[RS4GC] Fix rematerialization of bitcast of bitcast.
[oota-llvm.git] / lib / Transforms / Scalar / SeparateConstOffsetFromGEP.cpp
1 //===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Loop unrolling may create many similar GEPs for array accesses.
11 // e.g., a 2-level loop
12 //
13 // float a[32][32]; // global variable
14 //
15 // for (int i = 0; i < 2; ++i) {
16 //   for (int j = 0; j < 2; ++j) {
17 //     ...
18 //     ... = a[x + i][y + j];
19 //     ...
20 //   }
21 // }
22 //
23 // will probably be unrolled to:
24 //
25 // gep %a, 0, %x, %y; load
26 // gep %a, 0, %x, %y + 1; load
27 // gep %a, 0, %x + 1, %y; load
28 // gep %a, 0, %x + 1, %y + 1; load
29 //
30 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
31 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
32 // significant slowdown in targets with limited addressing modes. For instance,
33 // because the PTX target does not support the reg+reg addressing mode, the
34 // NVPTX backend emits PTX code that literally computes the pointer address of
35 // each GEP, wasting tons of registers. It emits the following PTX for the
36 // first load and similar PTX for other loads.
37 //
38 // mov.u32         %r1, %x;
39 // mov.u32         %r2, %y;
40 // mul.wide.u32    %rl2, %r1, 128;
41 // mov.u64         %rl3, a;
42 // add.s64         %rl4, %rl3, %rl2;
43 // mul.wide.u32    %rl5, %r2, 4;
44 // add.s64         %rl6, %rl4, %rl5;
45 // ld.global.f32   %f1, [%rl6];
46 //
47 // To reduce the register pressure, the optimization implemented in this file
48 // merges the common part of a group of GEPs, so we can compute each pointer
49 // address by adding a simple offset to the common part, saving many registers.
50 //
51 // It works by splitting each GEP into a variadic base and a constant offset.
52 // The variadic base can be computed once and reused by multiple GEPs, and the
53 // constant offsets can be nicely folded into the reg+immediate addressing mode
54 // (supported by most targets) without using any extra register.
55 //
56 // For instance, we transform the four GEPs and four loads in the above example
57 // into:
58 //
59 // base = gep a, 0, x, y
60 // load base
61 // laod base + 1  * sizeof(float)
62 // load base + 32 * sizeof(float)
63 // load base + 33 * sizeof(float)
64 //
65 // Given the transformed IR, a backend that supports the reg+immediate
66 // addressing mode can easily fold the pointer arithmetics into the loads. For
67 // example, the NVPTX backend can easily fold the pointer arithmetics into the
68 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69 //
70 // mov.u32         %r1, %tid.x;
71 // mov.u32         %r2, %tid.y;
72 // mul.wide.u32    %rl2, %r1, 128;
73 // mov.u64         %rl3, a;
74 // add.s64         %rl4, %rl3, %rl2;
75 // mul.wide.u32    %rl5, %r2, 4;
76 // add.s64         %rl6, %rl4, %rl5;
77 // ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
78 // ld.global.f32   %f2, [%rl6+4]; // much better
79 // ld.global.f32   %f3, [%rl6+128]; // much better
80 // ld.global.f32   %f4, [%rl6+132]; // much better
81 //
82 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
83 // multiple indices to either multiple GEPs with a single index or arithmetic
84 // operations (depending on whether the target uses alias analysis in codegen).
85 // Such transformation can have following benefits:
86 // (1) It can always extract constants in the indices of structure type.
87 // (2) After such Lowering, there are more optimization opportunities such as
88 //     CSE, LICM and CGP.
89 //
90 // E.g. The following GEPs have multiple indices:
91 //  BB1:
92 //    %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
93 //    load %p
94 //    ...
95 //  BB2:
96 //    %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
97 //    load %p2
98 //    ...
99 //
100 // We can not do CSE for to the common part related to index "i64 %i". Lowering
101 // GEPs can achieve such goals.
102 // If the target does not use alias analysis in codegen, this pass will
103 // lower a GEP with multiple indices into arithmetic operations:
104 //  BB1:
105 //    %1 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
106 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
107 //    %3 = add i64 %1, %2                          ; CSE opportunity
108 //    %4 = mul i64 %j1, length_of_struct
109 //    %5 = add i64 %3, %4
110 //    %6 = add i64 %3, struct_field_3              ; Constant offset
111 //    %p = inttoptr i64 %6 to i32*
112 //    load %p
113 //    ...
114 //  BB2:
115 //    %7 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
116 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
117 //    %9 = add i64 %7, %8                          ; CSE opportunity
118 //    %10 = mul i64 %j2, length_of_struct
119 //    %11 = add i64 %9, %10
120 //    %12 = add i64 %11, struct_field_2            ; Constant offset
121 //    %p = inttoptr i64 %12 to i32*
122 //    load %p2
123 //    ...
124 //
125 // If the target uses alias analysis in codegen, this pass will lower a GEP
126 // with multiple indices into multiple GEPs with a single index:
127 //  BB1:
128 //    %1 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
129 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
130 //    %3 = getelementptr i8* %1, i64 %2            ; CSE opportunity
131 //    %4 = mul i64 %j1, length_of_struct
132 //    %5 = getelementptr i8* %3, i64 %4
133 //    %6 = getelementptr i8* %5, struct_field_3    ; Constant offset
134 //    %p = bitcast i8* %6 to i32*
135 //    load %p
136 //    ...
137 //  BB2:
138 //    %7 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
139 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
140 //    %9 = getelementptr i8* %7, i64 %8            ; CSE opportunity
141 //    %10 = mul i64 %j2, length_of_struct
142 //    %11 = getelementptr i8* %9, i64 %10
143 //    %12 = getelementptr i8* %11, struct_field_2  ; Constant offset
144 //    %p2 = bitcast i8* %12 to i32*
145 //    load %p2
146 //    ...
147 //
148 // Lowering GEPs can also benefit other passes such as LICM and CGP.
149 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
150 // indices if one of the index is variant. If we lower such GEP into invariant
151 // parts and variant parts, LICM can hoist/sink those invariant parts.
152 // CGP (CodeGen Prepare) tries to sink address calculations that match the
153 // target's addressing modes. A GEP with multiple indices may not match and will
154 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
155 // them. So we end up with a better addressing mode.
156 //
157 //===----------------------------------------------------------------------===//
158
159 #include "llvm/Analysis/ScalarEvolution.h"
160 #include "llvm/Analysis/LoopInfo.h"
161 #include "llvm/Analysis/MemoryBuiltins.h"
162 #include "llvm/Analysis/TargetLibraryInfo.h"
163 #include "llvm/Analysis/TargetTransformInfo.h"
164 #include "llvm/Analysis/ValueTracking.h"
165 #include "llvm/IR/Constants.h"
166 #include "llvm/IR/DataLayout.h"
167 #include "llvm/IR/Dominators.h"
168 #include "llvm/IR/Instructions.h"
169 #include "llvm/IR/LLVMContext.h"
170 #include "llvm/IR/Module.h"
171 #include "llvm/IR/PatternMatch.h"
172 #include "llvm/IR/Operator.h"
173 #include "llvm/Support/CommandLine.h"
174 #include "llvm/Support/raw_ostream.h"
175 #include "llvm/Transforms/Scalar.h"
176 #include "llvm/Transforms/Utils/Local.h"
177 #include "llvm/Target/TargetMachine.h"
178 #include "llvm/Target/TargetSubtargetInfo.h"
179 #include "llvm/IR/IRBuilder.h"
180
181 using namespace llvm;
182 using namespace llvm::PatternMatch;
183
184 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
185     "disable-separate-const-offset-from-gep", cl::init(false),
186     cl::desc("Do not separate the constant offset from a GEP instruction"),
187     cl::Hidden);
188 // Setting this flag may emit false positives when the input module already
189 // contains dead instructions. Therefore, we set it only in unit tests that are
190 // free of dead code.
191 static cl::opt<bool>
192     VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
193                      cl::desc("Verify this pass produces no dead code"),
194                      cl::Hidden);
195
196 namespace {
197
198 /// \brief A helper class for separating a constant offset from a GEP index.
199 ///
200 /// In real programs, a GEP index may be more complicated than a simple addition
201 /// of something and a constant integer which can be trivially splitted. For
202 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
203 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
204 ///
205 /// Therefore, this class looks into the expression that computes a given GEP
206 /// index, and tries to find a constant integer that can be hoisted to the
207 /// outermost level of the expression as an addition. Not every constant in an
208 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
209 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
210 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
211 class ConstantOffsetExtractor {
212 public:
213   /// Extracts a constant offset from the given GEP index. It returns the
214   /// new index representing the remainder (equal to the original index minus
215   /// the constant offset), or nullptr if we cannot extract a constant offset.
216   /// \p Idx The given GEP index
217   /// \p GEP The given GEP
218   /// \p UserChainTail Outputs the tail of UserChain so that we can
219   ///                  garbage-collect unused instructions in UserChain.
220   static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
221                         User *&UserChainTail, const DominatorTree *DT);
222   /// Looks for a constant offset from the given GEP index without extracting
223   /// it. It returns the numeric value of the extracted constant offset (0 if
224   /// failed). The meaning of the arguments are the same as Extract.
225   static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
226                       const DominatorTree *DT);
227
228 private:
229   ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
230       : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
231   }
232   /// Searches the expression that computes V for a non-zero constant C s.t.
233   /// V can be reassociated into the form V' + C. If the searching is
234   /// successful, returns C and update UserChain as a def-use chain from C to V;
235   /// otherwise, UserChain is empty.
236   ///
237   /// \p V            The given expression
238   /// \p SignExtended Whether V will be sign-extended in the computation of the
239   ///                 GEP index
240   /// \p ZeroExtended Whether V will be zero-extended in the computation of the
241   ///                 GEP index
242   /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
243   ///                 an index of an inbounds GEP is guaranteed to be
244   ///                 non-negative. Levaraging this, we can better split
245   ///                 inbounds GEPs.
246   APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
247   /// A helper function to look into both operands of a binary operator.
248   APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
249                             bool ZeroExtended);
250   /// After finding the constant offset C from the GEP index I, we build a new
251   /// index I' s.t. I' + C = I. This function builds and returns the new
252   /// index I' according to UserChain produced by function "find".
253   ///
254   /// The building conceptually takes two steps:
255   /// 1) iteratively distribute s/zext towards the leaves of the expression tree
256   /// that computes I
257   /// 2) reassociate the expression tree to the form I' + C.
258   ///
259   /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
260   /// sext to a, b and 5 so that we have
261   ///   sext(a) + (sext(b) + 5).
262   /// Then, we reassociate it to
263   ///   (sext(a) + sext(b)) + 5.
264   /// Given this form, we know I' is sext(a) + sext(b).
265   Value *rebuildWithoutConstOffset();
266   /// After the first step of rebuilding the GEP index without the constant
267   /// offset, distribute s/zext to the operands of all operators in UserChain.
268   /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
269   /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
270   ///
271   /// The function also updates UserChain to point to new subexpressions after
272   /// distributing s/zext. e.g., the old UserChain of the above example is
273   /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
274   /// and the new UserChain is
275   /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
276   ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
277   ///
278   /// \p ChainIndex The index to UserChain. ChainIndex is initially
279   ///               UserChain.size() - 1, and is decremented during
280   ///               the recursion.
281   Value *distributeExtsAndCloneChain(unsigned ChainIndex);
282   /// Reassociates the GEP index to the form I' + C and returns I'.
283   Value *removeConstOffset(unsigned ChainIndex);
284   /// A helper function to apply ExtInsts, a list of s/zext, to value V.
285   /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
286   /// returns "sext i32 (zext i16 V to i32) to i64".
287   Value *applyExts(Value *V);
288
289   /// A helper function that returns whether we can trace into the operands
290   /// of binary operator BO for a constant offset.
291   ///
292   /// \p SignExtended Whether BO is surrounded by sext
293   /// \p ZeroExtended Whether BO is surrounded by zext
294   /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
295   ///                array index.
296   bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
297                     bool NonNegative);
298
299   /// The path from the constant offset to the old GEP index. e.g., if the GEP
300   /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
301   /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
302   /// UserChain[2] will be the entire expression "a * b + (c + 5)".
303   ///
304   /// This path helps to rebuild the new GEP index.
305   SmallVector<User *, 8> UserChain;
306   /// A data structure used in rebuildWithoutConstOffset. Contains all
307   /// sext/zext instructions along UserChain.
308   SmallVector<CastInst *, 16> ExtInsts;
309   Instruction *IP;  /// Insertion position of cloned instructions.
310   const DataLayout &DL;
311   const DominatorTree *DT;
312 };
313
314 /// \brief A pass that tries to split every GEP in the function into a variadic
315 /// base and a constant offset. It is a FunctionPass because searching for the
316 /// constant offset may inspect other basic blocks.
317 class SeparateConstOffsetFromGEP : public FunctionPass {
318 public:
319   static char ID;
320   SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
321                              bool LowerGEP = false)
322       : FunctionPass(ID), DL(nullptr), DT(nullptr), TM(TM), LowerGEP(LowerGEP) {
323     initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
324   }
325
326   void getAnalysisUsage(AnalysisUsage &AU) const override {
327     AU.addRequired<DominatorTreeWrapperPass>();
328     AU.addRequired<ScalarEvolutionWrapperPass>();
329     AU.addRequired<TargetTransformInfoWrapperPass>();
330     AU.addRequired<LoopInfoWrapperPass>();
331     AU.setPreservesCFG();
332     AU.addRequired<TargetLibraryInfoWrapperPass>();
333   }
334
335   bool doInitialization(Module &M) override {
336     DL = &M.getDataLayout();
337     return false;
338   }
339   bool runOnFunction(Function &F) override;
340
341 private:
342   /// Tries to split the given GEP into a variadic base and a constant offset,
343   /// and returns true if the splitting succeeds.
344   bool splitGEP(GetElementPtrInst *GEP);
345   /// Lower a GEP with multiple indices into multiple GEPs with a single index.
346   /// Function splitGEP already split the original GEP into a variadic part and
347   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
348   /// variadic part into a set of GEPs with a single index and applies
349   /// AccumulativeByteOffset to it.
350   /// \p Variadic                  The variadic part of the original GEP.
351   /// \p AccumulativeByteOffset    The constant offset.
352   void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
353                               int64_t AccumulativeByteOffset);
354   /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
355   /// Function splitGEP already split the original GEP into a variadic part and
356   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
357   /// variadic part into a set of arithmetic operations and applies
358   /// AccumulativeByteOffset to it.
359   /// \p Variadic                  The variadic part of the original GEP.
360   /// \p AccumulativeByteOffset    The constant offset.
361   void lowerToArithmetics(GetElementPtrInst *Variadic,
362                           int64_t AccumulativeByteOffset);
363   /// Finds the constant offset within each index and accumulates them. If
364   /// LowerGEP is true, it finds in indices of both sequential and structure
365   /// types, otherwise it only finds in sequential indices. The output
366   /// NeedsExtraction indicates whether we successfully find a non-zero constant
367   /// offset.
368   int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
369   /// Canonicalize array indices to pointer-size integers. This helps to
370   /// simplify the logic of splitting a GEP. For example, if a + b is a
371   /// pointer-size integer, we have
372   ///   gep base, a + b = gep (gep base, a), b
373   /// However, this equality may not hold if the size of a + b is smaller than
374   /// the pointer size, because LLVM conceptually sign-extends GEP indices to
375   /// pointer size before computing the address
376   /// (http://llvm.org/docs/LangRef.html#id181).
377   ///
378   /// This canonicalization is very likely already done in clang and
379   /// instcombine. Therefore, the program will probably remain the same.
380   ///
381   /// Returns true if the module changes.
382   ///
383   /// Verified in @i32_add in split-gep.ll
384   bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
385   /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
386   /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
387   /// the constant offset. After extraction, it becomes desirable to reunion the
388   /// distributed sexts. For example,
389   ///
390   ///                              &a[sext(i +nsw (j +nsw 5)]
391   ///   => distribute              &a[sext(i) +nsw (sext(j) +nsw 5)]
392   ///   => constant extraction     &a[sext(i) + sext(j)] + 5
393   ///   => reunion                 &a[sext(i +nsw j)] + 5
394   bool reuniteExts(Function &F);
395   /// A helper that reunites sexts in an instruction.
396   bool reuniteExts(Instruction *I);
397   /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
398   Instruction *findClosestMatchingDominator(const SCEV *Key,
399                                             Instruction *Dominatee);
400   /// Verify F is free of dead code.
401   void verifyNoDeadCode(Function &F);
402
403   bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
404   // Swap the index operand of two GEP.
405   void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
406   // Check if it is safe to swap operand of two GEP.
407   bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
408                             Loop *CurLoop);
409
410   const DataLayout *DL;
411   DominatorTree *DT;
412   ScalarEvolution *SE;
413   const TargetMachine *TM;
414
415   LoopInfo *LI;
416   TargetLibraryInfo *TLI;
417   /// Whether to lower a GEP with multiple indices into arithmetic operations or
418   /// multiple GEPs with a single index.
419   bool LowerGEP;
420   DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingExprs;
421 };
422 }  // anonymous namespace
423
424 char SeparateConstOffsetFromGEP::ID = 0;
425 INITIALIZE_PASS_BEGIN(
426     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
427     "Split GEPs to a variadic base and a constant offset for better CSE", false,
428     false)
429 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
430 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
431 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
432 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
433 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
434 INITIALIZE_PASS_END(
435     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
436     "Split GEPs to a variadic base and a constant offset for better CSE", false,
437     false)
438
439 FunctionPass *
440 llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM,
441                                            bool LowerGEP) {
442   return new SeparateConstOffsetFromGEP(TM, LowerGEP);
443 }
444
445 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
446                                             bool ZeroExtended,
447                                             BinaryOperator *BO,
448                                             bool NonNegative) {
449   // We only consider ADD, SUB and OR, because a non-zero constant found in
450   // expressions composed of these operations can be easily hoisted as a
451   // constant offset by reassociation.
452   if (BO->getOpcode() != Instruction::Add &&
453       BO->getOpcode() != Instruction::Sub &&
454       BO->getOpcode() != Instruction::Or) {
455     return false;
456   }
457
458   Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
459   // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
460   // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
461   if (BO->getOpcode() == Instruction::Or &&
462       !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
463     return false;
464
465   // In addition, tracing into BO requires that its surrounding s/zext (if
466   // any) is distributable to both operands.
467   //
468   // Suppose BO = A op B.
469   //  SignExtended | ZeroExtended | Distributable?
470   // --------------+--------------+----------------------------------
471   //       0       |      0       | true because no s/zext exists
472   //       0       |      1       | zext(BO) == zext(A) op zext(B)
473   //       1       |      0       | sext(BO) == sext(A) op sext(B)
474   //       1       |      1       | zext(sext(BO)) ==
475   //               |              |     zext(sext(A)) op zext(sext(B))
476   if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
477     // If a + b >= 0 and (a >= 0 or b >= 0), then
478     //   sext(a + b) = sext(a) + sext(b)
479     // even if the addition is not marked nsw.
480     //
481     // Leveraging this invarient, we can trace into an sext'ed inbound GEP
482     // index if the constant offset is non-negative.
483     //
484     // Verified in @sext_add in split-gep.ll.
485     if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
486       if (!ConstLHS->isNegative())
487         return true;
488     }
489     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
490       if (!ConstRHS->isNegative())
491         return true;
492     }
493   }
494
495   // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
496   // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
497   if (BO->getOpcode() == Instruction::Add ||
498       BO->getOpcode() == Instruction::Sub) {
499     if (SignExtended && !BO->hasNoSignedWrap())
500       return false;
501     if (ZeroExtended && !BO->hasNoUnsignedWrap())
502       return false;
503   }
504
505   return true;
506 }
507
508 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
509                                                    bool SignExtended,
510                                                    bool ZeroExtended) {
511   // BO being non-negative does not shed light on whether its operands are
512   // non-negative. Clear the NonNegative flag here.
513   APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
514                               /* NonNegative */ false);
515   // If we found a constant offset in the left operand, stop and return that.
516   // This shortcut might cause us to miss opportunities of combining the
517   // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
518   // However, such cases are probably already handled by -instcombine,
519   // given this pass runs after the standard optimizations.
520   if (ConstantOffset != 0) return ConstantOffset;
521   ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
522                         /* NonNegative */ false);
523   // If U is a sub operator, negate the constant offset found in the right
524   // operand.
525   if (BO->getOpcode() == Instruction::Sub)
526     ConstantOffset = -ConstantOffset;
527   return ConstantOffset;
528 }
529
530 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
531                                     bool ZeroExtended, bool NonNegative) {
532   // TODO(jingyue): We could trace into integer/pointer casts, such as
533   // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
534   // integers because it gives good enough results for our benchmarks.
535   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
536
537   // We cannot do much with Values that are not a User, such as an Argument.
538   User *U = dyn_cast<User>(V);
539   if (U == nullptr) return APInt(BitWidth, 0);
540
541   APInt ConstantOffset(BitWidth, 0);
542   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
543     // Hooray, we found it!
544     ConstantOffset = CI->getValue();
545   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
546     // Trace into subexpressions for more hoisting opportunities.
547     if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
548       ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
549   } else if (isa<SExtInst>(V)) {
550     ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
551                           ZeroExtended, NonNegative).sext(BitWidth);
552   } else if (isa<ZExtInst>(V)) {
553     // As an optimization, we can clear the SignExtended flag because
554     // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
555     //
556     // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
557     ConstantOffset =
558         find(U->getOperand(0), /* SignExtended */ false,
559              /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
560   }
561
562   // If we found a non-zero constant offset, add it to the path for
563   // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
564   // help this optimization.
565   if (ConstantOffset != 0)
566     UserChain.push_back(U);
567   return ConstantOffset;
568 }
569
570 Value *ConstantOffsetExtractor::applyExts(Value *V) {
571   Value *Current = V;
572   // ExtInsts is built in the use-def order. Therefore, we apply them to V
573   // in the reversed order.
574   for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
575     if (Constant *C = dyn_cast<Constant>(Current)) {
576       // If Current is a constant, apply s/zext using ConstantExpr::getCast.
577       // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
578       Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
579     } else {
580       Instruction *Ext = (*I)->clone();
581       Ext->setOperand(0, Current);
582       Ext->insertBefore(IP);
583       Current = Ext;
584     }
585   }
586   return Current;
587 }
588
589 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
590   distributeExtsAndCloneChain(UserChain.size() - 1);
591   // Remove all nullptrs (used to be s/zext) from UserChain.
592   unsigned NewSize = 0;
593   for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
594     if (*I != nullptr) {
595       UserChain[NewSize] = *I;
596       NewSize++;
597     }
598   }
599   UserChain.resize(NewSize);
600   return removeConstOffset(UserChain.size() - 1);
601 }
602
603 Value *
604 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
605   User *U = UserChain[ChainIndex];
606   if (ChainIndex == 0) {
607     assert(isa<ConstantInt>(U));
608     // If U is a ConstantInt, applyExts will return a ConstantInt as well.
609     return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
610   }
611
612   if (CastInst *Cast = dyn_cast<CastInst>(U)) {
613     assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
614            "We only traced into two types of CastInst: sext and zext");
615     ExtInsts.push_back(Cast);
616     UserChain[ChainIndex] = nullptr;
617     return distributeExtsAndCloneChain(ChainIndex - 1);
618   }
619
620   // Function find only trace into BinaryOperator and CastInst.
621   BinaryOperator *BO = cast<BinaryOperator>(U);
622   // OpNo = which operand of BO is UserChain[ChainIndex - 1]
623   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
624   Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
625   Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
626
627   BinaryOperator *NewBO = nullptr;
628   if (OpNo == 0) {
629     NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
630                                    BO->getName(), IP);
631   } else {
632     NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
633                                    BO->getName(), IP);
634   }
635   return UserChain[ChainIndex] = NewBO;
636 }
637
638 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
639   if (ChainIndex == 0) {
640     assert(isa<ConstantInt>(UserChain[ChainIndex]));
641     return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
642   }
643
644   BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
645   assert(BO->getNumUses() <= 1 &&
646          "distributeExtsAndCloneChain clones each BinaryOperator in "
647          "UserChain, so no one should be used more than "
648          "once");
649
650   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
651   assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
652   Value *NextInChain = removeConstOffset(ChainIndex - 1);
653   Value *TheOther = BO->getOperand(1 - OpNo);
654
655   // If NextInChain is 0 and not the LHS of a sub, we can simplify the
656   // sub-expression to be just TheOther.
657   if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
658     if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
659       return TheOther;
660   }
661
662   BinaryOperator::BinaryOps NewOp = BO->getOpcode();
663   if (BO->getOpcode() == Instruction::Or) {
664     // Rebuild "or" as "add", because "or" may be invalid for the new
665     // epxression.
666     //
667     // For instance, given
668     //   a | (b + 5) where a and b + 5 have no common bits,
669     // we can extract 5 as the constant offset.
670     //
671     // However, reusing the "or" in the new index would give us
672     //   (a | b) + 5
673     // which does not equal a | (b + 5).
674     //
675     // Replacing the "or" with "add" is fine, because
676     //   a | (b + 5) = a + (b + 5) = (a + b) + 5
677     NewOp = Instruction::Add;
678   }
679
680   BinaryOperator *NewBO;
681   if (OpNo == 0) {
682     NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
683   } else {
684     NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
685   }
686   NewBO->takeName(BO);
687   return NewBO;
688 }
689
690 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
691                                         User *&UserChainTail,
692                                         const DominatorTree *DT) {
693   ConstantOffsetExtractor Extractor(GEP, DT);
694   // Find a non-zero constant offset first.
695   APInt ConstantOffset =
696       Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
697                      GEP->isInBounds());
698   if (ConstantOffset == 0) {
699     UserChainTail = nullptr;
700     return nullptr;
701   }
702   // Separates the constant offset from the GEP index.
703   Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
704   UserChainTail = Extractor.UserChain.back();
705   return IdxWithoutConstOffset;
706 }
707
708 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
709                                       const DominatorTree *DT) {
710   // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
711   return ConstantOffsetExtractor(GEP, DT)
712       .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
713             GEP->isInBounds())
714       .getSExtValue();
715 }
716
717 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
718     GetElementPtrInst *GEP) {
719   bool Changed = false;
720   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
721   gep_type_iterator GTI = gep_type_begin(*GEP);
722   for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
723        I != E; ++I, ++GTI) {
724     // Skip struct member indices which must be i32.
725     if (isa<SequentialType>(*GTI)) {
726       if ((*I)->getType() != IntPtrTy) {
727         *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
728         Changed = true;
729       }
730     }
731   }
732   return Changed;
733 }
734
735 int64_t
736 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
737                                                  bool &NeedsExtraction) {
738   NeedsExtraction = false;
739   int64_t AccumulativeByteOffset = 0;
740   gep_type_iterator GTI = gep_type_begin(*GEP);
741   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
742     if (isa<SequentialType>(*GTI)) {
743       // Tries to extract a constant offset from this GEP index.
744       int64_t ConstantOffset =
745           ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
746       if (ConstantOffset != 0) {
747         NeedsExtraction = true;
748         // A GEP may have multiple indices.  We accumulate the extracted
749         // constant offset to a byte offset, and later offset the remainder of
750         // the original GEP with this byte offset.
751         AccumulativeByteOffset +=
752             ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
753       }
754     } else if (LowerGEP) {
755       StructType *StTy = cast<StructType>(*GTI);
756       uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
757       // Skip field 0 as the offset is always 0.
758       if (Field != 0) {
759         NeedsExtraction = true;
760         AccumulativeByteOffset +=
761             DL->getStructLayout(StTy)->getElementOffset(Field);
762       }
763     }
764   }
765   return AccumulativeByteOffset;
766 }
767
768 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
769     GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
770   IRBuilder<> Builder(Variadic);
771   Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
772
773   Type *I8PtrTy =
774       Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
775   Value *ResultPtr = Variadic->getOperand(0);
776   Loop *L = LI->getLoopFor(Variadic->getParent());
777   // Check if the base is not loop invariant or used more than once.
778   bool isSwapCandidate =
779       L && L->isLoopInvariant(ResultPtr) &&
780       !hasMoreThanOneUseInLoop(ResultPtr, L);
781   Value *FirstResult = nullptr;
782
783   if (ResultPtr->getType() != I8PtrTy)
784     ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
785
786   gep_type_iterator GTI = gep_type_begin(*Variadic);
787   // Create an ugly GEP for each sequential index. We don't create GEPs for
788   // structure indices, as they are accumulated in the constant offset index.
789   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
790     if (isa<SequentialType>(*GTI)) {
791       Value *Idx = Variadic->getOperand(I);
792       // Skip zero indices.
793       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
794         if (CI->isZero())
795           continue;
796
797       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
798                                 DL->getTypeAllocSize(GTI.getIndexedType()));
799       // Scale the index by element size.
800       if (ElementSize != 1) {
801         if (ElementSize.isPowerOf2()) {
802           Idx = Builder.CreateShl(
803               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
804         } else {
805           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
806         }
807       }
808       // Create an ugly GEP with a single index for each index.
809       ResultPtr =
810           Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
811       if (FirstResult == nullptr)
812         FirstResult = ResultPtr;
813     }
814   }
815
816   // Create a GEP with the constant offset index.
817   if (AccumulativeByteOffset != 0) {
818     Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
819     ResultPtr =
820         Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
821   } else
822     isSwapCandidate = false;
823
824   // If we created a GEP with constant index, and the base is loop invariant,
825   // then we swap the first one with it, so LICM can move constant GEP out
826   // later.
827   GetElementPtrInst *FirstGEP = dyn_cast<GetElementPtrInst>(FirstResult);
828   GetElementPtrInst *SecondGEP = dyn_cast<GetElementPtrInst>(ResultPtr);
829   if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
830     swapGEPOperand(FirstGEP, SecondGEP);
831
832   if (ResultPtr->getType() != Variadic->getType())
833     ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
834
835   Variadic->replaceAllUsesWith(ResultPtr);
836   Variadic->eraseFromParent();
837 }
838
839 void
840 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
841                                                int64_t AccumulativeByteOffset) {
842   IRBuilder<> Builder(Variadic);
843   Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
844
845   Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
846   gep_type_iterator GTI = gep_type_begin(*Variadic);
847   // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
848   // don't create arithmetics for structure indices, as they are accumulated
849   // in the constant offset index.
850   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
851     if (isa<SequentialType>(*GTI)) {
852       Value *Idx = Variadic->getOperand(I);
853       // Skip zero indices.
854       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
855         if (CI->isZero())
856           continue;
857
858       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
859                                 DL->getTypeAllocSize(GTI.getIndexedType()));
860       // Scale the index by element size.
861       if (ElementSize != 1) {
862         if (ElementSize.isPowerOf2()) {
863           Idx = Builder.CreateShl(
864               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
865         } else {
866           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
867         }
868       }
869       // Create an ADD for each index.
870       ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
871     }
872   }
873
874   // Create an ADD for the constant offset index.
875   if (AccumulativeByteOffset != 0) {
876     ResultPtr = Builder.CreateAdd(
877         ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
878   }
879
880   ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
881   Variadic->replaceAllUsesWith(ResultPtr);
882   Variadic->eraseFromParent();
883 }
884
885 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
886   // Skip vector GEPs.
887   if (GEP->getType()->isVectorTy())
888     return false;
889
890   // The backend can already nicely handle the case where all indices are
891   // constant.
892   if (GEP->hasAllConstantIndices())
893     return false;
894
895   bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
896
897   bool NeedsExtraction;
898   int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
899
900   if (!NeedsExtraction)
901     return Changed;
902   // If LowerGEP is disabled, before really splitting the GEP, check whether the
903   // backend supports the addressing mode we are about to produce. If no, this
904   // splitting probably won't be beneficial.
905   // If LowerGEP is enabled, even the extracted constant offset can not match
906   // the addressing mode, we can still do optimizations to other lowered parts
907   // of variable indices. Therefore, we don't check for addressing modes in that
908   // case.
909   if (!LowerGEP) {
910     TargetTransformInfo &TTI =
911         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
912             *GEP->getParent()->getParent());
913     unsigned AddrSpace = GEP->getPointerAddressSpace();
914     if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
915                                    /*BaseGV=*/nullptr, AccumulativeByteOffset,
916                                    /*HasBaseReg=*/true, /*Scale=*/0,
917                                    AddrSpace)) {
918       return Changed;
919     }
920   }
921
922   // Remove the constant offset in each sequential index. The resultant GEP
923   // computes the variadic base.
924   // Notice that we don't remove struct field indices here. If LowerGEP is
925   // disabled, a structure index is not accumulated and we still use the old
926   // one. If LowerGEP is enabled, a structure index is accumulated in the
927   // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
928   // handle the constant offset and won't need a new structure index.
929   gep_type_iterator GTI = gep_type_begin(*GEP);
930   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
931     if (isa<SequentialType>(*GTI)) {
932       // Splits this GEP index into a variadic part and a constant offset, and
933       // uses the variadic part as the new index.
934       Value *OldIdx = GEP->getOperand(I);
935       User *UserChainTail;
936       Value *NewIdx =
937           ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
938       if (NewIdx != nullptr) {
939         // Switches to the index with the constant offset removed.
940         GEP->setOperand(I, NewIdx);
941         // After switching to the new index, we can garbage-collect UserChain
942         // and the old index if they are not used.
943         RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
944         RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
945       }
946     }
947   }
948
949   // Clear the inbounds attribute because the new index may be off-bound.
950   // e.g.,
951   //
952   //   b     = add i64 a, 5
953   //   addr  = gep inbounds float, float* p, i64 b
954   //
955   // is transformed to:
956   //
957   //   addr2 = gep float, float* p, i64 a ; inbounds removed
958   //   addr  = gep inbounds float, float* addr2, i64 5
959   //
960   // If a is -4, although the old index b is in bounds, the new index a is
961   // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
962   // inbounds keyword is not present, the offsets are added to the base
963   // address with silently-wrapping two's complement arithmetic".
964   // Therefore, the final code will be a semantically equivalent.
965   //
966   // TODO(jingyue): do some range analysis to keep as many inbounds as
967   // possible. GEPs with inbounds are more friendly to alias analysis.
968   bool GEPWasInBounds = GEP->isInBounds();
969   GEP->setIsInBounds(false);
970
971   // Lowers a GEP to either GEPs with a single index or arithmetic operations.
972   if (LowerGEP) {
973     // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
974     // arithmetic operations if the target uses alias analysis in codegen.
975     if (TM && TM->getSubtargetImpl(*GEP->getParent()->getParent())->useAA())
976       lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
977     else
978       lowerToArithmetics(GEP, AccumulativeByteOffset);
979     return true;
980   }
981
982   // No need to create another GEP if the accumulative byte offset is 0.
983   if (AccumulativeByteOffset == 0)
984     return true;
985
986   // Offsets the base with the accumulative byte offset.
987   //
988   //   %gep                        ; the base
989   //   ... %gep ...
990   //
991   // => add the offset
992   //
993   //   %gep2                       ; clone of %gep
994   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
995   //   %gep                        ; will be removed
996   //   ... %gep ...
997   //
998   // => replace all uses of %gep with %new.gep and remove %gep
999   //
1000   //   %gep2                       ; clone of %gep
1001   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1002   //   ... %new.gep ...
1003   //
1004   // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
1005   // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
1006   // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
1007   // type of %gep.
1008   //
1009   //   %gep2                       ; clone of %gep
1010   //   %0       = bitcast %gep2 to i8*
1011   //   %uglygep = gep %0, <offset>
1012   //   %new.gep = bitcast %uglygep to <type of %gep>
1013   //   ... %new.gep ...
1014   Instruction *NewGEP = GEP->clone();
1015   NewGEP->insertBefore(GEP);
1016
1017   // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
1018   // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
1019   // used with unsigned integers later.
1020   int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
1021       DL->getTypeAllocSize(GEP->getType()->getElementType()));
1022   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
1023   if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
1024     // Very likely. As long as %gep is natually aligned, the byte offset we
1025     // extracted should be a multiple of sizeof(*%gep).
1026     int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
1027     NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
1028                                        ConstantInt::get(IntPtrTy, Index, true),
1029                                        GEP->getName(), GEP);
1030     // Inherit the inbounds attribute of the original GEP.
1031     cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1032   } else {
1033     // Unlikely but possible. For example,
1034     // #pragma pack(1)
1035     // struct S {
1036     //   int a[3];
1037     //   int64 b[8];
1038     // };
1039     // #pragma pack()
1040     //
1041     // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
1042     // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
1043     // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
1044     // sizeof(int64).
1045     //
1046     // Emit an uglygep in this case.
1047     Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
1048                                        GEP->getPointerAddressSpace());
1049     NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
1050     NewGEP = GetElementPtrInst::Create(
1051         Type::getInt8Ty(GEP->getContext()), NewGEP,
1052         ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
1053         GEP);
1054     // Inherit the inbounds attribute of the original GEP.
1055     cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1056     if (GEP->getType() != I8PtrTy)
1057       NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
1058   }
1059
1060   GEP->replaceAllUsesWith(NewGEP);
1061   GEP->eraseFromParent();
1062
1063   return true;
1064 }
1065
1066 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
1067   if (skipOptnoneFunction(F))
1068     return false;
1069
1070   if (DisableSeparateConstOffsetFromGEP)
1071     return false;
1072
1073   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1074   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1075   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1076   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1077   bool Changed = false;
1078   for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
1079     for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE;)
1080       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++))
1081         Changed |= splitGEP(GEP);
1082     // No need to split GEP ConstantExprs because all its indices are constant
1083     // already.
1084   }
1085
1086   Changed |= reuniteExts(F);
1087
1088   if (VerifyNoDeadCode)
1089     verifyNoDeadCode(F);
1090
1091   return Changed;
1092 }
1093
1094 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1095     const SCEV *Key, Instruction *Dominatee) {
1096   auto Pos = DominatingExprs.find(Key);
1097   if (Pos == DominatingExprs.end())
1098     return nullptr;
1099
1100   auto &Candidates = Pos->second;
1101   // Because we process the basic blocks in pre-order of the dominator tree, a
1102   // candidate that doesn't dominate the current instruction won't dominate any
1103   // future instruction either. Therefore, we pop it out of the stack. This
1104   // optimization makes the algorithm O(n).
1105   while (!Candidates.empty()) {
1106     Instruction *Candidate = Candidates.back();
1107     if (DT->dominates(Candidate, Dominatee))
1108       return Candidate;
1109     Candidates.pop_back();
1110   }
1111   return nullptr;
1112 }
1113
1114 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
1115   if (!SE->isSCEVable(I->getType()))
1116     return false;
1117
1118   //   Dom: LHS+RHS
1119   //   I: sext(LHS)+sext(RHS)
1120   // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1121   // TODO: handle zext
1122   Value *LHS = nullptr, *RHS = nullptr;
1123   if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS)))) ||
1124       match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1125     if (LHS->getType() == RHS->getType()) {
1126       const SCEV *Key =
1127           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1128       if (auto *Dom = findClosestMatchingDominator(Key, I)) {
1129         Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1130         NewSExt->takeName(I);
1131         I->replaceAllUsesWith(NewSExt);
1132         RecursivelyDeleteTriviallyDeadInstructions(I);
1133         return true;
1134       }
1135     }
1136   }
1137
1138   // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1139   if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS))) ||
1140       match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
1141     if (isKnownNotFullPoison(I)) {
1142       const SCEV *Key =
1143           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1144       DominatingExprs[Key].push_back(I);
1145     }
1146   }
1147   return false;
1148 }
1149
1150 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
1151   bool Changed = false;
1152   DominatingExprs.clear();
1153   for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
1154        Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
1155     BasicBlock *BB = Node->getBlock();
1156     for (auto I = BB->begin(); I != BB->end(); ) {
1157       Instruction *Cur = &*I++;
1158       Changed |= reuniteExts(Cur);
1159     }
1160   }
1161   return Changed;
1162 }
1163
1164 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
1165   for (auto &B : F) {
1166     for (auto &I : B) {
1167       if (isInstructionTriviallyDead(&I)) {
1168         std::string ErrMessage;
1169         raw_string_ostream RSO(ErrMessage);
1170         RSO << "Dead instruction detected!\n" << I << "\n";
1171         llvm_unreachable(RSO.str().c_str());
1172       }
1173     }
1174   }
1175 }
1176
1177 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1178     GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
1179   if (!FirstGEP || !FirstGEP->hasOneUse())
1180     return false;
1181
1182   if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
1183     return false;
1184
1185   if (FirstGEP == SecondGEP)
1186     return false;
1187
1188   unsigned FirstNum = FirstGEP->getNumOperands();
1189   unsigned SecondNum = SecondGEP->getNumOperands();
1190   // Give up if the number of operands are not 2.
1191   if (FirstNum != SecondNum || FirstNum != 2)
1192     return false;
1193
1194   Value *FirstBase = FirstGEP->getOperand(0);
1195   Value *SecondBase = SecondGEP->getOperand(0);
1196   Value *FirstOffset = FirstGEP->getOperand(1);
1197   // Give up if the index of the first GEP is loop invariant.
1198   if (CurLoop->isLoopInvariant(FirstOffset))
1199     return false;
1200
1201   // Give up if base doesn't have same type.
1202   if (FirstBase->getType() != SecondBase->getType())
1203     return false;
1204
1205   Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
1206
1207   // Check if the second operand of first GEP has constant coefficient.
1208   // For an example, for the following code,  we won't gain anything by
1209   // hoisting the second GEP out because the second GEP can be folded away.
1210   //   %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1211   //   %67 = shl i64 %scevgep.sum.ur159, 2
1212   //   %uglygep160 = getelementptr i8* %65, i64 %67
1213   //   %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1214
1215   // Skip constant shift instruction which may be generated by Splitting GEPs.
1216   if (FirstOffsetDef && FirstOffsetDef->isShift() &&
1217       isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
1218     FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
1219
1220   // Give up if FirstOffsetDef is an Add or Sub with constant.
1221   // Because it may not profitable at all due to constant folding.
1222   if (FirstOffsetDef)
1223     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
1224       unsigned opc = BO->getOpcode();
1225       if ((opc == Instruction::Add || opc == Instruction::Sub) &&
1226           (isa<ConstantInt>(BO->getOperand(0)) ||
1227            isa<ConstantInt>(BO->getOperand(1))))
1228         return false;
1229     }
1230   return true;
1231 }
1232
1233 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
1234   int UsesInLoop = 0;
1235   for (User *U : V->users()) {
1236     if (Instruction *User = dyn_cast<Instruction>(U))
1237       if (L->contains(User))
1238         if (++UsesInLoop > 1)
1239           return true;
1240   }
1241   return false;
1242 }
1243
1244 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
1245                                                 GetElementPtrInst *Second) {
1246   Value *Offset1 = First->getOperand(1);
1247   Value *Offset2 = Second->getOperand(1);
1248   First->setOperand(1, Offset2);
1249   Second->setOperand(1, Offset1);
1250
1251   // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1252   const DataLayout &DAL = First->getModule()->getDataLayout();
1253   APInt Offset(DAL.getPointerSizeInBits(
1254                    cast<PointerType>(First->getType())->getAddressSpace()),
1255                0);
1256   Value *NewBase =
1257       First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
1258   uint64_t ObjectSize;
1259   if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
1260      Offset.ugt(ObjectSize)) {
1261     First->setIsInBounds(false);
1262     Second->setIsInBounds(false);
1263   } else
1264     First->setIsInBounds(true);
1265 }