Clean whitespaces.
[oota-llvm.git] / lib / Transforms / Scalar / Reassociate.cpp
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Constants.h"
27 #include "llvm/DerivedTypes.h"
28 #include "llvm/Function.h"
29 #include "llvm/IRBuilder.h"
30 #include "llvm/Instructions.h"
31 #include "llvm/IntrinsicInst.h"
32 #include "llvm/Pass.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Assembly/Writer.h"
39 #include "llvm/Support/CFG.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ValueHandle.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 using namespace llvm;
45
46 STATISTIC(NumChanged, "Number of insts reassociated");
47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48 STATISTIC(NumFactor , "Number of multiplies factored");
49
50 namespace {
51   struct ValueEntry {
52     unsigned Rank;
53     Value *Op;
54     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55   };
56   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58   }
59 }
60
61 #ifndef NDEBUG
62 /// PrintOps - Print out the expression identified in the Ops list.
63 ///
64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65   Module *M = I->getParent()->getParent()->getParent();
66   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67        << *Ops[0].Op->getType() << '\t';
68   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69     dbgs() << "[ ";
70     WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71     dbgs() << ", #" << Ops[i].Rank << "] ";
72   }
73 }
74 #endif
75
76 namespace {
77   /// \brief Utility class representing a base and exponent pair which form one
78   /// factor of some product.
79   struct Factor {
80     Value *Base;
81     unsigned Power;
82
83     Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85     /// \brief Sort factors by their Base.
86     struct BaseSorter {
87       bool operator()(const Factor &LHS, const Factor &RHS) {
88         return LHS.Base < RHS.Base;
89       }
90     };
91
92     /// \brief Compare factors for equal bases.
93     struct BaseEqual {
94       bool operator()(const Factor &LHS, const Factor &RHS) {
95         return LHS.Base == RHS.Base;
96       }
97     };
98
99     /// \brief Sort factors in descending order by their power.
100     struct PowerDescendingSorter {
101       bool operator()(const Factor &LHS, const Factor &RHS) {
102         return LHS.Power > RHS.Power;
103       }
104     };
105
106     /// \brief Compare factors for equal powers.
107     struct PowerEqual {
108       bool operator()(const Factor &LHS, const Factor &RHS) {
109         return LHS.Power == RHS.Power;
110       }
111     };
112   };
113 }
114
115 namespace {
116   class Reassociate : public FunctionPass {
117     DenseMap<BasicBlock*, unsigned> RankMap;
118     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
119     SetVector<AssertingVH<Instruction> > RedoInsts;
120     bool MadeChange;
121   public:
122     static char ID; // Pass identification, replacement for typeid
123     Reassociate() : FunctionPass(ID) {
124       initializeReassociatePass(*PassRegistry::getPassRegistry());
125     }
126
127     bool runOnFunction(Function &F);
128
129     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130       AU.setPreservesCFG();
131     }
132   private:
133     void BuildRankMap(Function &F);
134     unsigned getRank(Value *V);
135     void ReassociateExpression(BinaryOperator *I);
136     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
137     Value *OptimizeExpression(BinaryOperator *I,
138                               SmallVectorImpl<ValueEntry> &Ops);
139     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
140     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
141                                 SmallVectorImpl<Factor> &Factors);
142     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
143                                    SmallVectorImpl<Factor> &Factors);
144     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
145     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
146     void EraseInst(Instruction *I);
147     void OptimizeInst(Instruction *I);
148   };
149 }
150
151 char Reassociate::ID = 0;
152 INITIALIZE_PASS(Reassociate, "reassociate",
153                 "Reassociate expressions", false, false)
154
155 // Public interface to the Reassociate pass
156 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
157
158 /// isReassociableOp - Return true if V is an instruction of the specified
159 /// opcode and if it only has one use.
160 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
161   if (V->hasOneUse() && isa<Instruction>(V) &&
162       cast<Instruction>(V)->getOpcode() == Opcode)
163     return cast<BinaryOperator>(V);
164   return 0;
165 }
166
167 static bool isUnmovableInstruction(Instruction *I) {
168   if (I->getOpcode() == Instruction::PHI ||
169       I->getOpcode() == Instruction::LandingPad ||
170       I->getOpcode() == Instruction::Alloca ||
171       I->getOpcode() == Instruction::Load ||
172       I->getOpcode() == Instruction::Invoke ||
173       (I->getOpcode() == Instruction::Call &&
174        !isa<DbgInfoIntrinsic>(I)) ||
175       I->getOpcode() == Instruction::UDiv ||
176       I->getOpcode() == Instruction::SDiv ||
177       I->getOpcode() == Instruction::FDiv ||
178       I->getOpcode() == Instruction::URem ||
179       I->getOpcode() == Instruction::SRem ||
180       I->getOpcode() == Instruction::FRem)
181     return true;
182   return false;
183 }
184
185 void Reassociate::BuildRankMap(Function &F) {
186   unsigned i = 2;
187
188   // Assign distinct ranks to function arguments
189   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
190     ValueRankMap[&*I] = ++i;
191
192   ReversePostOrderTraversal<Function*> RPOT(&F);
193   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
194          E = RPOT.end(); I != E; ++I) {
195     BasicBlock *BB = *I;
196     unsigned BBRank = RankMap[BB] = ++i << 16;
197
198     // Walk the basic block, adding precomputed ranks for any instructions that
199     // we cannot move.  This ensures that the ranks for these instructions are
200     // all different in the block.
201     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
202       if (isUnmovableInstruction(I))
203         ValueRankMap[&*I] = ++BBRank;
204   }
205 }
206
207 unsigned Reassociate::getRank(Value *V) {
208   Instruction *I = dyn_cast<Instruction>(V);
209   if (I == 0) {
210     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
211     return 0;  // Otherwise it's a global or constant, rank 0.
212   }
213
214   if (unsigned Rank = ValueRankMap[I])
215     return Rank;    // Rank already known?
216
217   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
218   // we can reassociate expressions for code motion!  Since we do not recurse
219   // for PHI nodes, we cannot have infinite recursion here, because there
220   // cannot be loops in the value graph that do not go through PHI nodes.
221   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
222   for (unsigned i = 0, e = I->getNumOperands();
223        i != e && Rank != MaxRank; ++i)
224     Rank = std::max(Rank, getRank(I->getOperand(i)));
225
226   // If this is a not or neg instruction, do not count it for rank.  This
227   // assures us that X and ~X will have the same rank.
228   if (!I->getType()->isIntegerTy() ||
229       (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
230     ++Rank;
231
232   //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
233   //     << Rank << "\n");
234
235   return ValueRankMap[I] = Rank;
236 }
237
238 /// LowerNegateToMultiply - Replace 0-X with X*-1.
239 ///
240 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
241   Constant *Cst = Constant::getAllOnesValue(Neg->getType());
242
243   BinaryOperator *Res =
244     BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
245   Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
246   Res->takeName(Neg);
247   Neg->replaceAllUsesWith(Res);
248   Res->setDebugLoc(Neg->getDebugLoc());
249   return Res;
250 }
251
252 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
253 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
254 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
255 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
256 /// even x in Bitwidth-bit arithmetic.
257 static unsigned CarmichaelShift(unsigned Bitwidth) {
258   if (Bitwidth < 3)
259     return Bitwidth - 1;
260   return Bitwidth - 2;
261 }
262
263 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
264 /// reducing the combined weight using any special properties of the operation.
265 /// The existing weight LHS represents the computation X op X op ... op X where
266 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
267 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
268 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
269 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
270 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
271   // If we were working with infinite precision arithmetic then the combined
272   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
273   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
274   // for nilpotent operations and addition, but not for idempotent operations
275   // and multiplication), so it is important to correctly reduce the combined
276   // weight back into range if wrapping would be wrong.
277
278   // If RHS is zero then the weight didn't change.
279   if (RHS.isMinValue())
280     return;
281   // If LHS is zero then the combined weight is RHS.
282   if (LHS.isMinValue()) {
283     LHS = RHS;
284     return;
285   }
286   // From this point on we know that neither LHS nor RHS is zero.
287
288   if (Instruction::isIdempotent(Opcode)) {
289     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
290     // weight of 1.  Keeping weights at zero or one also means that wrapping is
291     // not a problem.
292     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
293     return; // Return a weight of 1.
294   }
295   if (Instruction::isNilpotent(Opcode)) {
296     // Nilpotent means X op X === 0, so reduce weights modulo 2.
297     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
298     LHS = 0; // 1 + 1 === 0 modulo 2.
299     return;
300   }
301   if (Opcode == Instruction::Add) {
302     // TODO: Reduce the weight by exploiting nsw/nuw?
303     LHS += RHS;
304     return;
305   }
306
307   assert(Opcode == Instruction::Mul && "Unknown associative operation!");
308   unsigned Bitwidth = LHS.getBitWidth();
309   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
310   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
311   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
312   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
313   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
314   // which by a happy accident means that they can always be represented using
315   // Bitwidth bits.
316   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
317   // the Carmichael number).
318   if (Bitwidth > 3) {
319     /// CM - The value of Carmichael's lambda function.
320     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
321     // Any weight W >= Threshold can be replaced with W - CM.
322     APInt Threshold = CM + Bitwidth;
323     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
324     // For Bitwidth 4 or more the following sum does not overflow.
325     LHS += RHS;
326     while (LHS.uge(Threshold))
327       LHS -= CM;
328   } else {
329     // To avoid problems with overflow do everything the same as above but using
330     // a larger type.
331     unsigned CM = 1U << CarmichaelShift(Bitwidth);
332     unsigned Threshold = CM + Bitwidth;
333     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
334            "Weights not reduced!");
335     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
336     while (Total >= Threshold)
337       Total -= CM;
338     LHS = Total;
339   }
340 }
341
342 /// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C
343 /// is repeated Weight times.
344 static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C,
345                                           APInt Weight) {
346   // For addition the result can be efficiently computed as the product of the
347   // constant and the weight.
348   if (Opcode == Instruction::Add)
349     return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight));
350
351   // The weight might be huge, so compute by repeated squaring to ensure that
352   // compile time is proportional to the logarithm of the weight.
353   Constant *Result = 0;
354   Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc.
355   // Visit the bits in Weight.
356   while (Weight != 0) {
357     // If the current bit in Weight is non-zero do Result = Result op Power.
358     if (Weight[0])
359       Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power;
360     // Move on to the next bit if any more are non-zero.
361     Weight = Weight.lshr(1);
362     if (Weight.isMinValue())
363       break;
364     // Square the power.
365     Power = ConstantExpr::get(Opcode, Power, Power);
366   }
367
368   assert(Result && "Only positive weights supported!");
369   return Result;
370 }
371
372 typedef std::pair<Value*, APInt> RepeatedValue;
373
374 /// LinearizeExprTree - Given an associative binary expression, return the leaf
375 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
376 /// original expression is the same as
377 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
378 /// op
379 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
380 /// op
381 ///   ...
382 /// op
383 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
384 ///
385 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and
386 /// they are all non-constant except possibly for the last one, which if it is
387 /// constant will have weight one (Ops[N].second === 1).
388 ///
389 /// This routine may modify the function, in which case it returns 'true'.  The
390 /// changes it makes may well be destructive, changing the value computed by 'I'
391 /// to something completely different.  Thus if the routine returns 'true' then
392 /// you MUST either replace I with a new expression computed from the Ops array,
393 /// or use RewriteExprTree to put the values back in.
394 ///
395 /// A leaf node is either not a binary operation of the same kind as the root
396 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
397 /// opcode), or is the same kind of binary operator but has a use which either
398 /// does not belong to the expression, or does belong to the expression but is
399 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
400 /// of the expression, while for non-leaf nodes (except for the root 'I') every
401 /// use is a non-leaf node of the expression.
402 ///
403 /// For example:
404 ///           expression graph        node names
405 ///
406 ///                     +        |        I
407 ///                    / \       |
408 ///                   +   +      |      A,  B
409 ///                  / \ / \     |
410 ///                 *   +   *    |    C,  D,  E
411 ///                / \ / \ / \   |
412 ///                   +   *      |      F,  G
413 ///
414 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
415 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
416 ///
417 /// The expression is maximal: if some instruction is a binary operator of the
418 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
419 /// then the instruction also belongs to the expression, is not a leaf node of
420 /// it, and its operands also belong to the expression (but may be leaf nodes).
421 ///
422 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
423 /// order to ensure that every non-root node in the expression has *exactly one*
424 /// use by a non-leaf node of the expression.  This destruction means that the
425 /// caller MUST either replace 'I' with a new expression or use something like
426 /// RewriteExprTree to put the values back in if the routine indicates that it
427 /// made a change by returning 'true'.
428 ///
429 /// In the above example either the right operand of A or the left operand of B
430 /// will be replaced by undef.  If it is B's operand then this gives:
431 ///
432 ///                     +        |        I
433 ///                    / \       |
434 ///                   +   +      |      A,  B - operand of B replaced with undef
435 ///                  / \   \     |
436 ///                 *   +   *    |    C,  D,  E
437 ///                / \ / \ / \   |
438 ///                   +   *      |      F,  G
439 ///
440 /// Note that such undef operands can only be reached by passing through 'I'.
441 /// For example, if you visit operands recursively starting from a leaf node
442 /// then you will never see such an undef operand unless you get back to 'I',
443 /// which requires passing through a phi node.
444 ///
445 /// Note that this routine may also mutate binary operators of the wrong type
446 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
447 /// of the expression) if it can turn them into binary operators of the right
448 /// type and thus make the expression bigger.
449
450 static bool LinearizeExprTree(BinaryOperator *I,
451                               SmallVectorImpl<RepeatedValue> &Ops) {
452   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
453   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
454   unsigned Opcode = I->getOpcode();
455   assert(Instruction::isAssociative(Opcode) &&
456          Instruction::isCommutative(Opcode) &&
457          "Expected an associative and commutative operation!");
458   // If we see an absorbing element then the entire expression must be equal to
459   // it.  For example, if this is a multiplication expression and zero occurs as
460   // an operand somewhere in it then the result of the expression must be zero.
461   Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
462
463   // Visit all operands of the expression, keeping track of their weight (the
464   // number of paths from the expression root to the operand, or if you like
465   // the number of times that operand occurs in the linearized expression).
466   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
467   // while A has weight two.
468
469   // Worklist of non-leaf nodes (their operands are in the expression too) along
470   // with their weights, representing a certain number of paths to the operator.
471   // If an operator occurs in the worklist multiple times then we found multiple
472   // ways to get to it.
473   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
474   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
475   bool MadeChange = false;
476
477   // Leaves of the expression are values that either aren't the right kind of
478   // operation (eg: a constant, or a multiply in an add tree), or are, but have
479   // some uses that are not inside the expression.  For example, in I = X + X,
480   // X = A + B, the value X has two uses (by I) that are in the expression.  If
481   // X has any other uses, for example in a return instruction, then we consider
482   // X to be a leaf, and won't analyze it further.  When we first visit a value,
483   // if it has more than one use then at first we conservatively consider it to
484   // be a leaf.  Later, as the expression is explored, we may discover some more
485   // uses of the value from inside the expression.  If all uses turn out to be
486   // from within the expression (and the value is a binary operator of the right
487   // kind) then the value is no longer considered to be a leaf, and its operands
488   // are explored.
489
490   // Leaves - Keeps track of the set of putative leaves as well as the number of
491   // paths to each leaf seen so far.
492   typedef DenseMap<Value*, APInt> LeafMap;
493   LeafMap Leaves; // Leaf -> Total weight so far.
494   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
495
496 #ifndef NDEBUG
497   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
498 #endif
499   while (!Worklist.empty()) {
500     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
501     I = P.first; // We examine the operands of this binary operator.
502
503     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
504       Value *Op = I->getOperand(OpIdx);
505       APInt Weight = P.second; // Number of paths to this operand.
506       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
507       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
508
509       // If the expression contains an absorbing element then there is no need
510       // to analyze it further: it must evaluate to the absorbing element.
511       if (Op == Absorber && !Weight.isMinValue()) {
512         Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
513         return MadeChange;
514       }
515
516       // If this is a binary operation of the right kind with only one use then
517       // add its operands to the expression.
518       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
519         assert(Visited.insert(Op) && "Not first visit!");
520         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
521         Worklist.push_back(std::make_pair(BO, Weight));
522         continue;
523       }
524
525       // Appears to be a leaf.  Is the operand already in the set of leaves?
526       LeafMap::iterator It = Leaves.find(Op);
527       if (It == Leaves.end()) {
528         // Not in the leaf map.  Must be the first time we saw this operand.
529         assert(Visited.insert(Op) && "Not first visit!");
530         if (!Op->hasOneUse()) {
531           // This value has uses not accounted for by the expression, so it is
532           // not safe to modify.  Mark it as being a leaf.
533           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
534           LeafOrder.push_back(Op);
535           Leaves[Op] = Weight;
536           continue;
537         }
538         // No uses outside the expression, try morphing it.
539       } else if (It != Leaves.end()) {
540         // Already in the leaf map.
541         assert(Visited.count(Op) && "In leaf map but not visited!");
542
543         // Update the number of paths to the leaf.
544         IncorporateWeight(It->second, Weight, Opcode);
545
546         // The leaf already has one use from inside the expression.  As we want
547         // exactly one such use, drop this new use of the leaf.
548         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
549         I->setOperand(OpIdx, UndefValue::get(I->getType()));
550         MadeChange = true;
551
552         // If the leaf is a binary operation of the right kind and we now see
553         // that its multiple original uses were in fact all by nodes belonging
554         // to the expression, then no longer consider it to be a leaf and add
555         // its operands to the expression.
556         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
557           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
558           Worklist.push_back(std::make_pair(BO, It->second));
559           Leaves.erase(It);
560           continue;
561         }
562
563         // If we still have uses that are not accounted for by the expression
564         // then it is not safe to modify the value.
565         if (!Op->hasOneUse())
566           continue;
567
568         // No uses outside the expression, try morphing it.
569         Weight = It->second;
570         Leaves.erase(It); // Since the value may be morphed below.
571       }
572
573       // At this point we have a value which, first of all, is not a binary
574       // expression of the right kind, and secondly, is only used inside the
575       // expression.  This means that it can safely be modified.  See if we
576       // can usefully morph it into an expression of the right kind.
577       assert((!isa<Instruction>(Op) ||
578               cast<Instruction>(Op)->getOpcode() != Opcode) &&
579              "Should have been handled above!");
580       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
581
582       // If this is a multiply expression, turn any internal negations into
583       // multiplies by -1 so they can be reassociated.
584       BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
585       if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
586         DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
587         BO = LowerNegateToMultiply(BO);
588         DEBUG(dbgs() << *BO << 'n');
589         Worklist.push_back(std::make_pair(BO, Weight));
590         MadeChange = true;
591         continue;
592       }
593
594       // Failed to morph into an expression of the right type.  This really is
595       // a leaf.
596       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
597       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
598       LeafOrder.push_back(Op);
599       Leaves[Op] = Weight;
600     }
601   }
602
603   // The leaves, repeated according to their weights, represent the linearized
604   // form of the expression.
605   Constant *Cst = 0; // Accumulate constants here.
606   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
607     Value *V = LeafOrder[i];
608     LeafMap::iterator It = Leaves.find(V);
609     if (It == Leaves.end())
610       // Node initially thought to be a leaf wasn't.
611       continue;
612     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
613     APInt Weight = It->second;
614     if (Weight.isMinValue())
615       // Leaf already output or weight reduction eliminated it.
616       continue;
617     // Ensure the leaf is only output once.
618     It->second = 0;
619     // Glob all constants together into Cst.
620     if (Constant *C = dyn_cast<Constant>(V)) {
621       C = EvaluateRepeatedConstant(Opcode, C, Weight);
622       Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C;
623       continue;
624     }
625     // Add non-constant
626     Ops.push_back(std::make_pair(V, Weight));
627   }
628
629   // Add any constants back into Ops, all globbed together and reduced to having
630   // weight 1 for the convenience of users.
631   Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
632   if (Cst && Cst != Identity) {
633     // If combining multiple constants resulted in the absorber then the entire
634     // expression must evaluate to the absorber.
635     if (Cst == Absorber)
636       Ops.clear();
637     Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
638   }
639
640   // For nilpotent operations or addition there may be no operands, for example
641   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
642   // in both cases the weight reduces to 0 causing the value to be skipped.
643   if (Ops.empty()) {
644     assert(Identity && "Associative operation without identity!");
645     Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
646   }
647
648   return MadeChange;
649 }
650
651 // RewriteExprTree - Now that the operands for this expression tree are
652 // linearized and optimized, emit them in-order.
653 void Reassociate::RewriteExprTree(BinaryOperator *I,
654                                   SmallVectorImpl<ValueEntry> &Ops) {
655   assert(Ops.size() > 1 && "Single values should be used directly!");
656
657   // Since our optimizations never increase the number of operations, the new
658   // expression can always be written by reusing the existing binary operators
659   // from the original expression tree, without creating any new instructions,
660   // though the rewritten expression may have a completely different topology.
661   // We take care to not change anything if the new expression will be the same
662   // as the original.  If more than trivial changes (like commuting operands)
663   // were made then we are obliged to clear out any optional subclass data like
664   // nsw flags.
665
666   /// NodesToRewrite - Nodes from the original expression available for writing
667   /// the new expression into.
668   SmallVector<BinaryOperator*, 8> NodesToRewrite;
669   unsigned Opcode = I->getOpcode();
670   BinaryOperator *Op = I;
671
672   // ExpressionChanged - Non-null if the rewritten expression differs from the
673   // original in some non-trivial way, requiring the clearing of optional flags.
674   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
675   BinaryOperator *ExpressionChanged = 0;
676   for (unsigned i = 0; ; ++i) {
677     // The last operation (which comes earliest in the IR) is special as both
678     // operands will come from Ops, rather than just one with the other being
679     // a subexpression.
680     if (i+2 == Ops.size()) {
681       Value *NewLHS = Ops[i].Op;
682       Value *NewRHS = Ops[i+1].Op;
683       Value *OldLHS = Op->getOperand(0);
684       Value *OldRHS = Op->getOperand(1);
685
686       if (NewLHS == OldLHS && NewRHS == OldRHS)
687         // Nothing changed, leave it alone.
688         break;
689
690       if (NewLHS == OldRHS && NewRHS == OldLHS) {
691         // The order of the operands was reversed.  Swap them.
692         DEBUG(dbgs() << "RA: " << *Op << '\n');
693         Op->swapOperands();
694         DEBUG(dbgs() << "TO: " << *Op << '\n');
695         MadeChange = true;
696         ++NumChanged;
697         break;
698       }
699
700       // The new operation differs non-trivially from the original. Overwrite
701       // the old operands with the new ones.
702       DEBUG(dbgs() << "RA: " << *Op << '\n');
703       if (NewLHS != OldLHS) {
704         if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
705           NodesToRewrite.push_back(BO);
706         Op->setOperand(0, NewLHS);
707       }
708       if (NewRHS != OldRHS) {
709         if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
710           NodesToRewrite.push_back(BO);
711         Op->setOperand(1, NewRHS);
712       }
713       DEBUG(dbgs() << "TO: " << *Op << '\n');
714
715       ExpressionChanged = Op;
716       MadeChange = true;
717       ++NumChanged;
718
719       break;
720     }
721
722     // Not the last operation.  The left-hand side will be a sub-expression
723     // while the right-hand side will be the current element of Ops.
724     Value *NewRHS = Ops[i].Op;
725     if (NewRHS != Op->getOperand(1)) {
726       DEBUG(dbgs() << "RA: " << *Op << '\n');
727       if (NewRHS == Op->getOperand(0)) {
728         // The new right-hand side was already present as the left operand.  If
729         // we are lucky then swapping the operands will sort out both of them.
730         Op->swapOperands();
731       } else {
732         // Overwrite with the new right-hand side.
733         if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
734           NodesToRewrite.push_back(BO);
735         Op->setOperand(1, NewRHS);
736         ExpressionChanged = Op;
737       }
738       DEBUG(dbgs() << "TO: " << *Op << '\n');
739       MadeChange = true;
740       ++NumChanged;
741     }
742
743     // Now deal with the left-hand side.  If this is already an operation node
744     // from the original expression then just rewrite the rest of the expression
745     // into it.
746     if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
747       Op = BO;
748       continue;
749     }
750
751     // Otherwise, grab a spare node from the original expression and use that as
752     // the left-hand side.  If there are no nodes left then the optimizers made
753     // an expression with more nodes than the original!  This usually means that
754     // they did something stupid but it might mean that the problem was just too
755     // hard (finding the mimimal number of multiplications needed to realize a
756     // multiplication expression is NP-complete).  Whatever the reason, smart or
757     // stupid, create a new node if there are none left.
758     BinaryOperator *NewOp;
759     if (NodesToRewrite.empty()) {
760       Constant *Undef = UndefValue::get(I->getType());
761       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
762                                      Undef, Undef, "", I);
763     } else {
764       NewOp = NodesToRewrite.pop_back_val();
765     }
766
767     DEBUG(dbgs() << "RA: " << *Op << '\n');
768     Op->setOperand(0, NewOp);
769     DEBUG(dbgs() << "TO: " << *Op << '\n');
770     ExpressionChanged = Op;
771     MadeChange = true;
772     ++NumChanged;
773     Op = NewOp;
774   }
775
776   // If the expression changed non-trivially then clear out all subclass data
777   // starting from the operator specified in ExpressionChanged, and compactify
778   // the operators to just before the expression root to guarantee that the
779   // expression tree is dominated by all of Ops.
780   if (ExpressionChanged)
781     do {
782       ExpressionChanged->clearSubclassOptionalData();
783       if (ExpressionChanged == I)
784         break;
785       ExpressionChanged->moveBefore(I);
786       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
787     } while (1);
788
789   // Throw away any left over nodes from the original expression.
790   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
791     RedoInsts.insert(NodesToRewrite[i]);
792 }
793
794 /// NegateValue - Insert instructions before the instruction pointed to by BI,
795 /// that computes the negative version of the value specified.  The negative
796 /// version of the value is returned, and BI is left pointing at the instruction
797 /// that should be processed next by the reassociation pass.
798 static Value *NegateValue(Value *V, Instruction *BI) {
799   if (Constant *C = dyn_cast<Constant>(V))
800     return ConstantExpr::getNeg(C);
801
802   // We are trying to expose opportunity for reassociation.  One of the things
803   // that we want to do to achieve this is to push a negation as deep into an
804   // expression chain as possible, to expose the add instructions.  In practice,
805   // this means that we turn this:
806   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
807   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
808   // the constants.  We assume that instcombine will clean up the mess later if
809   // we introduce tons of unnecessary negation instructions.
810   //
811   if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
812     // Push the negates through the add.
813     I->setOperand(0, NegateValue(I->getOperand(0), BI));
814     I->setOperand(1, NegateValue(I->getOperand(1), BI));
815
816     // We must move the add instruction here, because the neg instructions do
817     // not dominate the old add instruction in general.  By moving it, we are
818     // assured that the neg instructions we just inserted dominate the
819     // instruction we are about to insert after them.
820     //
821     I->moveBefore(BI);
822     I->setName(I->getName()+".neg");
823     return I;
824   }
825
826   // Okay, we need to materialize a negated version of V with an instruction.
827   // Scan the use lists of V to see if we have one already.
828   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
829     User *U = *UI;
830     if (!BinaryOperator::isNeg(U)) continue;
831
832     // We found one!  Now we have to make sure that the definition dominates
833     // this use.  We do this by moving it to the entry block (if it is a
834     // non-instruction value) or right after the definition.  These negates will
835     // be zapped by reassociate later, so we don't need much finesse here.
836     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
837
838     // Verify that the negate is in this function, V might be a constant expr.
839     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
840       continue;
841
842     BasicBlock::iterator InsertPt;
843     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
844       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
845         InsertPt = II->getNormalDest()->begin();
846       } else {
847         InsertPt = InstInput;
848         ++InsertPt;
849       }
850       while (isa<PHINode>(InsertPt)) ++InsertPt;
851     } else {
852       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
853     }
854     TheNeg->moveBefore(InsertPt);
855     return TheNeg;
856   }
857
858   // Insert a 'neg' instruction that subtracts the value from zero to get the
859   // negation.
860   return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
861 }
862
863 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
864 /// X-Y into (X + -Y).
865 static bool ShouldBreakUpSubtract(Instruction *Sub) {
866   // If this is a negation, we can't split it up!
867   if (BinaryOperator::isNeg(Sub))
868     return false;
869
870   // Don't bother to break this up unless either the LHS is an associable add or
871   // subtract or if this is only used by one.
872   if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
873       isReassociableOp(Sub->getOperand(0), Instruction::Sub))
874     return true;
875   if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
876       isReassociableOp(Sub->getOperand(1), Instruction::Sub))
877     return true;
878   if (Sub->hasOneUse() &&
879       (isReassociableOp(Sub->use_back(), Instruction::Add) ||
880        isReassociableOp(Sub->use_back(), Instruction::Sub)))
881     return true;
882
883   return false;
884 }
885
886 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
887 /// only used by an add, transform this into (X+(0-Y)) to promote better
888 /// reassociation.
889 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
890   // Convert a subtract into an add and a neg instruction. This allows sub
891   // instructions to be commuted with other add instructions.
892   //
893   // Calculate the negative value of Operand 1 of the sub instruction,
894   // and set it as the RHS of the add instruction we just made.
895   //
896   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
897   BinaryOperator *New =
898     BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
899   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
900   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
901   New->takeName(Sub);
902
903   // Everyone now refers to the add instruction.
904   Sub->replaceAllUsesWith(New);
905   New->setDebugLoc(Sub->getDebugLoc());
906
907   DEBUG(dbgs() << "Negated: " << *New << '\n');
908   return New;
909 }
910
911 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
912 /// by one, change this into a multiply by a constant to assist with further
913 /// reassociation.
914 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
915   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
916   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
917
918   BinaryOperator *Mul =
919     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
920   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
921   Mul->takeName(Shl);
922   Shl->replaceAllUsesWith(Mul);
923   Mul->setDebugLoc(Shl->getDebugLoc());
924   return Mul;
925 }
926
927 /// FindInOperandList - Scan backwards and forwards among values with the same
928 /// rank as element i to see if X exists.  If X does not exist, return i.  This
929 /// is useful when scanning for 'x' when we see '-x' because they both get the
930 /// same rank.
931 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
932                                   Value *X) {
933   unsigned XRank = Ops[i].Rank;
934   unsigned e = Ops.size();
935   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
936     if (Ops[j].Op == X)
937       return j;
938   // Scan backwards.
939   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
940     if (Ops[j].Op == X)
941       return j;
942   return i;
943 }
944
945 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
946 /// and returning the result.  Insert the tree before I.
947 static Value *EmitAddTreeOfValues(Instruction *I,
948                                   SmallVectorImpl<WeakVH> &Ops){
949   if (Ops.size() == 1) return Ops.back();
950
951   Value *V1 = Ops.back();
952   Ops.pop_back();
953   Value *V2 = EmitAddTreeOfValues(I, Ops);
954   return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
955 }
956
957 /// RemoveFactorFromExpression - If V is an expression tree that is a
958 /// multiplication sequence, and if this sequence contains a multiply by Factor,
959 /// remove Factor from the tree and return the new tree.
960 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
961   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
962   if (!BO) return 0;
963
964   SmallVector<RepeatedValue, 8> Tree;
965   MadeChange |= LinearizeExprTree(BO, Tree);
966   SmallVector<ValueEntry, 8> Factors;
967   Factors.reserve(Tree.size());
968   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
969     RepeatedValue E = Tree[i];
970     Factors.append(E.second.getZExtValue(),
971                    ValueEntry(getRank(E.first), E.first));
972   }
973
974   bool FoundFactor = false;
975   bool NeedsNegate = false;
976   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
977     if (Factors[i].Op == Factor) {
978       FoundFactor = true;
979       Factors.erase(Factors.begin()+i);
980       break;
981     }
982
983     // If this is a negative version of this factor, remove it.
984     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
985       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
986         if (FC1->getValue() == -FC2->getValue()) {
987           FoundFactor = NeedsNegate = true;
988           Factors.erase(Factors.begin()+i);
989           break;
990         }
991   }
992
993   if (!FoundFactor) {
994     // Make sure to restore the operands to the expression tree.
995     RewriteExprTree(BO, Factors);
996     return 0;
997   }
998
999   BasicBlock::iterator InsertPt = BO; ++InsertPt;
1000
1001   // If this was just a single multiply, remove the multiply and return the only
1002   // remaining operand.
1003   if (Factors.size() == 1) {
1004     RedoInsts.insert(BO);
1005     V = Factors[0].Op;
1006   } else {
1007     RewriteExprTree(BO, Factors);
1008     V = BO;
1009   }
1010
1011   if (NeedsNegate)
1012     V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1013
1014   return V;
1015 }
1016
1017 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1018 /// add its operands as factors, otherwise add V to the list of factors.
1019 ///
1020 /// Ops is the top-level list of add operands we're trying to factor.
1021 static void FindSingleUseMultiplyFactors(Value *V,
1022                                          SmallVectorImpl<Value*> &Factors,
1023                                        const SmallVectorImpl<ValueEntry> &Ops) {
1024   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1025   if (!BO) {
1026     Factors.push_back(V);
1027     return;
1028   }
1029
1030   // Otherwise, add the LHS and RHS to the list of factors.
1031   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1032   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1033 }
1034
1035 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1036 /// instruction.  This optimizes based on identities.  If it can be reduced to
1037 /// a single Value, it is returned, otherwise the Ops list is mutated as
1038 /// necessary.
1039 static Value *OptimizeAndOrXor(unsigned Opcode,
1040                                SmallVectorImpl<ValueEntry> &Ops) {
1041   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1042   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1043   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1044     // First, check for X and ~X in the operand list.
1045     assert(i < Ops.size());
1046     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1047       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1048       unsigned FoundX = FindInOperandList(Ops, i, X);
1049       if (FoundX != i) {
1050         if (Opcode == Instruction::And)   // ...&X&~X = 0
1051           return Constant::getNullValue(X->getType());
1052
1053         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1054           return Constant::getAllOnesValue(X->getType());
1055       }
1056     }
1057
1058     // Next, check for duplicate pairs of values, which we assume are next to
1059     // each other, due to our sorting criteria.
1060     assert(i < Ops.size());
1061     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1062       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1063         // Drop duplicate values for And and Or.
1064         Ops.erase(Ops.begin()+i);
1065         --i; --e;
1066         ++NumAnnihil;
1067         continue;
1068       }
1069
1070       // Drop pairs of values for Xor.
1071       assert(Opcode == Instruction::Xor);
1072       if (e == 2)
1073         return Constant::getNullValue(Ops[0].Op->getType());
1074
1075       // Y ^ X^X -> Y
1076       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1077       i -= 1; e -= 2;
1078       ++NumAnnihil;
1079     }
1080   }
1081   return 0;
1082 }
1083
1084 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1085 /// optimizes based on identities.  If it can be reduced to a single Value, it
1086 /// is returned, otherwise the Ops list is mutated as necessary.
1087 Value *Reassociate::OptimizeAdd(Instruction *I,
1088                                 SmallVectorImpl<ValueEntry> &Ops) {
1089   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1090   // can simplify the expression. X+-X == 0.  While we're at it, scan for any
1091   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1092   //
1093   // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1094   //
1095   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1096     Value *TheOp = Ops[i].Op;
1097     // Check to see if we've seen this operand before.  If so, we factor all
1098     // instances of the operand together.  Due to our sorting criteria, we know
1099     // that these need to be next to each other in the vector.
1100     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1101       // Rescan the list, remove all instances of this operand from the expr.
1102       unsigned NumFound = 0;
1103       do {
1104         Ops.erase(Ops.begin()+i);
1105         ++NumFound;
1106       } while (i != Ops.size() && Ops[i].Op == TheOp);
1107
1108       DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1109       ++NumFactor;
1110
1111       // Insert a new multiply.
1112       Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1113       Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1114
1115       // Now that we have inserted a multiply, optimize it. This allows us to
1116       // handle cases that require multiple factoring steps, such as this:
1117       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1118       RedoInsts.insert(cast<Instruction>(Mul));
1119
1120       // If every add operand was a duplicate, return the multiply.
1121       if (Ops.empty())
1122         return Mul;
1123
1124       // Otherwise, we had some input that didn't have the dupe, such as
1125       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1126       // things being added by this operation.
1127       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1128
1129       --i;
1130       e = Ops.size();
1131       continue;
1132     }
1133
1134     // Check for X and -X in the operand list.
1135     if (!BinaryOperator::isNeg(TheOp))
1136       continue;
1137
1138     Value *X = BinaryOperator::getNegArgument(TheOp);
1139     unsigned FoundX = FindInOperandList(Ops, i, X);
1140     if (FoundX == i)
1141       continue;
1142
1143     // Remove X and -X from the operand list.
1144     if (Ops.size() == 2)
1145       return Constant::getNullValue(X->getType());
1146
1147     Ops.erase(Ops.begin()+i);
1148     if (i < FoundX)
1149       --FoundX;
1150     else
1151       --i;   // Need to back up an extra one.
1152     Ops.erase(Ops.begin()+FoundX);
1153     ++NumAnnihil;
1154     --i;     // Revisit element.
1155     e -= 2;  // Removed two elements.
1156   }
1157
1158   // Scan the operand list, checking to see if there are any common factors
1159   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1160   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1161   // To efficiently find this, we count the number of times a factor occurs
1162   // for any ADD operands that are MULs.
1163   DenseMap<Value*, unsigned> FactorOccurrences;
1164
1165   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1166   // where they are actually the same multiply.
1167   unsigned MaxOcc = 0;
1168   Value *MaxOccVal = 0;
1169   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1170     BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1171     if (!BOp)
1172       continue;
1173
1174     // Compute all of the factors of this added value.
1175     SmallVector<Value*, 8> Factors;
1176     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1177     assert(Factors.size() > 1 && "Bad linearize!");
1178
1179     // Add one to FactorOccurrences for each unique factor in this op.
1180     SmallPtrSet<Value*, 8> Duplicates;
1181     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1182       Value *Factor = Factors[i];
1183       if (!Duplicates.insert(Factor)) continue;
1184
1185       unsigned Occ = ++FactorOccurrences[Factor];
1186       if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1187
1188       // If Factor is a negative constant, add the negated value as a factor
1189       // because we can percolate the negate out.  Watch for minint, which
1190       // cannot be positivified.
1191       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1192         if (CI->isNegative() && !CI->isMinValue(true)) {
1193           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1194           assert(!Duplicates.count(Factor) &&
1195                  "Shouldn't have two constant factors, missed a canonicalize");
1196
1197           unsigned Occ = ++FactorOccurrences[Factor];
1198           if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1199         }
1200     }
1201   }
1202
1203   // If any factor occurred more than one time, we can pull it out.
1204   if (MaxOcc > 1) {
1205     DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1206     ++NumFactor;
1207
1208     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1209     // this, we could otherwise run into situations where removing a factor
1210     // from an expression will drop a use of maxocc, and this can cause
1211     // RemoveFactorFromExpression on successive values to behave differently.
1212     Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1213     SmallVector<WeakVH, 4> NewMulOps;
1214     for (unsigned i = 0; i != Ops.size(); ++i) {
1215       // Only try to remove factors from expressions we're allowed to.
1216       BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1217       if (!BOp)
1218         continue;
1219
1220       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1221         // The factorized operand may occur several times.  Convert them all in
1222         // one fell swoop.
1223         for (unsigned j = Ops.size(); j != i;) {
1224           --j;
1225           if (Ops[j].Op == Ops[i].Op) {
1226             NewMulOps.push_back(V);
1227             Ops.erase(Ops.begin()+j);
1228           }
1229         }
1230         --i;
1231       }
1232     }
1233
1234     // No need for extra uses anymore.
1235     delete DummyInst;
1236
1237     unsigned NumAddedValues = NewMulOps.size();
1238     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1239
1240     // Now that we have inserted the add tree, optimize it. This allows us to
1241     // handle cases that require multiple factoring steps, such as this:
1242     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1243     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1244     (void)NumAddedValues;
1245     if (Instruction *VI = dyn_cast<Instruction>(V))
1246       RedoInsts.insert(VI);
1247
1248     // Create the multiply.
1249     Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1250
1251     // Rerun associate on the multiply in case the inner expression turned into
1252     // a multiply.  We want to make sure that we keep things in canonical form.
1253     RedoInsts.insert(V2);
1254
1255     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1256     // entire result expression is just the multiply "A*(B+C)".
1257     if (Ops.empty())
1258       return V2;
1259
1260     // Otherwise, we had some input that didn't have the factor, such as
1261     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1262     // things being added by this operation.
1263     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1264   }
1265
1266   return 0;
1267 }
1268
1269 namespace {
1270   /// \brief Predicate tests whether a ValueEntry's op is in a map.
1271   struct IsValueInMap {
1272     const DenseMap<Value *, unsigned> &Map;
1273
1274     IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1275
1276     bool operator()(const ValueEntry &Entry) {
1277       return Map.find(Entry.Op) != Map.end();
1278     }
1279   };
1280 }
1281
1282 /// \brief Build up a vector of value/power pairs factoring a product.
1283 ///
1284 /// Given a series of multiplication operands, build a vector of factors and
1285 /// the powers each is raised to when forming the final product. Sort them in
1286 /// the order of descending power.
1287 ///
1288 ///      (x*x)          -> [(x, 2)]
1289 ///     ((x*x)*x)       -> [(x, 3)]
1290 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1291 ///
1292 /// \returns Whether any factors have a power greater than one.
1293 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1294                                          SmallVectorImpl<Factor> &Factors) {
1295   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1296   // Compute the sum of powers of simplifiable factors.
1297   unsigned FactorPowerSum = 0;
1298   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1299     Value *Op = Ops[Idx-1].Op;
1300
1301     // Count the number of occurrences of this value.
1302     unsigned Count = 1;
1303     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1304       ++Count;
1305     // Track for simplification all factors which occur 2 or more times.
1306     if (Count > 1)
1307       FactorPowerSum += Count;
1308   }
1309
1310   // We can only simplify factors if the sum of the powers of our simplifiable
1311   // factors is 4 or higher. When that is the case, we will *always* have
1312   // a simplification. This is an important invariant to prevent cyclicly
1313   // trying to simplify already minimal formations.
1314   if (FactorPowerSum < 4)
1315     return false;
1316
1317   // Now gather the simplifiable factors, removing them from Ops.
1318   FactorPowerSum = 0;
1319   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1320     Value *Op = Ops[Idx-1].Op;
1321
1322     // Count the number of occurrences of this value.
1323     unsigned Count = 1;
1324     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1325       ++Count;
1326     if (Count == 1)
1327       continue;
1328     // Move an even number of occurrences to Factors.
1329     Count &= ~1U;
1330     Idx -= Count;
1331     FactorPowerSum += Count;
1332     Factors.push_back(Factor(Op, Count));
1333     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1334   }
1335
1336   // None of the adjustments above should have reduced the sum of factor powers
1337   // below our mininum of '4'.
1338   assert(FactorPowerSum >= 4);
1339
1340   std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1341   return true;
1342 }
1343
1344 /// \brief Build a tree of multiplies, computing the product of Ops.
1345 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1346                                 SmallVectorImpl<Value*> &Ops) {
1347   if (Ops.size() == 1)
1348     return Ops.back();
1349
1350   Value *LHS = Ops.pop_back_val();
1351   do {
1352     LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1353   } while (!Ops.empty());
1354
1355   return LHS;
1356 }
1357
1358 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1359 ///
1360 /// Given a vector of values raised to various powers, where no two values are
1361 /// equal and the powers are sorted in decreasing order, compute the minimal
1362 /// DAG of multiplies to compute the final product, and return that product
1363 /// value.
1364 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1365                                             SmallVectorImpl<Factor> &Factors) {
1366   assert(Factors[0].Power);
1367   SmallVector<Value *, 4> OuterProduct;
1368   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1369        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1370     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1371       LastIdx = Idx;
1372       continue;
1373     }
1374
1375     // We want to multiply across all the factors with the same power so that
1376     // we can raise them to that power as a single entity. Build a mini tree
1377     // for that.
1378     SmallVector<Value *, 4> InnerProduct;
1379     InnerProduct.push_back(Factors[LastIdx].Base);
1380     do {
1381       InnerProduct.push_back(Factors[Idx].Base);
1382       ++Idx;
1383     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1384
1385     // Reset the base value of the first factor to the new expression tree.
1386     // We'll remove all the factors with the same power in a second pass.
1387     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1388     if (Instruction *MI = dyn_cast<Instruction>(M))
1389       RedoInsts.insert(MI);
1390
1391     LastIdx = Idx;
1392   }
1393   // Unique factors with equal powers -- we've folded them into the first one's
1394   // base.
1395   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1396                             Factor::PowerEqual()),
1397                 Factors.end());
1398
1399   // Iteratively collect the base of each factor with an add power into the
1400   // outer product, and halve each power in preparation for squaring the
1401   // expression.
1402   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1403     if (Factors[Idx].Power & 1)
1404       OuterProduct.push_back(Factors[Idx].Base);
1405     Factors[Idx].Power >>= 1;
1406   }
1407   if (Factors[0].Power) {
1408     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1409     OuterProduct.push_back(SquareRoot);
1410     OuterProduct.push_back(SquareRoot);
1411   }
1412   if (OuterProduct.size() == 1)
1413     return OuterProduct.front();
1414
1415   Value *V = buildMultiplyTree(Builder, OuterProduct);
1416   return V;
1417 }
1418
1419 Value *Reassociate::OptimizeMul(BinaryOperator *I,
1420                                 SmallVectorImpl<ValueEntry> &Ops) {
1421   // We can only optimize the multiplies when there is a chain of more than
1422   // three, such that a balanced tree might require fewer total multiplies.
1423   if (Ops.size() < 4)
1424     return 0;
1425
1426   // Try to turn linear trees of multiplies without other uses of the
1427   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1428   // re-use.
1429   SmallVector<Factor, 4> Factors;
1430   if (!collectMultiplyFactors(Ops, Factors))
1431     return 0; // All distinct factors, so nothing left for us to do.
1432
1433   IRBuilder<> Builder(I);
1434   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1435   if (Ops.empty())
1436     return V;
1437
1438   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1439   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1440   return 0;
1441 }
1442
1443 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1444                                        SmallVectorImpl<ValueEntry> &Ops) {
1445   // Now that we have the linearized expression tree, try to optimize it.
1446   // Start by folding any constants that we found.
1447   if (Ops.size() == 1) return Ops[0].Op;
1448
1449   unsigned Opcode = I->getOpcode();
1450
1451   // Handle destructive annihilation due to identities between elements in the
1452   // argument list here.
1453   unsigned NumOps = Ops.size();
1454   switch (Opcode) {
1455   default: break;
1456   case Instruction::And:
1457   case Instruction::Or:
1458   case Instruction::Xor:
1459     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1460       return Result;
1461     break;
1462
1463   case Instruction::Add:
1464     if (Value *Result = OptimizeAdd(I, Ops))
1465       return Result;
1466     break;
1467
1468   case Instruction::Mul:
1469     if (Value *Result = OptimizeMul(I, Ops))
1470       return Result;
1471     break;
1472   }
1473
1474   if (Ops.size() != NumOps)
1475     return OptimizeExpression(I, Ops);
1476   return 0;
1477 }
1478
1479 /// EraseInst - Zap the given instruction, adding interesting operands to the
1480 /// work list.
1481 void Reassociate::EraseInst(Instruction *I) {
1482   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1483   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1484   // Erase the dead instruction.
1485   ValueRankMap.erase(I);
1486   RedoInsts.remove(I);
1487   I->eraseFromParent();
1488   // Optimize its operands.
1489   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1490   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1491     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1492       // If this is a node in an expression tree, climb to the expression root
1493       // and add that since that's where optimization actually happens.
1494       unsigned Opcode = Op->getOpcode();
1495       while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1496              Visited.insert(Op))
1497         Op = Op->use_back();
1498       RedoInsts.insert(Op);
1499     }
1500 }
1501
1502 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1503 /// instructions is not allowed.
1504 void Reassociate::OptimizeInst(Instruction *I) {
1505   // Only consider operations that we understand.
1506   if (!isa<BinaryOperator>(I))
1507     return;
1508
1509   if (I->getOpcode() == Instruction::Shl &&
1510       isa<ConstantInt>(I->getOperand(1)))
1511     // If an operand of this shift is a reassociable multiply, or if the shift
1512     // is used by a reassociable multiply or add, turn into a multiply.
1513     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1514         (I->hasOneUse() &&
1515          (isReassociableOp(I->use_back(), Instruction::Mul) ||
1516           isReassociableOp(I->use_back(), Instruction::Add)))) {
1517       Instruction *NI = ConvertShiftToMul(I);
1518       RedoInsts.insert(I);
1519       MadeChange = true;
1520       I = NI;
1521     }
1522
1523   // Floating point binary operators are not associative, but we can still
1524   // commute (some) of them, to canonicalize the order of their operands.
1525   // This can potentially expose more CSE opportunities, and makes writing
1526   // other transformations simpler.
1527   if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1528     // FAdd and FMul can be commuted.
1529     if (I->getOpcode() != Instruction::FMul &&
1530         I->getOpcode() != Instruction::FAdd)
1531       return;
1532
1533     Value *LHS = I->getOperand(0);
1534     Value *RHS = I->getOperand(1);
1535     unsigned LHSRank = getRank(LHS);
1536     unsigned RHSRank = getRank(RHS);
1537
1538     // Sort the operands by rank.
1539     if (RHSRank < LHSRank) {
1540       I->setOperand(0, RHS);
1541       I->setOperand(1, LHS);
1542     }
1543
1544     return;
1545   }
1546
1547   // Do not reassociate boolean (i1) expressions.  We want to preserve the
1548   // original order of evaluation for short-circuited comparisons that
1549   // SimplifyCFG has folded to AND/OR expressions.  If the expression
1550   // is not further optimized, it is likely to be transformed back to a
1551   // short-circuited form for code gen, and the source order may have been
1552   // optimized for the most likely conditions.
1553   if (I->getType()->isIntegerTy(1))
1554     return;
1555
1556   // If this is a subtract instruction which is not already in negate form,
1557   // see if we can convert it to X+-Y.
1558   if (I->getOpcode() == Instruction::Sub) {
1559     if (ShouldBreakUpSubtract(I)) {
1560       Instruction *NI = BreakUpSubtract(I);
1561       RedoInsts.insert(I);
1562       MadeChange = true;
1563       I = NI;
1564     } else if (BinaryOperator::isNeg(I)) {
1565       // Otherwise, this is a negation.  See if the operand is a multiply tree
1566       // and if this is not an inner node of a multiply tree.
1567       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1568           (!I->hasOneUse() ||
1569            !isReassociableOp(I->use_back(), Instruction::Mul))) {
1570         Instruction *NI = LowerNegateToMultiply(I);
1571         RedoInsts.insert(I);
1572         MadeChange = true;
1573         I = NI;
1574       }
1575     }
1576   }
1577
1578   // If this instruction is an associative binary operator, process it.
1579   if (!I->isAssociative()) return;
1580   BinaryOperator *BO = cast<BinaryOperator>(I);
1581
1582   // If this is an interior node of a reassociable tree, ignore it until we
1583   // get to the root of the tree, to avoid N^2 analysis.
1584   unsigned Opcode = BO->getOpcode();
1585   if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
1586     return;
1587
1588   // If this is an add tree that is used by a sub instruction, ignore it
1589   // until we process the subtract.
1590   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1591       cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1592     return;
1593
1594   ReassociateExpression(BO);
1595 }
1596
1597 void Reassociate::ReassociateExpression(BinaryOperator *I) {
1598
1599   // First, walk the expression tree, linearizing the tree, collecting the
1600   // operand information.
1601   SmallVector<RepeatedValue, 8> Tree;
1602   MadeChange |= LinearizeExprTree(I, Tree);
1603   SmallVector<ValueEntry, 8> Ops;
1604   Ops.reserve(Tree.size());
1605   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1606     RepeatedValue E = Tree[i];
1607     Ops.append(E.second.getZExtValue(),
1608                ValueEntry(getRank(E.first), E.first));
1609   }
1610
1611   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1612
1613   // Now that we have linearized the tree to a list and have gathered all of
1614   // the operands and their ranks, sort the operands by their rank.  Use a
1615   // stable_sort so that values with equal ranks will have their relative
1616   // positions maintained (and so the compiler is deterministic).  Note that
1617   // this sorts so that the highest ranking values end up at the beginning of
1618   // the vector.
1619   std::stable_sort(Ops.begin(), Ops.end());
1620
1621   // OptimizeExpression - Now that we have the expression tree in a convenient
1622   // sorted form, optimize it globally if possible.
1623   if (Value *V = OptimizeExpression(I, Ops)) {
1624     if (V == I)
1625       // Self-referential expression in unreachable code.
1626       return;
1627     // This expression tree simplified to something that isn't a tree,
1628     // eliminate it.
1629     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1630     I->replaceAllUsesWith(V);
1631     if (Instruction *VI = dyn_cast<Instruction>(V))
1632       VI->setDebugLoc(I->getDebugLoc());
1633     RedoInsts.insert(I);
1634     ++NumAnnihil;
1635     return;
1636   }
1637
1638   // We want to sink immediates as deeply as possible except in the case where
1639   // this is a multiply tree used only by an add, and the immediate is a -1.
1640   // In this case we reassociate to put the negation on the outside so that we
1641   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1642   if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1643       cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1644       isa<ConstantInt>(Ops.back().Op) &&
1645       cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1646     ValueEntry Tmp = Ops.pop_back_val();
1647     Ops.insert(Ops.begin(), Tmp);
1648   }
1649
1650   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1651
1652   if (Ops.size() == 1) {
1653     if (Ops[0].Op == I)
1654       // Self-referential expression in unreachable code.
1655       return;
1656
1657     // This expression tree simplified to something that isn't a tree,
1658     // eliminate it.
1659     I->replaceAllUsesWith(Ops[0].Op);
1660     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1661       OI->setDebugLoc(I->getDebugLoc());
1662     RedoInsts.insert(I);
1663     return;
1664   }
1665
1666   // Now that we ordered and optimized the expressions, splat them back into
1667   // the expression tree, removing any unneeded nodes.
1668   RewriteExprTree(I, Ops);
1669 }
1670
1671 bool Reassociate::runOnFunction(Function &F) {
1672   // Calculate the rank map for F
1673   BuildRankMap(F);
1674
1675   MadeChange = false;
1676   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1677     // Optimize every instruction in the basic block.
1678     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1679       if (isInstructionTriviallyDead(II)) {
1680         EraseInst(II++);
1681       } else {
1682         OptimizeInst(II);
1683         assert(II->getParent() == BI && "Moved to a different block!");
1684         ++II;
1685       }
1686
1687     // If this produced extra instructions to optimize, handle them now.
1688     while (!RedoInsts.empty()) {
1689       Instruction *I = RedoInsts.pop_back_val();
1690       if (isInstructionTriviallyDead(I))
1691         EraseInst(I);
1692       else
1693         OptimizeInst(I);
1694     }
1695   }
1696
1697   // We are done with the rank map.
1698   RankMap.clear();
1699   ValueRankMap.clear();
1700
1701   return MadeChange;
1702 }