114d22ddf2e444166657396ae093d06ff6905382
[oota-llvm.git] / lib / Transforms / Scalar / ScalarReplAggregates.cpp
1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation.  This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible).  Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
15 //
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
17 // often interact, especially for C++ programs.  As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DIBuilder.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
52 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 using namespace llvm;
54
55 #define DEBUG_TYPE "scalarrepl"
56
57 STATISTIC(NumReplaced,  "Number of allocas broken up");
58 STATISTIC(NumPromoted,  "Number of allocas promoted");
59 STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
60 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
61
62 namespace {
63 #define SROA SROA_
64   struct SROA : public FunctionPass {
65     SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT)
66       : FunctionPass(ID), HasDomTree(hasDT) {
67       if (T == -1)
68         SRThreshold = 128;
69       else
70         SRThreshold = T;
71       if (ST == -1)
72         StructMemberThreshold = 32;
73       else
74         StructMemberThreshold = ST;
75       if (AT == -1)
76         ArrayElementThreshold = 8;
77       else
78         ArrayElementThreshold = AT;
79       if (SLT == -1)
80         // Do not limit the scalar integer load size if no threshold is given.
81         ScalarLoadThreshold = -1;
82       else
83         ScalarLoadThreshold = SLT;
84     }
85
86     bool runOnFunction(Function &F) override;
87
88     bool performScalarRepl(Function &F);
89     bool performPromotion(Function &F);
90
91   private:
92     bool HasDomTree;
93
94     /// DeadInsts - Keep track of instructions we have made dead, so that
95     /// we can remove them after we are done working.
96     SmallVector<Value*, 32> DeadInsts;
97
98     /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
99     /// information about the uses.  All these fields are initialized to false
100     /// and set to true when something is learned.
101     struct AllocaInfo {
102       /// The alloca to promote.
103       AllocaInst *AI;
104
105       /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
106       /// looping and avoid redundant work.
107       SmallPtrSet<PHINode*, 8> CheckedPHIs;
108
109       /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
110       bool isUnsafe : 1;
111
112       /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
113       bool isMemCpySrc : 1;
114
115       /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
116       bool isMemCpyDst : 1;
117
118       /// hasSubelementAccess - This is true if a subelement of the alloca is
119       /// ever accessed, or false if the alloca is only accessed with mem
120       /// intrinsics or load/store that only access the entire alloca at once.
121       bool hasSubelementAccess : 1;
122
123       /// hasALoadOrStore - This is true if there are any loads or stores to it.
124       /// The alloca may just be accessed with memcpy, for example, which would
125       /// not set this.
126       bool hasALoadOrStore : 1;
127
128       explicit AllocaInfo(AllocaInst *ai)
129         : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
130           hasSubelementAccess(false), hasALoadOrStore(false) {}
131     };
132
133     /// SRThreshold - The maximum alloca size to considered for SROA.
134     unsigned SRThreshold;
135
136     /// StructMemberThreshold - The maximum number of members a struct can
137     /// contain to be considered for SROA.
138     unsigned StructMemberThreshold;
139
140     /// ArrayElementThreshold - The maximum number of elements an array can
141     /// have to be considered for SROA.
142     unsigned ArrayElementThreshold;
143
144     /// ScalarLoadThreshold - The maximum size in bits of scalars to load when
145     /// converting to scalar
146     unsigned ScalarLoadThreshold;
147
148     void MarkUnsafe(AllocaInfo &I, Instruction *User) {
149       I.isUnsafe = true;
150       DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
151     }
152
153     bool isSafeAllocaToScalarRepl(AllocaInst *AI);
154
155     void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
156     void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
157                                          AllocaInfo &Info);
158     void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
159     void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
160                          Type *MemOpType, bool isStore, AllocaInfo &Info,
161                          Instruction *TheAccess, bool AllowWholeAccess);
162     bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
163                           const DataLayout &DL);
164     uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
165                                   const DataLayout &DL);
166
167     void DoScalarReplacement(AllocaInst *AI,
168                              std::vector<AllocaInst*> &WorkList);
169     void DeleteDeadInstructions();
170
171     void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
172                               SmallVectorImpl<AllocaInst *> &NewElts);
173     void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
174                         SmallVectorImpl<AllocaInst *> &NewElts);
175     void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
176                     SmallVectorImpl<AllocaInst *> &NewElts);
177     void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
178                                   uint64_t Offset,
179                                   SmallVectorImpl<AllocaInst *> &NewElts);
180     void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
181                                       AllocaInst *AI,
182                                       SmallVectorImpl<AllocaInst *> &NewElts);
183     void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
184                                        SmallVectorImpl<AllocaInst *> &NewElts);
185     void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
186                                       SmallVectorImpl<AllocaInst *> &NewElts);
187     bool ShouldAttemptScalarRepl(AllocaInst *AI);
188   };
189
190   // SROA_DT - SROA that uses DominatorTree.
191   struct SROA_DT : public SROA {
192     static char ID;
193   public:
194     SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
195         SROA(T, true, ID, ST, AT, SLT) {
196       initializeSROA_DTPass(*PassRegistry::getPassRegistry());
197     }
198
199     // getAnalysisUsage - This pass does not require any passes, but we know it
200     // will not alter the CFG, so say so.
201     void getAnalysisUsage(AnalysisUsage &AU) const override {
202       AU.addRequired<AssumptionCacheTracker>();
203       AU.addRequired<DominatorTreeWrapperPass>();
204       AU.setPreservesCFG();
205     }
206   };
207
208   // SROA_SSAUp - SROA that uses SSAUpdater.
209   struct SROA_SSAUp : public SROA {
210     static char ID;
211   public:
212     SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
213         SROA(T, false, ID, ST, AT, SLT) {
214       initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
215     }
216
217     // getAnalysisUsage - This pass does not require any passes, but we know it
218     // will not alter the CFG, so say so.
219     void getAnalysisUsage(AnalysisUsage &AU) const override {
220       AU.addRequired<AssumptionCacheTracker>();
221       AU.setPreservesCFG();
222     }
223   };
224
225 }
226
227 char SROA_DT::ID = 0;
228 char SROA_SSAUp::ID = 0;
229
230 INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
231                 "Scalar Replacement of Aggregates (DT)", false, false)
232 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
233 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
234 INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
235                 "Scalar Replacement of Aggregates (DT)", false, false)
236
237 INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
238                       "Scalar Replacement of Aggregates (SSAUp)", false, false)
239 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
240 INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
241                     "Scalar Replacement of Aggregates (SSAUp)", false, false)
242
243 // Public interface to the ScalarReplAggregates pass
244 FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
245                                                    bool UseDomTree,
246                                                    int StructMemberThreshold,
247                                                    int ArrayElementThreshold,
248                                                    int ScalarLoadThreshold) {
249   if (UseDomTree)
250     return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold,
251                        ScalarLoadThreshold);
252   return new SROA_SSAUp(Threshold, StructMemberThreshold,
253                         ArrayElementThreshold, ScalarLoadThreshold);
254 }
255
256
257 //===----------------------------------------------------------------------===//
258 // Convert To Scalar Optimization.
259 //===----------------------------------------------------------------------===//
260
261 namespace {
262 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
263 /// optimization, which scans the uses of an alloca and determines if it can
264 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
265 class ConvertToScalarInfo {
266   /// AllocaSize - The size of the alloca being considered in bytes.
267   unsigned AllocaSize;
268   const DataLayout &DL;
269   unsigned ScalarLoadThreshold;
270
271   /// IsNotTrivial - This is set to true if there is some access to the object
272   /// which means that mem2reg can't promote it.
273   bool IsNotTrivial;
274
275   /// ScalarKind - Tracks the kind of alloca being considered for promotion,
276   /// computed based on the uses of the alloca rather than the LLVM type system.
277   enum {
278     Unknown,
279
280     // Accesses via GEPs that are consistent with element access of a vector
281     // type. This will not be converted into a vector unless there is a later
282     // access using an actual vector type.
283     ImplicitVector,
284
285     // Accesses via vector operations and GEPs that are consistent with the
286     // layout of a vector type.
287     Vector,
288
289     // An integer bag-of-bits with bitwise operations for insertion and
290     // extraction. Any combination of types can be converted into this kind
291     // of scalar.
292     Integer
293   } ScalarKind;
294
295   /// VectorTy - This tracks the type that we should promote the vector to if
296   /// it is possible to turn it into a vector.  This starts out null, and if it
297   /// isn't possible to turn into a vector type, it gets set to VoidTy.
298   VectorType *VectorTy;
299
300   /// HadNonMemTransferAccess - True if there is at least one access to the
301   /// alloca that is not a MemTransferInst.  We don't want to turn structs into
302   /// large integers unless there is some potential for optimization.
303   bool HadNonMemTransferAccess;
304
305   /// HadDynamicAccess - True if some element of this alloca was dynamic.
306   /// We don't yet have support for turning a dynamic access into a large
307   /// integer.
308   bool HadDynamicAccess;
309
310 public:
311   explicit ConvertToScalarInfo(unsigned Size, const DataLayout &DL,
312                                unsigned SLT)
313     : AllocaSize(Size), DL(DL), ScalarLoadThreshold(SLT), IsNotTrivial(false),
314     ScalarKind(Unknown), VectorTy(nullptr), HadNonMemTransferAccess(false),
315     HadDynamicAccess(false) { }
316
317   AllocaInst *TryConvert(AllocaInst *AI);
318
319 private:
320   bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx);
321   void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
322   bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
323   void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset,
324                            Value *NonConstantIdx);
325
326   Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
327                                     uint64_t Offset, Value* NonConstantIdx,
328                                     IRBuilder<> &Builder);
329   Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
330                                    uint64_t Offset, Value* NonConstantIdx,
331                                    IRBuilder<> &Builder);
332 };
333 } // end anonymous namespace.
334
335
336 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
337 /// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
338 /// alloca if possible or null if not.
339 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
340   // If we can't convert this scalar, or if mem2reg can trivially do it, bail
341   // out.
342   if (!CanConvertToScalar(AI, 0, nullptr) || !IsNotTrivial)
343     return nullptr;
344
345   // If an alloca has only memset / memcpy uses, it may still have an Unknown
346   // ScalarKind. Treat it as an Integer below.
347   if (ScalarKind == Unknown)
348     ScalarKind = Integer;
349
350   if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
351     ScalarKind = Integer;
352
353   // If we were able to find a vector type that can handle this with
354   // insert/extract elements, and if there was at least one use that had
355   // a vector type, promote this to a vector.  We don't want to promote
356   // random stuff that doesn't use vectors (e.g. <9 x double>) because then
357   // we just get a lot of insert/extracts.  If at least one vector is
358   // involved, then we probably really do have a union of vector/array.
359   Type *NewTy;
360   if (ScalarKind == Vector) {
361     assert(VectorTy && "Missing type for vector scalar.");
362     DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
363           << *VectorTy << '\n');
364     NewTy = VectorTy;  // Use the vector type.
365   } else {
366     unsigned BitWidth = AllocaSize * 8;
367
368     // Do not convert to scalar integer if the alloca size exceeds the
369     // scalar load threshold.
370     if (BitWidth > ScalarLoadThreshold)
371       return nullptr;
372
373     if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
374         !HadNonMemTransferAccess && !DL.fitsInLegalInteger(BitWidth))
375       return nullptr;
376     // Dynamic accesses on integers aren't yet supported.  They need us to shift
377     // by a dynamic amount which could be difficult to work out as we might not
378     // know whether to use a left or right shift.
379     if (ScalarKind == Integer && HadDynamicAccess)
380       return nullptr;
381
382     DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
383     // Create and insert the integer alloca.
384     NewTy = IntegerType::get(AI->getContext(), BitWidth);
385   }
386   AllocaInst *NewAI =
387       new AllocaInst(NewTy, nullptr, "", &AI->getParent()->front());
388   ConvertUsesToScalar(AI, NewAI, 0, nullptr);
389   return NewAI;
390 }
391
392 /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
393 /// (VectorTy) so far at the offset specified by Offset (which is specified in
394 /// bytes).
395 ///
396 /// There are two cases we handle here:
397 ///   1) A union of vector types of the same size and potentially its elements.
398 ///      Here we turn element accesses into insert/extract element operations.
399 ///      This promotes a <4 x float> with a store of float to the third element
400 ///      into a <4 x float> that uses insert element.
401 ///   2) A fully general blob of memory, which we turn into some (potentially
402 ///      large) integer type with extract and insert operations where the loads
403 ///      and stores would mutate the memory.  We mark this by setting VectorTy
404 ///      to VoidTy.
405 void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
406                                                     uint64_t Offset) {
407   // If we already decided to turn this into a blob of integer memory, there is
408   // nothing to be done.
409   if (ScalarKind == Integer)
410     return;
411
412   // If this could be contributing to a vector, analyze it.
413
414   // If the In type is a vector that is the same size as the alloca, see if it
415   // matches the existing VecTy.
416   if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
417     if (MergeInVectorType(VInTy, Offset))
418       return;
419   } else if (In->isFloatTy() || In->isDoubleTy() ||
420              (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
421               isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
422     // Full width accesses can be ignored, because they can always be turned
423     // into bitcasts.
424     unsigned EltSize = In->getPrimitiveSizeInBits()/8;
425     if (EltSize == AllocaSize)
426       return;
427
428     // If we're accessing something that could be an element of a vector, see
429     // if the implied vector agrees with what we already have and if Offset is
430     // compatible with it.
431     if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
432         (!VectorTy || EltSize == VectorTy->getElementType()
433                                          ->getPrimitiveSizeInBits()/8)) {
434       if (!VectorTy) {
435         ScalarKind = ImplicitVector;
436         VectorTy = VectorType::get(In, AllocaSize/EltSize);
437       }
438       return;
439     }
440   }
441
442   // Otherwise, we have a case that we can't handle with an optimized vector
443   // form.  We can still turn this into a large integer.
444   ScalarKind = Integer;
445 }
446
447 /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
448 /// returning true if the type was successfully merged and false otherwise.
449 bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
450                                             uint64_t Offset) {
451   if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
452     // If we're storing/loading a vector of the right size, allow it as a
453     // vector.  If this the first vector we see, remember the type so that
454     // we know the element size. If this is a subsequent access, ignore it
455     // even if it is a differing type but the same size. Worst case we can
456     // bitcast the resultant vectors.
457     if (!VectorTy)
458       VectorTy = VInTy;
459     ScalarKind = Vector;
460     return true;
461   }
462
463   return false;
464 }
465
466 /// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
467 /// its accesses to a single vector type, return true and set VecTy to
468 /// the new type.  If we could convert the alloca into a single promotable
469 /// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
470 /// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
471 /// is the current offset from the base of the alloca being analyzed.
472 ///
473 /// If we see at least one access to the value that is as a vector type, set the
474 /// SawVec flag.
475 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
476                                              Value* NonConstantIdx) {
477   for (User *U : V->users()) {
478     Instruction *UI = cast<Instruction>(U);
479
480     if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
481       // Don't break volatile loads.
482       if (!LI->isSimple())
483         return false;
484       // Don't touch MMX operations.
485       if (LI->getType()->isX86_MMXTy())
486         return false;
487       HadNonMemTransferAccess = true;
488       MergeInTypeForLoadOrStore(LI->getType(), Offset);
489       continue;
490     }
491
492     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
493       // Storing the pointer, not into the value?
494       if (SI->getOperand(0) == V || !SI->isSimple()) return false;
495       // Don't touch MMX operations.
496       if (SI->getOperand(0)->getType()->isX86_MMXTy())
497         return false;
498       HadNonMemTransferAccess = true;
499       MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
500       continue;
501     }
502
503     if (BitCastInst *BCI = dyn_cast<BitCastInst>(UI)) {
504       if (!onlyUsedByLifetimeMarkers(BCI))
505         IsNotTrivial = true;  // Can't be mem2reg'd.
506       if (!CanConvertToScalar(BCI, Offset, NonConstantIdx))
507         return false;
508       continue;
509     }
510
511     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UI)) {
512       // If this is a GEP with a variable indices, we can't handle it.
513       PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType());
514       if (!PtrTy)
515         return false;
516
517       // Compute the offset that this GEP adds to the pointer.
518       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
519       Value *GEPNonConstantIdx = nullptr;
520       if (!GEP->hasAllConstantIndices()) {
521         if (!isa<VectorType>(PtrTy->getElementType()))
522           return false;
523         if (NonConstantIdx)
524           return false;
525         GEPNonConstantIdx = Indices.pop_back_val();
526         if (!GEPNonConstantIdx->getType()->isIntegerTy(32))
527           return false;
528         HadDynamicAccess = true;
529       } else
530         GEPNonConstantIdx = NonConstantIdx;
531       uint64_t GEPOffset = DL.getIndexedOffset(PtrTy,
532                                                Indices);
533       // See if all uses can be converted.
534       if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
535         return false;
536       IsNotTrivial = true;  // Can't be mem2reg'd.
537       HadNonMemTransferAccess = true;
538       continue;
539     }
540
541     // If this is a constant sized memset of a constant value (e.g. 0) we can
542     // handle it.
543     if (MemSetInst *MSI = dyn_cast<MemSetInst>(UI)) {
544       // Store to dynamic index.
545       if (NonConstantIdx)
546         return false;
547       // Store of constant value.
548       if (!isa<ConstantInt>(MSI->getValue()))
549         return false;
550
551       // Store of constant size.
552       ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
553       if (!Len)
554         return false;
555
556       // If the size differs from the alloca, we can only convert the alloca to
557       // an integer bag-of-bits.
558       // FIXME: This should handle all of the cases that are currently accepted
559       // as vector element insertions.
560       if (Len->getZExtValue() != AllocaSize || Offset != 0)
561         ScalarKind = Integer;
562
563       IsNotTrivial = true;  // Can't be mem2reg'd.
564       HadNonMemTransferAccess = true;
565       continue;
566     }
567
568     // If this is a memcpy or memmove into or out of the whole allocation, we
569     // can handle it like a load or store of the scalar type.
570     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(UI)) {
571       // Store to dynamic index.
572       if (NonConstantIdx)
573         return false;
574       ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
575       if (!Len || Len->getZExtValue() != AllocaSize || Offset != 0)
576         return false;
577
578       IsNotTrivial = true;  // Can't be mem2reg'd.
579       continue;
580     }
581
582     // If this is a lifetime intrinsic, we can handle it.
583     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(UI)) {
584       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
585           II->getIntrinsicID() == Intrinsic::lifetime_end) {
586         continue;
587       }
588     }
589
590     // Otherwise, we cannot handle this!
591     return false;
592   }
593
594   return true;
595 }
596
597 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
598 /// directly.  This happens when we are converting an "integer union" to a
599 /// single integer scalar, or when we are converting a "vector union" to a
600 /// vector with insert/extractelement instructions.
601 ///
602 /// Offset is an offset from the original alloca, in bits that need to be
603 /// shifted to the right.  By the end of this, there should be no uses of Ptr.
604 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
605                                               uint64_t Offset,
606                                               Value* NonConstantIdx) {
607   while (!Ptr->use_empty()) {
608     Instruction *User = cast<Instruction>(Ptr->user_back());
609
610     if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
611       ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx);
612       CI->eraseFromParent();
613       continue;
614     }
615
616     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
617       // Compute the offset that this GEP adds to the pointer.
618       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
619       Value* GEPNonConstantIdx = nullptr;
620       if (!GEP->hasAllConstantIndices()) {
621         assert(!NonConstantIdx &&
622                "Dynamic GEP reading from dynamic GEP unsupported");
623         GEPNonConstantIdx = Indices.pop_back_val();
624       } else
625         GEPNonConstantIdx = NonConstantIdx;
626       uint64_t GEPOffset = DL.getIndexedOffset(GEP->getPointerOperandType(),
627                                                Indices);
628       ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
629       GEP->eraseFromParent();
630       continue;
631     }
632
633     IRBuilder<> Builder(User);
634
635     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
636       // The load is a bit extract from NewAI shifted right by Offset bits.
637       Value *LoadedVal = Builder.CreateLoad(NewAI);
638       Value *NewLoadVal
639         = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset,
640                                      NonConstantIdx, Builder);
641       LI->replaceAllUsesWith(NewLoadVal);
642       LI->eraseFromParent();
643       continue;
644     }
645
646     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
647       assert(SI->getOperand(0) != Ptr && "Consistency error!");
648       Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
649       Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
650                                              NonConstantIdx, Builder);
651       Builder.CreateStore(New, NewAI);
652       SI->eraseFromParent();
653
654       // If the load we just inserted is now dead, then the inserted store
655       // overwrote the entire thing.
656       if (Old->use_empty())
657         Old->eraseFromParent();
658       continue;
659     }
660
661     // If this is a constant sized memset of a constant value (e.g. 0) we can
662     // transform it into a store of the expanded constant value.
663     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
664       assert(MSI->getRawDest() == Ptr && "Consistency error!");
665       assert(!NonConstantIdx && "Cannot replace dynamic memset with insert");
666       int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
667       if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
668         unsigned NumBytes = static_cast<unsigned>(SNumBytes);
669         unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
670
671         // Compute the value replicated the right number of times.
672         APInt APVal(NumBytes*8, Val);
673
674         // Splat the value if non-zero.
675         if (Val)
676           for (unsigned i = 1; i != NumBytes; ++i)
677             APVal |= APVal << 8;
678
679         Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
680         Value *New = ConvertScalar_InsertValue(
681                                     ConstantInt::get(User->getContext(), APVal),
682                                                Old, Offset, nullptr, Builder);
683         Builder.CreateStore(New, NewAI);
684
685         // If the load we just inserted is now dead, then the memset overwrote
686         // the entire thing.
687         if (Old->use_empty())
688           Old->eraseFromParent();
689       }
690       MSI->eraseFromParent();
691       continue;
692     }
693
694     // If this is a memcpy or memmove into or out of the whole allocation, we
695     // can handle it like a load or store of the scalar type.
696     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
697       assert(Offset == 0 && "must be store to start of alloca");
698       assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert");
699
700       // If the source and destination are both to the same alloca, then this is
701       // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
702       // as appropriate.
703       AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, DL, 0));
704
705       if (GetUnderlyingObject(MTI->getSource(), DL, 0) != OrigAI) {
706         // Dest must be OrigAI, change this to be a load from the original
707         // pointer (bitcasted), then a store to our new alloca.
708         assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
709         Value *SrcPtr = MTI->getSource();
710         PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
711         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
712         if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
713           AIPTy = PointerType::get(AIPTy->getElementType(),
714                                    SPTy->getAddressSpace());
715         }
716         SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
717
718         LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
719         SrcVal->setAlignment(MTI->getAlignment());
720         Builder.CreateStore(SrcVal, NewAI);
721       } else if (GetUnderlyingObject(MTI->getDest(), DL, 0) != OrigAI) {
722         // Src must be OrigAI, change this to be a load from NewAI then a store
723         // through the original dest pointer (bitcasted).
724         assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
725         LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
726
727         PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
728         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
729         if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
730           AIPTy = PointerType::get(AIPTy->getElementType(),
731                                    DPTy->getAddressSpace());
732         }
733         Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
734
735         StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
736         NewStore->setAlignment(MTI->getAlignment());
737       } else {
738         // Noop transfer. Src == Dst
739       }
740
741       MTI->eraseFromParent();
742       continue;
743     }
744
745     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
746       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
747           II->getIntrinsicID() == Intrinsic::lifetime_end) {
748         // There's no need to preserve these, as the resulting alloca will be
749         // converted to a register anyways.
750         II->eraseFromParent();
751         continue;
752       }
753     }
754
755     llvm_unreachable("Unsupported operation!");
756   }
757 }
758
759 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
760 /// or vector value FromVal, extracting the bits from the offset specified by
761 /// Offset.  This returns the value, which is of type ToType.
762 ///
763 /// This happens when we are converting an "integer union" to a single
764 /// integer scalar, or when we are converting a "vector union" to a vector with
765 /// insert/extractelement instructions.
766 ///
767 /// Offset is an offset from the original alloca, in bits that need to be
768 /// shifted to the right.
769 Value *ConvertToScalarInfo::
770 ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
771                            uint64_t Offset, Value* NonConstantIdx,
772                            IRBuilder<> &Builder) {
773   // If the load is of the whole new alloca, no conversion is needed.
774   Type *FromType = FromVal->getType();
775   if (FromType == ToType && Offset == 0)
776     return FromVal;
777
778   // If the result alloca is a vector type, this is either an element
779   // access or a bitcast to another vector type of the same size.
780   if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
781     unsigned FromTypeSize = DL.getTypeAllocSize(FromType);
782     unsigned ToTypeSize = DL.getTypeAllocSize(ToType);
783     if (FromTypeSize == ToTypeSize)
784         return Builder.CreateBitCast(FromVal, ToType);
785
786     // Otherwise it must be an element access.
787     unsigned Elt = 0;
788     if (Offset) {
789       unsigned EltSize = DL.getTypeAllocSizeInBits(VTy->getElementType());
790       Elt = Offset/EltSize;
791       assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
792     }
793     // Return the element extracted out of it.
794     Value *Idx;
795     if (NonConstantIdx) {
796       if (Elt)
797         Idx = Builder.CreateAdd(NonConstantIdx,
798                                 Builder.getInt32(Elt),
799                                 "dyn.offset");
800       else
801         Idx = NonConstantIdx;
802     } else
803       Idx = Builder.getInt32(Elt);
804     Value *V = Builder.CreateExtractElement(FromVal, Idx);
805     if (V->getType() != ToType)
806       V = Builder.CreateBitCast(V, ToType);
807     return V;
808   }
809
810   // If ToType is a first class aggregate, extract out each of the pieces and
811   // use insertvalue's to form the FCA.
812   if (StructType *ST = dyn_cast<StructType>(ToType)) {
813     assert(!NonConstantIdx &&
814            "Dynamic indexing into struct types not supported");
815     const StructLayout &Layout = *DL.getStructLayout(ST);
816     Value *Res = UndefValue::get(ST);
817     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
818       Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
819                                         Offset+Layout.getElementOffsetInBits(i),
820                                               nullptr, Builder);
821       Res = Builder.CreateInsertValue(Res, Elt, i);
822     }
823     return Res;
824   }
825
826   if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
827     assert(!NonConstantIdx &&
828            "Dynamic indexing into array types not supported");
829     uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
830     Value *Res = UndefValue::get(AT);
831     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
832       Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
833                                               Offset+i*EltSize, nullptr,
834                                               Builder);
835       Res = Builder.CreateInsertValue(Res, Elt, i);
836     }
837     return Res;
838   }
839
840   // Otherwise, this must be a union that was converted to an integer value.
841   IntegerType *NTy = cast<IntegerType>(FromVal->getType());
842
843   // If this is a big-endian system and the load is narrower than the
844   // full alloca type, we need to do a shift to get the right bits.
845   int ShAmt = 0;
846   if (DL.isBigEndian()) {
847     // On big-endian machines, the lowest bit is stored at the bit offset
848     // from the pointer given by getTypeStoreSizeInBits.  This matters for
849     // integers with a bitwidth that is not a multiple of 8.
850     ShAmt = DL.getTypeStoreSizeInBits(NTy) -
851             DL.getTypeStoreSizeInBits(ToType) - Offset;
852   } else {
853     ShAmt = Offset;
854   }
855
856   // Note: we support negative bitwidths (with shl) which are not defined.
857   // We do this to support (f.e.) loads off the end of a structure where
858   // only some bits are used.
859   if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
860     FromVal = Builder.CreateLShr(FromVal,
861                                  ConstantInt::get(FromVal->getType(), ShAmt));
862   else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
863     FromVal = Builder.CreateShl(FromVal,
864                                 ConstantInt::get(FromVal->getType(), -ShAmt));
865
866   // Finally, unconditionally truncate the integer to the right width.
867   unsigned LIBitWidth = DL.getTypeSizeInBits(ToType);
868   if (LIBitWidth < NTy->getBitWidth())
869     FromVal =
870       Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
871                                                     LIBitWidth));
872   else if (LIBitWidth > NTy->getBitWidth())
873     FromVal =
874        Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
875                                                     LIBitWidth));
876
877   // If the result is an integer, this is a trunc or bitcast.
878   if (ToType->isIntegerTy()) {
879     // Should be done.
880   } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
881     // Just do a bitcast, we know the sizes match up.
882     FromVal = Builder.CreateBitCast(FromVal, ToType);
883   } else {
884     // Otherwise must be a pointer.
885     FromVal = Builder.CreateIntToPtr(FromVal, ToType);
886   }
887   assert(FromVal->getType() == ToType && "Didn't convert right?");
888   return FromVal;
889 }
890
891 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
892 /// or vector value "Old" at the offset specified by Offset.
893 ///
894 /// This happens when we are converting an "integer union" to a
895 /// single integer scalar, or when we are converting a "vector union" to a
896 /// vector with insert/extractelement instructions.
897 ///
898 /// Offset is an offset from the original alloca, in bits that need to be
899 /// shifted to the right.
900 ///
901 /// NonConstantIdx is an index value if there was a GEP with a non-constant
902 /// index value.  If this is 0 then all GEPs used to find this insert address
903 /// are constant.
904 Value *ConvertToScalarInfo::
905 ConvertScalar_InsertValue(Value *SV, Value *Old,
906                           uint64_t Offset, Value* NonConstantIdx,
907                           IRBuilder<> &Builder) {
908   // Convert the stored type to the actual type, shift it left to insert
909   // then 'or' into place.
910   Type *AllocaType = Old->getType();
911   LLVMContext &Context = Old->getContext();
912
913   if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
914     uint64_t VecSize = DL.getTypeAllocSizeInBits(VTy);
915     uint64_t ValSize = DL.getTypeAllocSizeInBits(SV->getType());
916
917     // Changing the whole vector with memset or with an access of a different
918     // vector type?
919     if (ValSize == VecSize)
920         return Builder.CreateBitCast(SV, AllocaType);
921
922     // Must be an element insertion.
923     Type *EltTy = VTy->getElementType();
924     if (SV->getType() != EltTy)
925       SV = Builder.CreateBitCast(SV, EltTy);
926     uint64_t EltSize = DL.getTypeAllocSizeInBits(EltTy);
927     unsigned Elt = Offset/EltSize;
928     Value *Idx;
929     if (NonConstantIdx) {
930       if (Elt)
931         Idx = Builder.CreateAdd(NonConstantIdx,
932                                 Builder.getInt32(Elt),
933                                 "dyn.offset");
934       else
935         Idx = NonConstantIdx;
936     } else
937       Idx = Builder.getInt32(Elt);
938     return Builder.CreateInsertElement(Old, SV, Idx);
939   }
940
941   // If SV is a first-class aggregate value, insert each value recursively.
942   if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
943     assert(!NonConstantIdx &&
944            "Dynamic indexing into struct types not supported");
945     const StructLayout &Layout = *DL.getStructLayout(ST);
946     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
947       Value *Elt = Builder.CreateExtractValue(SV, i);
948       Old = ConvertScalar_InsertValue(Elt, Old,
949                                       Offset+Layout.getElementOffsetInBits(i),
950                                       nullptr, Builder);
951     }
952     return Old;
953   }
954
955   if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
956     assert(!NonConstantIdx &&
957            "Dynamic indexing into array types not supported");
958     uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
959     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
960       Value *Elt = Builder.CreateExtractValue(SV, i);
961       Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, nullptr,
962                                       Builder);
963     }
964     return Old;
965   }
966
967   // If SV is a float, convert it to the appropriate integer type.
968   // If it is a pointer, do the same.
969   unsigned SrcWidth = DL.getTypeSizeInBits(SV->getType());
970   unsigned DestWidth = DL.getTypeSizeInBits(AllocaType);
971   unsigned SrcStoreWidth = DL.getTypeStoreSizeInBits(SV->getType());
972   unsigned DestStoreWidth = DL.getTypeStoreSizeInBits(AllocaType);
973   if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
974     SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
975   else if (SV->getType()->isPointerTy())
976     SV = Builder.CreatePtrToInt(SV, DL.getIntPtrType(SV->getType()));
977
978   // Zero extend or truncate the value if needed.
979   if (SV->getType() != AllocaType) {
980     if (SV->getType()->getPrimitiveSizeInBits() <
981              AllocaType->getPrimitiveSizeInBits())
982       SV = Builder.CreateZExt(SV, AllocaType);
983     else {
984       // Truncation may be needed if storing more than the alloca can hold
985       // (undefined behavior).
986       SV = Builder.CreateTrunc(SV, AllocaType);
987       SrcWidth = DestWidth;
988       SrcStoreWidth = DestStoreWidth;
989     }
990   }
991
992   // If this is a big-endian system and the store is narrower than the
993   // full alloca type, we need to do a shift to get the right bits.
994   int ShAmt = 0;
995   if (DL.isBigEndian()) {
996     // On big-endian machines, the lowest bit is stored at the bit offset
997     // from the pointer given by getTypeStoreSizeInBits.  This matters for
998     // integers with a bitwidth that is not a multiple of 8.
999     ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1000   } else {
1001     ShAmt = Offset;
1002   }
1003
1004   // Note: we support negative bitwidths (with shr) which are not defined.
1005   // We do this to support (f.e.) stores off the end of a structure where
1006   // only some bits in the structure are set.
1007   APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1008   if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1009     SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
1010     Mask <<= ShAmt;
1011   } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1012     SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
1013     Mask = Mask.lshr(-ShAmt);
1014   }
1015
1016   // Mask out the bits we are about to insert from the old value, and or
1017   // in the new bits.
1018   if (SrcWidth != DestWidth) {
1019     assert(DestWidth > SrcWidth);
1020     Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1021     SV = Builder.CreateOr(Old, SV, "ins");
1022   }
1023   return SV;
1024 }
1025
1026
1027 //===----------------------------------------------------------------------===//
1028 // SRoA Driver
1029 //===----------------------------------------------------------------------===//
1030
1031
1032 bool SROA::runOnFunction(Function &F) {
1033   if (skipOptnoneFunction(F))
1034     return false;
1035
1036   bool Changed = performPromotion(F);
1037
1038   while (1) {
1039     bool LocalChange = performScalarRepl(F);
1040     if (!LocalChange) break;   // No need to repromote if no scalarrepl
1041     Changed = true;
1042     LocalChange = performPromotion(F);
1043     if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1044   }
1045
1046   return Changed;
1047 }
1048
1049 namespace {
1050 class AllocaPromoter : public LoadAndStorePromoter {
1051   AllocaInst *AI;
1052   DIBuilder *DIB;
1053   SmallVector<DbgDeclareInst *, 4> DDIs;
1054   SmallVector<DbgValueInst *, 4> DVIs;
1055 public:
1056   AllocaPromoter(ArrayRef<Instruction*> Insts, SSAUpdater &S,
1057                  DIBuilder *DB)
1058     : LoadAndStorePromoter(Insts, S), AI(nullptr), DIB(DB) {}
1059
1060   void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1061     // Remember which alloca we're promoting (for isInstInList).
1062     this->AI = AI;
1063     if (auto *L = LocalAsMetadata::getIfExists(AI)) {
1064       if (auto *DINode = MetadataAsValue::getIfExists(AI->getContext(), L)) {
1065         for (User *U : DINode->users())
1066           if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1067             DDIs.push_back(DDI);
1068           else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1069             DVIs.push_back(DVI);
1070       }
1071     }
1072
1073     LoadAndStorePromoter::run(Insts);
1074     AI->eraseFromParent();
1075     for (SmallVectorImpl<DbgDeclareInst *>::iterator I = DDIs.begin(),
1076            E = DDIs.end(); I != E; ++I) {
1077       DbgDeclareInst *DDI = *I;
1078       DDI->eraseFromParent();
1079     }
1080     for (SmallVectorImpl<DbgValueInst *>::iterator I = DVIs.begin(),
1081            E = DVIs.end(); I != E; ++I) {
1082       DbgValueInst *DVI = *I;
1083       DVI->eraseFromParent();
1084     }
1085   }
1086
1087   bool isInstInList(Instruction *I,
1088                     const SmallVectorImpl<Instruction*> &Insts) const override {
1089     if (LoadInst *LI = dyn_cast<LoadInst>(I))
1090       return LI->getOperand(0) == AI;
1091     return cast<StoreInst>(I)->getPointerOperand() == AI;
1092   }
1093
1094   void updateDebugInfo(Instruction *Inst) const override {
1095     for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
1096            E = DDIs.end(); I != E; ++I) {
1097       DbgDeclareInst *DDI = *I;
1098       if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1099         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1100       else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1101         ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
1102     }
1103     for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
1104            E = DVIs.end(); I != E; ++I) {
1105       DbgValueInst *DVI = *I;
1106       Value *Arg = nullptr;
1107       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1108         // If an argument is zero extended then use argument directly. The ZExt
1109         // may be zapped by an optimization pass in future.
1110         if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1111           Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1112         if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1113           Arg = dyn_cast<Argument>(SExt->getOperand(0));
1114         if (!Arg)
1115           Arg = SI->getOperand(0);
1116       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1117         Arg = LI->getOperand(0);
1118       } else {
1119         continue;
1120       }
1121       DIB->insertDbgValueIntrinsic(Arg, 0, DVI->getVariable(),
1122                                    DVI->getExpression(), DVI->getDebugLoc(),
1123                                    Inst);
1124     }
1125   }
1126 };
1127 } // end anon namespace
1128
1129 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1130 /// subsequently loaded can be rewritten to load both input pointers and then
1131 /// select between the result, allowing the load of the alloca to be promoted.
1132 /// From this:
1133 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1134 ///   %V = load i32* %P2
1135 /// to:
1136 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1137 ///   %V2 = load i32* %Other
1138 ///   %V = select i1 %cond, i32 %V1, i32 %V2
1139 ///
1140 /// We can do this to a select if its only uses are loads and if the operand to
1141 /// the select can be loaded unconditionally.
1142 static bool isSafeSelectToSpeculate(SelectInst *SI) {
1143   const DataLayout &DL = SI->getModule()->getDataLayout();
1144   bool TDerefable = isDereferenceablePointer(SI->getTrueValue(), DL);
1145   bool FDerefable = isDereferenceablePointer(SI->getFalseValue(), DL);
1146
1147   for (User *U : SI->users()) {
1148     LoadInst *LI = dyn_cast<LoadInst>(U);
1149     if (!LI || !LI->isSimple()) return false;
1150
1151     // Both operands to the select need to be dereferencable, either absolutely
1152     // (e.g. allocas) or at this point because we can see other accesses to it.
1153     if (!TDerefable &&
1154         !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1155                                      LI->getAlignment()))
1156       return false;
1157     if (!FDerefable &&
1158         !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1159                                      LI->getAlignment()))
1160       return false;
1161   }
1162
1163   return true;
1164 }
1165
1166 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1167 /// subsequently loaded can be rewritten to load both input pointers in the pred
1168 /// blocks and then PHI the results, allowing the load of the alloca to be
1169 /// promoted.
1170 /// From this:
1171 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1172 ///   %V = load i32* %P2
1173 /// to:
1174 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1175 ///   ...
1176 ///   %V2 = load i32* %Other
1177 ///   ...
1178 ///   %V = phi [i32 %V1, i32 %V2]
1179 ///
1180 /// We can do this to a select if its only uses are loads and if the operand to
1181 /// the select can be loaded unconditionally.
1182 static bool isSafePHIToSpeculate(PHINode *PN) {
1183   // For now, we can only do this promotion if the load is in the same block as
1184   // the PHI, and if there are no stores between the phi and load.
1185   // TODO: Allow recursive phi users.
1186   // TODO: Allow stores.
1187   BasicBlock *BB = PN->getParent();
1188   unsigned MaxAlign = 0;
1189   for (User *U : PN->users()) {
1190     LoadInst *LI = dyn_cast<LoadInst>(U);
1191     if (!LI || !LI->isSimple()) return false;
1192
1193     // For now we only allow loads in the same block as the PHI.  This is a
1194     // common case that happens when instcombine merges two loads through a PHI.
1195     if (LI->getParent() != BB) return false;
1196
1197     // Ensure that there are no instructions between the PHI and the load that
1198     // could store.
1199     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1200       if (BBI->mayWriteToMemory())
1201         return false;
1202
1203     MaxAlign = std::max(MaxAlign, LI->getAlignment());
1204   }
1205
1206   const DataLayout &DL = PN->getModule()->getDataLayout();
1207
1208   // Okay, we know that we have one or more loads in the same block as the PHI.
1209   // We can transform this if it is safe to push the loads into the predecessor
1210   // blocks.  The only thing to watch out for is that we can't put a possibly
1211   // trapping load in the predecessor if it is a critical edge.
1212   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1213     BasicBlock *Pred = PN->getIncomingBlock(i);
1214     Value *InVal = PN->getIncomingValue(i);
1215
1216     // If the terminator of the predecessor has side-effects (an invoke),
1217     // there is no safe place to put a load in the predecessor.
1218     if (Pred->getTerminator()->mayHaveSideEffects())
1219       return false;
1220
1221     // If the value is produced by the terminator of the predecessor
1222     // (an invoke), there is no valid place to put a load in the predecessor.
1223     if (Pred->getTerminator() == InVal)
1224       return false;
1225
1226     // If the predecessor has a single successor, then the edge isn't critical.
1227     if (Pred->getTerminator()->getNumSuccessors() == 1)
1228       continue;
1229
1230     // If this pointer is always safe to load, or if we can prove that there is
1231     // already a load in the block, then we can move the load to the pred block.
1232     if (isDereferenceablePointer(InVal, DL) ||
1233         isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign))
1234       continue;
1235
1236     return false;
1237   }
1238
1239   return true;
1240 }
1241
1242
1243 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1244 /// direct (non-volatile) loads and stores to it.  If the alloca is close but
1245 /// not quite there, this will transform the code to allow promotion.  As such,
1246 /// it is a non-pure predicate.
1247 static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout &DL) {
1248   SetVector<Instruction*, SmallVector<Instruction*, 4>,
1249             SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1250   for (User *U : AI->users()) {
1251     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1252       if (!LI->isSimple())
1253         return false;
1254       continue;
1255     }
1256
1257     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1258       if (SI->getOperand(0) == AI || !SI->isSimple())
1259         return false;   // Don't allow a store OF the AI, only INTO the AI.
1260       continue;
1261     }
1262
1263     if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1264       // If the condition being selected on is a constant, fold the select, yes
1265       // this does (rarely) happen early on.
1266       if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1267         Value *Result = SI->getOperand(1+CI->isZero());
1268         SI->replaceAllUsesWith(Result);
1269         SI->eraseFromParent();
1270
1271         // This is very rare and we just scrambled the use list of AI, start
1272         // over completely.
1273         return tryToMakeAllocaBePromotable(AI, DL);
1274       }
1275
1276       // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1277       // loads, then we can transform this by rewriting the select.
1278       if (!isSafeSelectToSpeculate(SI))
1279         return false;
1280
1281       InstsToRewrite.insert(SI);
1282       continue;
1283     }
1284
1285     if (PHINode *PN = dyn_cast<PHINode>(U)) {
1286       if (PN->use_empty()) {  // Dead PHIs can be stripped.
1287         InstsToRewrite.insert(PN);
1288         continue;
1289       }
1290
1291       // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1292       // in the pred blocks, then we can transform this by rewriting the PHI.
1293       if (!isSafePHIToSpeculate(PN))
1294         return false;
1295
1296       InstsToRewrite.insert(PN);
1297       continue;
1298     }
1299
1300     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1301       if (onlyUsedByLifetimeMarkers(BCI)) {
1302         InstsToRewrite.insert(BCI);
1303         continue;
1304       }
1305     }
1306
1307     return false;
1308   }
1309
1310   // If there are no instructions to rewrite, then all uses are load/stores and
1311   // we're done!
1312   if (InstsToRewrite.empty())
1313     return true;
1314
1315   // If we have instructions that need to be rewritten for this to be promotable
1316   // take care of it now.
1317   for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1318     if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1319       // This could only be a bitcast used by nothing but lifetime intrinsics.
1320       for (BitCastInst::user_iterator I = BCI->user_begin(), E = BCI->user_end();
1321            I != E;)
1322         cast<Instruction>(*I++)->eraseFromParent();
1323       BCI->eraseFromParent();
1324       continue;
1325     }
1326
1327     if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1328       // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1329       // loads with a new select.
1330       while (!SI->use_empty()) {
1331         LoadInst *LI = cast<LoadInst>(SI->user_back());
1332
1333         IRBuilder<> Builder(LI);
1334         LoadInst *TrueLoad =
1335           Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1336         LoadInst *FalseLoad =
1337           Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1338
1339         // Transfer alignment and AA info if present.
1340         TrueLoad->setAlignment(LI->getAlignment());
1341         FalseLoad->setAlignment(LI->getAlignment());
1342
1343         AAMDNodes Tags;
1344         LI->getAAMetadata(Tags);
1345         if (Tags) {
1346           TrueLoad->setAAMetadata(Tags);
1347           FalseLoad->setAAMetadata(Tags);
1348         }
1349
1350         Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1351         V->takeName(LI);
1352         LI->replaceAllUsesWith(V);
1353         LI->eraseFromParent();
1354       }
1355
1356       // Now that all the loads are gone, the select is gone too.
1357       SI->eraseFromParent();
1358       continue;
1359     }
1360
1361     // Otherwise, we have a PHI node which allows us to push the loads into the
1362     // predecessors.
1363     PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1364     if (PN->use_empty()) {
1365       PN->eraseFromParent();
1366       continue;
1367     }
1368
1369     Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1370     PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1371                                      PN->getName()+".ld", PN);
1372
1373     // Get the AA tags and alignment to use from one of the loads.  It doesn't
1374     // matter which one we get and if any differ, it doesn't matter.
1375     LoadInst *SomeLoad = cast<LoadInst>(PN->user_back());
1376
1377     AAMDNodes AATags;
1378     SomeLoad->getAAMetadata(AATags);
1379     unsigned Align = SomeLoad->getAlignment();
1380
1381     // Rewrite all loads of the PN to use the new PHI.
1382     while (!PN->use_empty()) {
1383       LoadInst *LI = cast<LoadInst>(PN->user_back());
1384       LI->replaceAllUsesWith(NewPN);
1385       LI->eraseFromParent();
1386     }
1387
1388     // Inject loads into all of the pred blocks.  Keep track of which blocks we
1389     // insert them into in case we have multiple edges from the same block.
1390     DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1391
1392     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1393       BasicBlock *Pred = PN->getIncomingBlock(i);
1394       LoadInst *&Load = InsertedLoads[Pred];
1395       if (!Load) {
1396         Load = new LoadInst(PN->getIncomingValue(i),
1397                             PN->getName() + "." + Pred->getName(),
1398                             Pred->getTerminator());
1399         Load->setAlignment(Align);
1400         if (AATags) Load->setAAMetadata(AATags);
1401       }
1402
1403       NewPN->addIncoming(Load, Pred);
1404     }
1405
1406     PN->eraseFromParent();
1407   }
1408
1409   ++NumAdjusted;
1410   return true;
1411 }
1412
1413 bool SROA::performPromotion(Function &F) {
1414   std::vector<AllocaInst*> Allocas;
1415   const DataLayout &DL = F.getParent()->getDataLayout();
1416   DominatorTree *DT = nullptr;
1417   if (HasDomTree)
1418     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1419   AssumptionCache &AC =
1420       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1421
1422   BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1423   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1424   bool Changed = false;
1425   SmallVector<Instruction*, 64> Insts;
1426   while (1) {
1427     Allocas.clear();
1428
1429     // Find allocas that are safe to promote, by looking at all instructions in
1430     // the entry node
1431     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1432       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1433         if (tryToMakeAllocaBePromotable(AI, DL))
1434           Allocas.push_back(AI);
1435
1436     if (Allocas.empty()) break;
1437
1438     if (HasDomTree)
1439       PromoteMemToReg(Allocas, *DT, nullptr, &AC);
1440     else {
1441       SSAUpdater SSA;
1442       for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1443         AllocaInst *AI = Allocas[i];
1444
1445         // Build list of instructions to promote.
1446         for (User *U : AI->users())
1447           Insts.push_back(cast<Instruction>(U));
1448         AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1449         Insts.clear();
1450       }
1451     }
1452     NumPromoted += Allocas.size();
1453     Changed = true;
1454   }
1455
1456   return Changed;
1457 }
1458
1459
1460 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1461 /// SROA.  It must be a struct or array type with a small number of elements.
1462 bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
1463   Type *T = AI->getAllocatedType();
1464   // Do not promote any struct that has too many members.
1465   if (StructType *ST = dyn_cast<StructType>(T))
1466     return ST->getNumElements() <= StructMemberThreshold;
1467   // Do not promote any array that has too many elements.
1468   if (ArrayType *AT = dyn_cast<ArrayType>(T))
1469     return AT->getNumElements() <= ArrayElementThreshold;
1470   return false;
1471 }
1472
1473 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
1474 // which runs on all of the alloca instructions in the entry block, removing
1475 // them if they are only used by getelementptr instructions.
1476 //
1477 bool SROA::performScalarRepl(Function &F) {
1478   std::vector<AllocaInst*> WorkList;
1479   const DataLayout &DL = F.getParent()->getDataLayout();
1480
1481   // Scan the entry basic block, adding allocas to the worklist.
1482   BasicBlock &BB = F.getEntryBlock();
1483   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1484     if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1485       WorkList.push_back(A);
1486
1487   // Process the worklist
1488   bool Changed = false;
1489   while (!WorkList.empty()) {
1490     AllocaInst *AI = WorkList.back();
1491     WorkList.pop_back();
1492
1493     // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1494     // with unused elements.
1495     if (AI->use_empty()) {
1496       AI->eraseFromParent();
1497       Changed = true;
1498       continue;
1499     }
1500
1501     // If this alloca is impossible for us to promote, reject it early.
1502     if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1503       continue;
1504
1505     // Check to see if we can perform the core SROA transformation.  We cannot
1506     // transform the allocation instruction if it is an array allocation
1507     // (allocations OF arrays are ok though), and an allocation of a scalar
1508     // value cannot be decomposed at all.
1509     uint64_t AllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
1510
1511     // Do not promote [0 x %struct].
1512     if (AllocaSize == 0) continue;
1513
1514     // Do not promote any struct whose size is too big.
1515     if (AllocaSize > SRThreshold) continue;
1516
1517     // If the alloca looks like a good candidate for scalar replacement, and if
1518     // all its users can be transformed, then split up the aggregate into its
1519     // separate elements.
1520     if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1521       DoScalarReplacement(AI, WorkList);
1522       Changed = true;
1523       continue;
1524     }
1525
1526     // If we can turn this aggregate value (potentially with casts) into a
1527     // simple scalar value that can be mem2reg'd into a register value.
1528     // IsNotTrivial tracks whether this is something that mem2reg could have
1529     // promoted itself.  If so, we don't want to transform it needlessly.  Note
1530     // that we can't just check based on the type: the alloca may be of an i32
1531     // but that has pointer arithmetic to set byte 3 of it or something.
1532     if (AllocaInst *NewAI =
1533             ConvertToScalarInfo((unsigned)AllocaSize, DL, ScalarLoadThreshold)
1534                 .TryConvert(AI)) {
1535       NewAI->takeName(AI);
1536       AI->eraseFromParent();
1537       ++NumConverted;
1538       Changed = true;
1539       continue;
1540     }
1541
1542     // Otherwise, couldn't process this alloca.
1543   }
1544
1545   return Changed;
1546 }
1547
1548 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1549 /// predicate, do SROA now.
1550 void SROA::DoScalarReplacement(AllocaInst *AI,
1551                                std::vector<AllocaInst*> &WorkList) {
1552   DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1553   SmallVector<AllocaInst*, 32> ElementAllocas;
1554   if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1555     ElementAllocas.reserve(ST->getNumContainedTypes());
1556     for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1557       AllocaInst *NA = new AllocaInst(ST->getContainedType(i), nullptr,
1558                                       AI->getAlignment(),
1559                                       AI->getName() + "." + Twine(i), AI);
1560       ElementAllocas.push_back(NA);
1561       WorkList.push_back(NA);  // Add to worklist for recursive processing
1562     }
1563   } else {
1564     ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1565     ElementAllocas.reserve(AT->getNumElements());
1566     Type *ElTy = AT->getElementType();
1567     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1568       AllocaInst *NA = new AllocaInst(ElTy, nullptr, AI->getAlignment(),
1569                                       AI->getName() + "." + Twine(i), AI);
1570       ElementAllocas.push_back(NA);
1571       WorkList.push_back(NA);  // Add to worklist for recursive processing
1572     }
1573   }
1574
1575   // Now that we have created the new alloca instructions, rewrite all the
1576   // uses of the old alloca.
1577   RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1578
1579   // Now erase any instructions that were made dead while rewriting the alloca.
1580   DeleteDeadInstructions();
1581   AI->eraseFromParent();
1582
1583   ++NumReplaced;
1584 }
1585
1586 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1587 /// recursively including all their operands that become trivially dead.
1588 void SROA::DeleteDeadInstructions() {
1589   while (!DeadInsts.empty()) {
1590     Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1591
1592     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1593       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1594         // Zero out the operand and see if it becomes trivially dead.
1595         // (But, don't add allocas to the dead instruction list -- they are
1596         // already on the worklist and will be deleted separately.)
1597         *OI = nullptr;
1598         if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1599           DeadInsts.push_back(U);
1600       }
1601
1602     I->eraseFromParent();
1603   }
1604 }
1605
1606 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1607 /// performing scalar replacement of alloca AI.  The results are flagged in
1608 /// the Info parameter.  Offset indicates the position within AI that is
1609 /// referenced by this instruction.
1610 void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1611                                AllocaInfo &Info) {
1612   const DataLayout &DL = I->getModule()->getDataLayout();
1613   for (Use &U : I->uses()) {
1614     Instruction *User = cast<Instruction>(U.getUser());
1615
1616     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1617       isSafeForScalarRepl(BC, Offset, Info);
1618     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1619       uint64_t GEPOffset = Offset;
1620       isSafeGEP(GEPI, GEPOffset, Info);
1621       if (!Info.isUnsafe)
1622         isSafeForScalarRepl(GEPI, GEPOffset, Info);
1623     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1624       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1625       if (!Length || Length->isNegative())
1626         return MarkUnsafe(Info, User);
1627
1628       isSafeMemAccess(Offset, Length->getZExtValue(), nullptr,
1629                       U.getOperandNo() == 0, Info, MI,
1630                       true /*AllowWholeAccess*/);
1631     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1632       if (!LI->isSimple())
1633         return MarkUnsafe(Info, User);
1634       Type *LIType = LI->getType();
1635       isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
1636                       LI, true /*AllowWholeAccess*/);
1637       Info.hasALoadOrStore = true;
1638
1639     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1640       // Store is ok if storing INTO the pointer, not storing the pointer
1641       if (!SI->isSimple() || SI->getOperand(0) == I)
1642         return MarkUnsafe(Info, User);
1643
1644       Type *SIType = SI->getOperand(0)->getType();
1645       isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
1646                       SI, true /*AllowWholeAccess*/);
1647       Info.hasALoadOrStore = true;
1648     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1649       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1650           II->getIntrinsicID() != Intrinsic::lifetime_end)
1651         return MarkUnsafe(Info, User);
1652     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1653       isSafePHISelectUseForScalarRepl(User, Offset, Info);
1654     } else {
1655       return MarkUnsafe(Info, User);
1656     }
1657     if (Info.isUnsafe) return;
1658   }
1659 }
1660
1661
1662 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1663 /// derived from the alloca, we can often still split the alloca into elements.
1664 /// This is useful if we have a large alloca where one element is phi'd
1665 /// together somewhere: we can SRoA and promote all the other elements even if
1666 /// we end up not being able to promote this one.
1667 ///
1668 /// All we require is that the uses of the PHI do not index into other parts of
1669 /// the alloca.  The most important use case for this is single load and stores
1670 /// that are PHI'd together, which can happen due to code sinking.
1671 void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1672                                            AllocaInfo &Info) {
1673   // If we've already checked this PHI, don't do it again.
1674   if (PHINode *PN = dyn_cast<PHINode>(I))
1675     if (!Info.CheckedPHIs.insert(PN).second)
1676       return;
1677
1678   const DataLayout &DL = I->getModule()->getDataLayout();
1679   for (User *U : I->users()) {
1680     Instruction *UI = cast<Instruction>(U);
1681
1682     if (BitCastInst *BC = dyn_cast<BitCastInst>(UI)) {
1683       isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1684     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1685       // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1686       // but would have to prove that we're staying inside of an element being
1687       // promoted.
1688       if (!GEPI->hasAllZeroIndices())
1689         return MarkUnsafe(Info, UI);
1690       isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1691     } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
1692       if (!LI->isSimple())
1693         return MarkUnsafe(Info, UI);
1694       Type *LIType = LI->getType();
1695       isSafeMemAccess(Offset, DL.getTypeAllocSize(LIType), LIType, false, Info,
1696                       LI, false /*AllowWholeAccess*/);
1697       Info.hasALoadOrStore = true;
1698
1699     } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1700       // Store is ok if storing INTO the pointer, not storing the pointer
1701       if (!SI->isSimple() || SI->getOperand(0) == I)
1702         return MarkUnsafe(Info, UI);
1703
1704       Type *SIType = SI->getOperand(0)->getType();
1705       isSafeMemAccess(Offset, DL.getTypeAllocSize(SIType), SIType, true, Info,
1706                       SI, false /*AllowWholeAccess*/);
1707       Info.hasALoadOrStore = true;
1708     } else if (isa<PHINode>(UI) || isa<SelectInst>(UI)) {
1709       isSafePHISelectUseForScalarRepl(UI, Offset, Info);
1710     } else {
1711       return MarkUnsafe(Info, UI);
1712     }
1713     if (Info.isUnsafe) return;
1714   }
1715 }
1716
1717 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
1718 /// replacement.  It is safe when all the indices are constant, in-bounds
1719 /// references, and when the resulting offset corresponds to an element within
1720 /// the alloca type.  The results are flagged in the Info parameter.  Upon
1721 /// return, Offset is adjusted as specified by the GEP indices.
1722 void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1723                      uint64_t &Offset, AllocaInfo &Info) {
1724   gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1725   if (GEPIt == E)
1726     return;
1727   bool NonConstant = false;
1728   unsigned NonConstantIdxSize = 0;
1729
1730   // Walk through the GEP type indices, checking the types that this indexes
1731   // into.
1732   for (; GEPIt != E; ++GEPIt) {
1733     // Ignore struct elements, no extra checking needed for these.
1734     if ((*GEPIt)->isStructTy())
1735       continue;
1736
1737     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1738     if (!IdxVal)
1739       return MarkUnsafe(Info, GEPI);
1740   }
1741
1742   // Compute the offset due to this GEP and check if the alloca has a
1743   // component element at that offset.
1744   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1745   // If this GEP is non-constant then the last operand must have been a
1746   // dynamic index into a vector.  Pop this now as it has no impact on the
1747   // constant part of the offset.
1748   if (NonConstant)
1749     Indices.pop_back();
1750
1751   const DataLayout &DL = GEPI->getModule()->getDataLayout();
1752   Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1753   if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, NonConstantIdxSize,
1754                         DL))
1755     MarkUnsafe(Info, GEPI);
1756 }
1757
1758 /// isHomogeneousAggregate - Check if type T is a struct or array containing
1759 /// elements of the same type (which is always true for arrays).  If so,
1760 /// return true with NumElts and EltTy set to the number of elements and the
1761 /// element type, respectively.
1762 static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1763                                    Type *&EltTy) {
1764   if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1765     NumElts = AT->getNumElements();
1766     EltTy = (NumElts == 0 ? nullptr : AT->getElementType());
1767     return true;
1768   }
1769   if (StructType *ST = dyn_cast<StructType>(T)) {
1770     NumElts = ST->getNumContainedTypes();
1771     EltTy = (NumElts == 0 ? nullptr : ST->getContainedType(0));
1772     for (unsigned n = 1; n < NumElts; ++n) {
1773       if (ST->getContainedType(n) != EltTy)
1774         return false;
1775     }
1776     return true;
1777   }
1778   return false;
1779 }
1780
1781 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1782 /// "homogeneous" aggregates with the same element type and number of elements.
1783 static bool isCompatibleAggregate(Type *T1, Type *T2) {
1784   if (T1 == T2)
1785     return true;
1786
1787   unsigned NumElts1, NumElts2;
1788   Type *EltTy1, *EltTy2;
1789   if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1790       isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1791       NumElts1 == NumElts2 &&
1792       EltTy1 == EltTy2)
1793     return true;
1794
1795   return false;
1796 }
1797
1798 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1799 /// alloca or has an offset and size that corresponds to a component element
1800 /// within it.  The offset checked here may have been formed from a GEP with a
1801 /// pointer bitcasted to a different type.
1802 ///
1803 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1804 /// unit.  If false, it only allows accesses known to be in a single element.
1805 void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1806                            Type *MemOpType, bool isStore,
1807                            AllocaInfo &Info, Instruction *TheAccess,
1808                            bool AllowWholeAccess) {
1809   const DataLayout &DL = TheAccess->getModule()->getDataLayout();
1810   // Check if this is a load/store of the entire alloca.
1811   if (Offset == 0 && AllowWholeAccess &&
1812       MemSize == DL.getTypeAllocSize(Info.AI->getAllocatedType())) {
1813     // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1814     // loads/stores (which are essentially the same as the MemIntrinsics with
1815     // regard to copying padding between elements).  But, if an alloca is
1816     // flagged as both a source and destination of such operations, we'll need
1817     // to check later for padding between elements.
1818     if (!MemOpType || MemOpType->isIntegerTy()) {
1819       if (isStore)
1820         Info.isMemCpyDst = true;
1821       else
1822         Info.isMemCpySrc = true;
1823       return;
1824     }
1825     // This is also safe for references using a type that is compatible with
1826     // the type of the alloca, so that loads/stores can be rewritten using
1827     // insertvalue/extractvalue.
1828     if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1829       Info.hasSubelementAccess = true;
1830       return;
1831     }
1832   }
1833   // Check if the offset/size correspond to a component within the alloca type.
1834   Type *T = Info.AI->getAllocatedType();
1835   if (TypeHasComponent(T, Offset, MemSize, DL)) {
1836     Info.hasSubelementAccess = true;
1837     return;
1838   }
1839
1840   return MarkUnsafe(Info, TheAccess);
1841 }
1842
1843 /// TypeHasComponent - Return true if T has a component type with the
1844 /// specified offset and size.  If Size is zero, do not check the size.
1845 bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size,
1846                             const DataLayout &DL) {
1847   Type *EltTy;
1848   uint64_t EltSize;
1849   if (StructType *ST = dyn_cast<StructType>(T)) {
1850     const StructLayout *Layout = DL.getStructLayout(ST);
1851     unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1852     EltTy = ST->getContainedType(EltIdx);
1853     EltSize = DL.getTypeAllocSize(EltTy);
1854     Offset -= Layout->getElementOffset(EltIdx);
1855   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1856     EltTy = AT->getElementType();
1857     EltSize = DL.getTypeAllocSize(EltTy);
1858     if (Offset >= AT->getNumElements() * EltSize)
1859       return false;
1860     Offset %= EltSize;
1861   } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
1862     EltTy = VT->getElementType();
1863     EltSize = DL.getTypeAllocSize(EltTy);
1864     if (Offset >= VT->getNumElements() * EltSize)
1865       return false;
1866     Offset %= EltSize;
1867   } else {
1868     return false;
1869   }
1870   if (Offset == 0 && (Size == 0 || EltSize == Size))
1871     return true;
1872   // Check if the component spans multiple elements.
1873   if (Offset + Size > EltSize)
1874     return false;
1875   return TypeHasComponent(EltTy, Offset, Size, DL);
1876 }
1877
1878 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1879 /// the instruction I, which references it, to use the separate elements.
1880 /// Offset indicates the position within AI that is referenced by this
1881 /// instruction.
1882 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1883                                 SmallVectorImpl<AllocaInst *> &NewElts) {
1884   const DataLayout &DL = I->getModule()->getDataLayout();
1885   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1886     Use &TheUse = *UI++;
1887     Instruction *User = cast<Instruction>(TheUse.getUser());
1888
1889     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1890       RewriteBitCast(BC, AI, Offset, NewElts);
1891       continue;
1892     }
1893
1894     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1895       RewriteGEP(GEPI, AI, Offset, NewElts);
1896       continue;
1897     }
1898
1899     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1900       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1901       uint64_t MemSize = Length->getZExtValue();
1902       if (Offset == 0 && MemSize == DL.getTypeAllocSize(AI->getAllocatedType()))
1903         RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1904       // Otherwise the intrinsic can only touch a single element and the
1905       // address operand will be updated, so nothing else needs to be done.
1906       continue;
1907     }
1908
1909     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1910       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1911           II->getIntrinsicID() == Intrinsic::lifetime_end) {
1912         RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1913       }
1914       continue;
1915     }
1916
1917     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1918       Type *LIType = LI->getType();
1919
1920       if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1921         // Replace:
1922         //   %res = load { i32, i32 }* %alloc
1923         // with:
1924         //   %load.0 = load i32* %alloc.0
1925         //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1926         //   %load.1 = load i32* %alloc.1
1927         //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1928         // (Also works for arrays instead of structs)
1929         Value *Insert = UndefValue::get(LIType);
1930         IRBuilder<> Builder(LI);
1931         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1932           Value *Load = Builder.CreateLoad(NewElts[i], "load");
1933           Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1934         }
1935         LI->replaceAllUsesWith(Insert);
1936         DeadInsts.push_back(LI);
1937       } else if (LIType->isIntegerTy() &&
1938                  DL.getTypeAllocSize(LIType) ==
1939                      DL.getTypeAllocSize(AI->getAllocatedType())) {
1940         // If this is a load of the entire alloca to an integer, rewrite it.
1941         RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1942       }
1943       continue;
1944     }
1945
1946     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1947       Value *Val = SI->getOperand(0);
1948       Type *SIType = Val->getType();
1949       if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1950         // Replace:
1951         //   store { i32, i32 } %val, { i32, i32 }* %alloc
1952         // with:
1953         //   %val.0 = extractvalue { i32, i32 } %val, 0
1954         //   store i32 %val.0, i32* %alloc.0
1955         //   %val.1 = extractvalue { i32, i32 } %val, 1
1956         //   store i32 %val.1, i32* %alloc.1
1957         // (Also works for arrays instead of structs)
1958         IRBuilder<> Builder(SI);
1959         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1960           Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1961           Builder.CreateStore(Extract, NewElts[i]);
1962         }
1963         DeadInsts.push_back(SI);
1964       } else if (SIType->isIntegerTy() &&
1965                  DL.getTypeAllocSize(SIType) ==
1966                      DL.getTypeAllocSize(AI->getAllocatedType())) {
1967         // If this is a store of the entire alloca from an integer, rewrite it.
1968         RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1969       }
1970       continue;
1971     }
1972
1973     if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1974       // If we have a PHI user of the alloca itself (as opposed to a GEP or
1975       // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1976       // the new pointer.
1977       if (!isa<AllocaInst>(I)) continue;
1978
1979       assert(Offset == 0 && NewElts[0] &&
1980              "Direct alloca use should have a zero offset");
1981
1982       // If we have a use of the alloca, we know the derived uses will be
1983       // utilizing just the first element of the scalarized result.  Insert a
1984       // bitcast of the first alloca before the user as required.
1985       AllocaInst *NewAI = NewElts[0];
1986       BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1987       NewAI->moveBefore(BCI);
1988       TheUse = BCI;
1989       continue;
1990     }
1991   }
1992 }
1993
1994 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1995 /// and recursively continue updating all of its uses.
1996 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1997                           SmallVectorImpl<AllocaInst *> &NewElts) {
1998   RewriteForScalarRepl(BC, AI, Offset, NewElts);
1999   if (BC->getOperand(0) != AI)
2000     return;
2001
2002   // The bitcast references the original alloca.  Replace its uses with
2003   // references to the alloca containing offset zero (which is normally at
2004   // index zero, but might not be in cases involving structs with elements
2005   // of size zero).
2006   Type *T = AI->getAllocatedType();
2007   uint64_t EltOffset = 0;
2008   Type *IdxTy;
2009   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy,
2010                                       BC->getModule()->getDataLayout());
2011   Instruction *Val = NewElts[Idx];
2012   if (Val->getType() != BC->getDestTy()) {
2013     Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
2014     Val->takeName(BC);
2015   }
2016   BC->replaceAllUsesWith(Val);
2017   DeadInsts.push_back(BC);
2018 }
2019
2020 /// FindElementAndOffset - Return the index of the element containing Offset
2021 /// within the specified type, which must be either a struct or an array.
2022 /// Sets T to the type of the element and Offset to the offset within that
2023 /// element.  IdxTy is set to the type of the index result to be used in a
2024 /// GEP instruction.
2025 uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset, Type *&IdxTy,
2026                                     const DataLayout &DL) {
2027   uint64_t Idx = 0;
2028
2029   if (StructType *ST = dyn_cast<StructType>(T)) {
2030     const StructLayout *Layout = DL.getStructLayout(ST);
2031     Idx = Layout->getElementContainingOffset(Offset);
2032     T = ST->getContainedType(Idx);
2033     Offset -= Layout->getElementOffset(Idx);
2034     IdxTy = Type::getInt32Ty(T->getContext());
2035     return Idx;
2036   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
2037     T = AT->getElementType();
2038     uint64_t EltSize = DL.getTypeAllocSize(T);
2039     Idx = Offset / EltSize;
2040     Offset -= Idx * EltSize;
2041     IdxTy = Type::getInt64Ty(T->getContext());
2042     return Idx;
2043   }
2044   VectorType *VT = cast<VectorType>(T);
2045   T = VT->getElementType();
2046   uint64_t EltSize = DL.getTypeAllocSize(T);
2047   Idx = Offset / EltSize;
2048   Offset -= Idx * EltSize;
2049   IdxTy = Type::getInt64Ty(T->getContext());
2050   return Idx;
2051 }
2052
2053 /// RewriteGEP - Check if this GEP instruction moves the pointer across
2054 /// elements of the alloca that are being split apart, and if so, rewrite
2055 /// the GEP to be relative to the new element.
2056 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
2057                       SmallVectorImpl<AllocaInst *> &NewElts) {
2058   uint64_t OldOffset = Offset;
2059   const DataLayout &DL = GEPI->getModule()->getDataLayout();
2060   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
2061   // If the GEP was dynamic then it must have been a dynamic vector lookup.
2062   // In this case, it must be the last GEP operand which is dynamic so keep that
2063   // aside until we've found the constant GEP offset then add it back in at the
2064   // end.
2065   Value* NonConstantIdx = nullptr;
2066   if (!GEPI->hasAllConstantIndices())
2067     NonConstantIdx = Indices.pop_back_val();
2068   Offset += DL.getIndexedOffset(GEPI->getPointerOperandType(), Indices);
2069
2070   RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
2071
2072   Type *T = AI->getAllocatedType();
2073   Type *IdxTy;
2074   uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy, DL);
2075   if (GEPI->getOperand(0) == AI)
2076     OldIdx = ~0ULL; // Force the GEP to be rewritten.
2077
2078   T = AI->getAllocatedType();
2079   uint64_t EltOffset = Offset;
2080   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
2081
2082   // If this GEP does not move the pointer across elements of the alloca
2083   // being split, then it does not needs to be rewritten.
2084   if (Idx == OldIdx)
2085     return;
2086
2087   Type *i32Ty = Type::getInt32Ty(AI->getContext());
2088   SmallVector<Value*, 8> NewArgs;
2089   NewArgs.push_back(Constant::getNullValue(i32Ty));
2090   while (EltOffset != 0) {
2091     uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy, DL);
2092     NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2093   }
2094   if (NonConstantIdx) {
2095     Type* GepTy = T;
2096     // This GEP has a dynamic index.  We need to add "i32 0" to index through
2097     // any structs or arrays in the original type until we get to the vector
2098     // to index.
2099     while (!isa<VectorType>(GepTy)) {
2100       NewArgs.push_back(Constant::getNullValue(i32Ty));
2101       GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U);
2102     }
2103     NewArgs.push_back(NonConstantIdx);
2104   }
2105   Instruction *Val = NewElts[Idx];
2106   if (NewArgs.size() > 1) {
2107     Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
2108     Val->takeName(GEPI);
2109   }
2110   if (Val->getType() != GEPI->getType())
2111     Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2112   GEPI->replaceAllUsesWith(Val);
2113   DeadInsts.push_back(GEPI);
2114 }
2115
2116 /// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
2117 /// to mark the lifetime of the scalarized memory.
2118 void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
2119                                     uint64_t Offset,
2120                                     SmallVectorImpl<AllocaInst *> &NewElts) {
2121   ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
2122   // Put matching lifetime markers on everything from Offset up to
2123   // Offset+OldSize.
2124   Type *AIType = AI->getAllocatedType();
2125   const DataLayout &DL = II->getModule()->getDataLayout();
2126   uint64_t NewOffset = Offset;
2127   Type *IdxTy;
2128   uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy, DL);
2129
2130   IRBuilder<> Builder(II);
2131   uint64_t Size = OldSize->getLimitedValue();
2132
2133   if (NewOffset) {
2134     // Splice the first element and index 'NewOffset' bytes in.  SROA will
2135     // split the alloca again later.
2136     unsigned AS = AI->getType()->getAddressSpace();
2137     Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy(AS));
2138     V = Builder.CreateGEP(Builder.getInt8Ty(), V, Builder.getInt64(NewOffset));
2139
2140     IdxTy = NewElts[Idx]->getAllocatedType();
2141     uint64_t EltSize = DL.getTypeAllocSize(IdxTy) - NewOffset;
2142     if (EltSize > Size) {
2143       EltSize = Size;
2144       Size = 0;
2145     } else {
2146       Size -= EltSize;
2147     }
2148     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2149       Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
2150     else
2151       Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
2152     ++Idx;
2153   }
2154
2155   for (; Idx != NewElts.size() && Size; ++Idx) {
2156     IdxTy = NewElts[Idx]->getAllocatedType();
2157     uint64_t EltSize = DL.getTypeAllocSize(IdxTy);
2158     if (EltSize > Size) {
2159       EltSize = Size;
2160       Size = 0;
2161     } else {
2162       Size -= EltSize;
2163     }
2164     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2165       Builder.CreateLifetimeStart(NewElts[Idx],
2166                                   Builder.getInt64(EltSize));
2167     else
2168       Builder.CreateLifetimeEnd(NewElts[Idx],
2169                                 Builder.getInt64(EltSize));
2170   }
2171   DeadInsts.push_back(II);
2172 }
2173
2174 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2175 /// Rewrite it to copy or set the elements of the scalarized memory.
2176 void
2177 SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2178                                    AllocaInst *AI,
2179                                    SmallVectorImpl<AllocaInst *> &NewElts) {
2180   // If this is a memcpy/memmove, construct the other pointer as the
2181   // appropriate type.  The "Other" pointer is the pointer that goes to memory
2182   // that doesn't have anything to do with the alloca that we are promoting. For
2183   // memset, this Value* stays null.
2184   Value *OtherPtr = nullptr;
2185   unsigned MemAlignment = MI->getAlignment();
2186   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2187     if (Inst == MTI->getRawDest())
2188       OtherPtr = MTI->getRawSource();
2189     else {
2190       assert(Inst == MTI->getRawSource());
2191       OtherPtr = MTI->getRawDest();
2192     }
2193   }
2194
2195   // If there is an other pointer, we want to convert it to the same pointer
2196   // type as AI has, so we can GEP through it safely.
2197   if (OtherPtr) {
2198     unsigned AddrSpace =
2199       cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2200
2201     // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2202     // optimization, but it's also required to detect the corner case where
2203     // both pointer operands are referencing the same memory, and where
2204     // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2205     // function is only called for mem intrinsics that access the whole
2206     // aggregate, so non-zero GEPs are not an issue here.)
2207     OtherPtr = OtherPtr->stripPointerCasts();
2208
2209     // Copying the alloca to itself is a no-op: just delete it.
2210     if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2211       // This code will run twice for a no-op memcpy -- once for each operand.
2212       // Put only one reference to MI on the DeadInsts list.
2213       for (SmallVectorImpl<Value *>::const_iterator I = DeadInsts.begin(),
2214              E = DeadInsts.end(); I != E; ++I)
2215         if (*I == MI) return;
2216       DeadInsts.push_back(MI);
2217       return;
2218     }
2219
2220     // If the pointer is not the right type, insert a bitcast to the right
2221     // type.
2222     Type *NewTy =
2223       PointerType::get(AI->getType()->getElementType(), AddrSpace);
2224
2225     if (OtherPtr->getType() != NewTy)
2226       OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2227   }
2228
2229   // Process each element of the aggregate.
2230   bool SROADest = MI->getRawDest() == Inst;
2231
2232   Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2233   const DataLayout &DL = MI->getModule()->getDataLayout();
2234
2235   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2236     // If this is a memcpy/memmove, emit a GEP of the other element address.
2237     Value *OtherElt = nullptr;
2238     unsigned OtherEltAlign = MemAlignment;
2239
2240     if (OtherPtr) {
2241       Value *Idx[2] = { Zero,
2242                       ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2243       OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2244                                               OtherPtr->getName()+"."+Twine(i),
2245                                                    MI);
2246       uint64_t EltOffset;
2247       PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2248       Type *OtherTy = OtherPtrTy->getElementType();
2249       if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2250         EltOffset = DL.getStructLayout(ST)->getElementOffset(i);
2251       } else {
2252         Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2253         EltOffset = DL.getTypeAllocSize(EltTy) * i;
2254       }
2255
2256       // The alignment of the other pointer is the guaranteed alignment of the
2257       // element, which is affected by both the known alignment of the whole
2258       // mem intrinsic and the alignment of the element.  If the alignment of
2259       // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2260       // known alignment is just 4 bytes.
2261       OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2262     }
2263
2264     Value *EltPtr = NewElts[i];
2265     Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2266
2267     // If we got down to a scalar, insert a load or store as appropriate.
2268     if (EltTy->isSingleValueType()) {
2269       if (isa<MemTransferInst>(MI)) {
2270         if (SROADest) {
2271           // From Other to Alloca.
2272           Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2273           new StoreInst(Elt, EltPtr, MI);
2274         } else {
2275           // From Alloca to Other.
2276           Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2277           new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2278         }
2279         continue;
2280       }
2281       assert(isa<MemSetInst>(MI));
2282
2283       // If the stored element is zero (common case), just store a null
2284       // constant.
2285       Constant *StoreVal;
2286       if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2287         if (CI->isZero()) {
2288           StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2289         } else {
2290           // If EltTy is a vector type, get the element type.
2291           Type *ValTy = EltTy->getScalarType();
2292
2293           // Construct an integer with the right value.
2294           unsigned EltSize = DL.getTypeSizeInBits(ValTy);
2295           APInt OneVal(EltSize, CI->getZExtValue());
2296           APInt TotalVal(OneVal);
2297           // Set each byte.
2298           for (unsigned i = 0; 8*i < EltSize; ++i) {
2299             TotalVal = TotalVal.shl(8);
2300             TotalVal |= OneVal;
2301           }
2302
2303           // Convert the integer value to the appropriate type.
2304           StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2305           if (ValTy->isPointerTy())
2306             StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2307           else if (ValTy->isFloatingPointTy())
2308             StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2309           assert(StoreVal->getType() == ValTy && "Type mismatch!");
2310
2311           // If the requested value was a vector constant, create it.
2312           if (EltTy->isVectorTy()) {
2313             unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2314             StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
2315           }
2316         }
2317         new StoreInst(StoreVal, EltPtr, MI);
2318         continue;
2319       }
2320       // Otherwise, if we're storing a byte variable, use a memset call for
2321       // this element.
2322     }
2323
2324     unsigned EltSize = DL.getTypeAllocSize(EltTy);
2325     if (!EltSize)
2326       continue;
2327
2328     IRBuilder<> Builder(MI);
2329
2330     // Finally, insert the meminst for this element.
2331     if (isa<MemSetInst>(MI)) {
2332       Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2333                            MI->isVolatile());
2334     } else {
2335       assert(isa<MemTransferInst>(MI));
2336       Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2337       Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2338
2339       if (isa<MemCpyInst>(MI))
2340         Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2341       else
2342         Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2343     }
2344   }
2345   DeadInsts.push_back(MI);
2346 }
2347
2348 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2349 /// overwrites the entire allocation.  Extract out the pieces of the stored
2350 /// integer and store them individually.
2351 void
2352 SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2353                                     SmallVectorImpl<AllocaInst *> &NewElts) {
2354   // Extract each element out of the integer according to its structure offset
2355   // and store the element value to the individual alloca.
2356   Value *SrcVal = SI->getOperand(0);
2357   Type *AllocaEltTy = AI->getAllocatedType();
2358   const DataLayout &DL = SI->getModule()->getDataLayout();
2359   uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
2360
2361   IRBuilder<> Builder(SI);
2362
2363   // Handle tail padding by extending the operand
2364   if (DL.getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2365     SrcVal = Builder.CreateZExt(SrcVal,
2366                             IntegerType::get(SI->getContext(), AllocaSizeBits));
2367
2368   DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2369                << '\n');
2370
2371   // There are two forms here: AI could be an array or struct.  Both cases
2372   // have different ways to compute the element offset.
2373   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2374     const StructLayout *Layout = DL.getStructLayout(EltSTy);
2375
2376     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2377       // Get the number of bits to shift SrcVal to get the value.
2378       Type *FieldTy = EltSTy->getElementType(i);
2379       uint64_t Shift = Layout->getElementOffsetInBits(i);
2380
2381       if (DL.isBigEndian())
2382         Shift = AllocaSizeBits - Shift - DL.getTypeAllocSizeInBits(FieldTy);
2383
2384       Value *EltVal = SrcVal;
2385       if (Shift) {
2386         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2387         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2388       }
2389
2390       // Truncate down to an integer of the right size.
2391       uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
2392
2393       // Ignore zero sized fields like {}, they obviously contain no data.
2394       if (FieldSizeBits == 0) continue;
2395
2396       if (FieldSizeBits != AllocaSizeBits)
2397         EltVal = Builder.CreateTrunc(EltVal,
2398                              IntegerType::get(SI->getContext(), FieldSizeBits));
2399       Value *DestField = NewElts[i];
2400       if (EltVal->getType() == FieldTy) {
2401         // Storing to an integer field of this size, just do it.
2402       } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2403         // Bitcast to the right element type (for fp/vector values).
2404         EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2405       } else {
2406         // Otherwise, bitcast the dest pointer (for aggregates).
2407         DestField = Builder.CreateBitCast(DestField,
2408                                      PointerType::getUnqual(EltVal->getType()));
2409       }
2410       new StoreInst(EltVal, DestField, SI);
2411     }
2412
2413   } else {
2414     ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2415     Type *ArrayEltTy = ATy->getElementType();
2416     uint64_t ElementOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
2417     uint64_t ElementSizeBits = DL.getTypeSizeInBits(ArrayEltTy);
2418
2419     uint64_t Shift;
2420
2421     if (DL.isBigEndian())
2422       Shift = AllocaSizeBits-ElementOffset;
2423     else
2424       Shift = 0;
2425
2426     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2427       // Ignore zero sized fields like {}, they obviously contain no data.
2428       if (ElementSizeBits == 0) continue;
2429
2430       Value *EltVal = SrcVal;
2431       if (Shift) {
2432         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2433         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2434       }
2435
2436       // Truncate down to an integer of the right size.
2437       if (ElementSizeBits != AllocaSizeBits)
2438         EltVal = Builder.CreateTrunc(EltVal,
2439                                      IntegerType::get(SI->getContext(),
2440                                                       ElementSizeBits));
2441       Value *DestField = NewElts[i];
2442       if (EltVal->getType() == ArrayEltTy) {
2443         // Storing to an integer field of this size, just do it.
2444       } else if (ArrayEltTy->isFloatingPointTy() ||
2445                  ArrayEltTy->isVectorTy()) {
2446         // Bitcast to the right element type (for fp/vector values).
2447         EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2448       } else {
2449         // Otherwise, bitcast the dest pointer (for aggregates).
2450         DestField = Builder.CreateBitCast(DestField,
2451                                      PointerType::getUnqual(EltVal->getType()));
2452       }
2453       new StoreInst(EltVal, DestField, SI);
2454
2455       if (DL.isBigEndian())
2456         Shift -= ElementOffset;
2457       else
2458         Shift += ElementOffset;
2459     }
2460   }
2461
2462   DeadInsts.push_back(SI);
2463 }
2464
2465 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2466 /// an integer.  Load the individual pieces to form the aggregate value.
2467 void
2468 SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2469                                    SmallVectorImpl<AllocaInst *> &NewElts) {
2470   // Extract each element out of the NewElts according to its structure offset
2471   // and form the result value.
2472   Type *AllocaEltTy = AI->getAllocatedType();
2473   const DataLayout &DL = LI->getModule()->getDataLayout();
2474   uint64_t AllocaSizeBits = DL.getTypeAllocSizeInBits(AllocaEltTy);
2475
2476   DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2477                << '\n');
2478
2479   // There are two forms here: AI could be an array or struct.  Both cases
2480   // have different ways to compute the element offset.
2481   const StructLayout *Layout = nullptr;
2482   uint64_t ArrayEltBitOffset = 0;
2483   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2484     Layout = DL.getStructLayout(EltSTy);
2485   } else {
2486     Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2487     ArrayEltBitOffset = DL.getTypeAllocSizeInBits(ArrayEltTy);
2488   }
2489
2490   Value *ResultVal =
2491     Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2492
2493   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2494     // Load the value from the alloca.  If the NewElt is an aggregate, cast
2495     // the pointer to an integer of the same size before doing the load.
2496     Value *SrcField = NewElts[i];
2497     Type *FieldTy =
2498       cast<PointerType>(SrcField->getType())->getElementType();
2499     uint64_t FieldSizeBits = DL.getTypeSizeInBits(FieldTy);
2500
2501     // Ignore zero sized fields like {}, they obviously contain no data.
2502     if (FieldSizeBits == 0) continue;
2503
2504     IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2505                                                      FieldSizeBits);
2506     if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2507         !FieldTy->isVectorTy())
2508       SrcField = new BitCastInst(SrcField,
2509                                  PointerType::getUnqual(FieldIntTy),
2510                                  "", LI);
2511     SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2512
2513     // If SrcField is a fp or vector of the right size but that isn't an
2514     // integer type, bitcast to an integer so we can shift it.
2515     if (SrcField->getType() != FieldIntTy)
2516       SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2517
2518     // Zero extend the field to be the same size as the final alloca so that
2519     // we can shift and insert it.
2520     if (SrcField->getType() != ResultVal->getType())
2521       SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2522
2523     // Determine the number of bits to shift SrcField.
2524     uint64_t Shift;
2525     if (Layout) // Struct case.
2526       Shift = Layout->getElementOffsetInBits(i);
2527     else  // Array case.
2528       Shift = i*ArrayEltBitOffset;
2529
2530     if (DL.isBigEndian())
2531       Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2532
2533     if (Shift) {
2534       Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2535       SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2536     }
2537
2538     // Don't create an 'or x, 0' on the first iteration.
2539     if (!isa<Constant>(ResultVal) ||
2540         !cast<Constant>(ResultVal)->isNullValue())
2541       ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2542     else
2543       ResultVal = SrcField;
2544   }
2545
2546   // Handle tail padding by truncating the result
2547   if (DL.getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2548     ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2549
2550   LI->replaceAllUsesWith(ResultVal);
2551   DeadInsts.push_back(LI);
2552 }
2553
2554 /// HasPadding - Return true if the specified type has any structure or
2555 /// alignment padding in between the elements that would be split apart
2556 /// by SROA; return false otherwise.
2557 static bool HasPadding(Type *Ty, const DataLayout &DL) {
2558   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2559     Ty = ATy->getElementType();
2560     return DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty);
2561   }
2562
2563   // SROA currently handles only Arrays and Structs.
2564   StructType *STy = cast<StructType>(Ty);
2565   const StructLayout *SL = DL.getStructLayout(STy);
2566   unsigned PrevFieldBitOffset = 0;
2567   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2568     unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2569
2570     // Check to see if there is any padding between this element and the
2571     // previous one.
2572     if (i) {
2573       unsigned PrevFieldEnd =
2574         PrevFieldBitOffset+DL.getTypeSizeInBits(STy->getElementType(i-1));
2575       if (PrevFieldEnd < FieldBitOffset)
2576         return true;
2577     }
2578     PrevFieldBitOffset = FieldBitOffset;
2579   }
2580   // Check for tail padding.
2581   if (unsigned EltCount = STy->getNumElements()) {
2582     unsigned PrevFieldEnd = PrevFieldBitOffset +
2583       DL.getTypeSizeInBits(STy->getElementType(EltCount-1));
2584     if (PrevFieldEnd < SL->getSizeInBits())
2585       return true;
2586   }
2587   return false;
2588 }
2589
2590 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2591 /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2592 /// or 1 if safe after canonicalization has been performed.
2593 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2594   // Loop over the use list of the alloca.  We can only transform it if all of
2595   // the users are safe to transform.
2596   AllocaInfo Info(AI);
2597
2598   isSafeForScalarRepl(AI, 0, Info);
2599   if (Info.isUnsafe) {
2600     DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2601     return false;
2602   }
2603
2604   const DataLayout &DL = AI->getModule()->getDataLayout();
2605
2606   // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2607   // source and destination, we have to be careful.  In particular, the memcpy
2608   // could be moving around elements that live in structure padding of the LLVM
2609   // types, but may actually be used.  In these cases, we refuse to promote the
2610   // struct.
2611   if (Info.isMemCpySrc && Info.isMemCpyDst &&
2612       HasPadding(AI->getAllocatedType(), DL))
2613     return false;
2614
2615   // If the alloca never has an access to just *part* of it, but is accessed
2616   // via loads and stores, then we should use ConvertToScalarInfo to promote
2617   // the alloca instead of promoting each piece at a time and inserting fission
2618   // and fusion code.
2619   if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2620     // If the struct/array just has one element, use basic SRoA.
2621     if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2622       if (ST->getNumElements() > 1) return false;
2623     } else {
2624       if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2625         return false;
2626     }
2627   }
2628
2629   return true;
2630 }