) if (y)" into "if (x&y)".
20 //   * etc..
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/Transforms/Scalar/SimplifyCFG.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Scalar.h"
41 using namespace llvm;
42
43 #define DEBUG_TYPE "simplifycfg"
44
45 static cl::opt<unsigned>
46 UserBonusInstThreshold("bonus-inst-threshold", cl::Hidden, cl::init(1),
47    cl::desc("Control the number of bonus instructions (default = 1)"));
48
49 STATISTIC(NumSimpl, "Number of blocks simplified");
50
51 /// mergeEmptyReturnBlocks - If we have more than one empty (other than phi
52 /// node) return blocks, merge them together to promote recursive block merging.
53 static bool mergeEmptyReturnBlocks(Function &F) {
54   bool Changed = false;
55
56   BasicBlock *RetBlock = nullptr;
57
58   // Scan all the blocks in the function, looking for empty return blocks.
59   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
60     BasicBlock &BB = *BBI++;
61
62     // Only look at return blocks.
63     ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
64     if (!Ret) continue;
65
66     // Only look at the block if it is empty or the only other thing in it is a
67     // single PHI node that is the operand to the return.
68     if (Ret != &BB.front()) {
69       // Check for something else in the block.
70       BasicBlock::iterator I = Ret;
71       --I;
72       // Skip over debug info.
73       while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
74         --I;
75       if (!isa<DbgInfoIntrinsic>(I) &&
76           (!isa<PHINode>(I) || I != BB.begin() ||
77            Ret->getNumOperands() == 0 ||
78            Ret->getOperand(0) != I))
79         continue;
80     }
81
82     // If this is the first returning block, remember it and keep going.
83     if (!RetBlock) {
84       RetBlock = &BB;
85       continue;
86     }
87
88     // Otherwise, we found a duplicate return block.  Merge the two.
89     Changed = true;
90
91     // Case when there is no input to the return or when the returned values
92     // agree is trivial.  Note that they can't agree if there are phis in the
93     // blocks.
94     if (Ret->getNumOperands() == 0 ||
95         Ret->getOperand(0) ==
96           cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
97       BB.replaceAllUsesWith(RetBlock);
98       BB.eraseFromParent();
99       continue;
100     }
101
102     // If the canonical return block has no PHI node, create one now.
103     PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
104     if (!RetBlockPHI) {
105       Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
106       pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
107       RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
108                                     std::distance(PB, PE), "merge",
109                                     &RetBlock->front());
110
111       for (pred_iterator PI = PB; PI != PE; ++PI)
112         RetBlockPHI->addIncoming(InVal, *PI);
113       RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
114     }
115
116     // Turn BB into a block that just unconditionally branches to the return
117     // block.  This handles the case when the two return blocks have a common
118     // predecessor but that return different things.
119     RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
120     BB.getTerminator()->eraseFromParent();
121     BranchInst::Create(RetBlock, &BB);
122   }
123
124   return Changed;
125 }
126
127 /// iterativelySimplifyCFG - Call SimplifyCFG on all the blocks in the function,
128 /// iterating until no more changes are made.
129 static bool iterativelySimplifyCFG(Function &F, const TargetTransformInfo &TTI,
130                                    AssumptionCache *AC,
131                                    unsigned BonusInstThreshold) {
132   bool Changed = false;
133   bool LocalChange = true;
134   while (LocalChange) {
135     LocalChange = false;
136
137     // Loop over all of the basic blocks and remove them if they are unneeded...
138     //
139     for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
140       if (SimplifyCFG(BBIt++, TTI, BonusInstThreshold, AC)) {
141         LocalChange = true;
142         ++NumSimpl;
143       }
144     }
145     Changed |= LocalChange;
146   }
147   return Changed;
148 }
149
150 static bool simplifyFunctionCFG(Function &F, const TargetTransformInfo &TTI,
151                                 AssumptionCache *AC, int BonusInstThreshold) {
152   bool EverChanged = removeUnreachableBlocks(F);
153   EverChanged |= mergeEmptyReturnBlocks(F);
154   EverChanged |= iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold);
155
156   // If neither pass changed anything, we're done.
157   if (!EverChanged) return false;
158
159   // iterativelySimplifyCFG can (rarely) make some loops dead.  If this happens,
160   // removeUnreachableBlocks is needed to nuke them, which means we should
161   // iterate between the two optimizations.  We structure the code like this to
162   // avoid reruning iterativelySimplifyCFG if the second pass of
163   // removeUnreachableBlocks doesn't do anything.
164   if (!removeUnreachableBlocks(F))
165     return true;
166
167   do {
168     EverChanged = iterativelySimplifyCFG(F, TTI, AC, BonusInstThreshold);
169     EverChanged |= removeUnreachableBlocks(F);
170   } while (EverChanged);
171
172   return true;
173 }
174
175 SimplifyCFGPass::SimplifyCFGPass()
176     : BonusInstThreshold(UserBonusInstThreshold) {}
177
178 SimplifyCFGPass::SimplifyCFGPass(int BonusInstThreshold)
179     : BonusInstThreshold(BonusInstThreshold) {}
180
181 PreservedAnalyses SimplifyCFGPass::run(Function &F,
182                                        AnalysisManager<Function> *AM) {
183   auto &TTI = AM->getResult<TargetIRAnalysis>(F);
184   auto &AC = AM->getResult<AssumptionAnalysis>(F);
185
186   if (!simplifyFunctionCFG(F, TTI, &AC, BonusInstThreshold))
187     return PreservedAnalyses::none();
188
189   return PreservedAnalyses::all();
190 }
191
192 namespace {
193 struct CFGSimplifyPass : public FunctionPass {
194   static char ID; // Pass identification, replacement for typeid
195   unsigned BonusInstThreshold;
196   CFGSimplifyPass(int T = -1) : FunctionPass(ID) {
197     BonusInstThreshold = (T == -1) ? UserBonusInstThreshold : unsigned(T);
198     initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
199   }
200   bool runOnFunction(Function &F) override {
201     if (skipOptnoneFunction(F))
202       return false;
203
204     AssumptionCache *AC =
205         &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
206     const TargetTransformInfo &TTI =
207         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
208     return simplifyFunctionCFG(F, TTI, AC, BonusInstThreshold);
209   }
210
211   void getAnalysisUsage(AnalysisUsage &AU) const override {
212     AU.addRequired<AssumptionCacheTracker>();
213     AU.addRequired<TargetTransformInfoWrapperPass>();
214   }
215 };
216 }
217
218 char CFGSimplifyPass::ID = 0;
219 INITIALIZE_PASS_BEGIN(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
220                       false)
221 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
222 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
223 INITIALIZE_PASS_END(CFGSimplifyPass, "simplifycfg", "Simplify the CFG", false,
224                     false)
225
226 // Public interface to the CFGSimplification pass
227 FunctionPass *llvm::createCFGSimplificationPass(int Threshold) {
228   return new CFGSimplifyPass(Threshold);
229 }
230