Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Transforms / Scalar / PlaceSafepoints.cpp
1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Place garbage collection safepoints at appropriate locations in the IR. This
11 // does not make relocation semantics or variable liveness explicit.  That's
12 // done by RewriteStatepointsForGC.
13 //
14 // Terminology:
15 // - A call is said to be "parseable" if there is a stack map generated for the
16 // return PC of the call.  A runtime can determine where values listed in the
17 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
18 // on the stack when the code is suspended inside such a call.  Every parse
19 // point is represented by a call wrapped in an gc.statepoint intrinsic.
20 // - A "poll" is an explicit check in the generated code to determine if the
21 // runtime needs the generated code to cooperate by calling a helper routine
22 // and thus suspending its execution at a known state. The call to the helper
23 // routine will be parseable.  The (gc & runtime specific) logic of a poll is
24 // assumed to be provided in a function of the name "gc.safepoint_poll".
25 //
26 // We aim to insert polls such that running code can quickly be brought to a
27 // well defined state for inspection by the collector.  In the current
28 // implementation, this is done via the insertion of poll sites at method entry
29 // and the backedge of most loops.  We try to avoid inserting more polls than
30 // are necessary to ensure a finite period between poll sites.  This is not
31 // because the poll itself is expensive in the generated code; it's not.  Polls
32 // do tend to impact the optimizer itself in negative ways; we'd like to avoid
33 // perturbing the optimization of the method as much as we can.
34 //
35 // We also need to make most call sites parseable.  The callee might execute a
36 // poll (or otherwise be inspected by the GC).  If so, the entire stack
37 // (including the suspended frame of the current method) must be parseable.
38 //
39 // This pass will insert:
40 // - Call parse points ("call safepoints") for any call which may need to
41 // reach a safepoint during the execution of the callee function.
42 // - Backedge safepoint polls and entry safepoint polls to ensure that
43 // executing code reaches a safepoint poll in a finite amount of time.
44 //
45 // We do not currently support return statepoints, but adding them would not
46 // be hard.  They are not required for correctness - entry safepoints are an
47 // alternative - but some GCs may prefer them.  Patches welcome.
48 //
49 //===----------------------------------------------------------------------===//
50
51 #include "llvm/Pass.h"
52 #include "llvm/IR/LegacyPassManager.h"
53 #include "llvm/ADT/SetOperations.h"
54 #include "llvm/ADT/SetVector.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Analysis/LoopPass.h"
58 #include "llvm/Analysis/LoopInfo.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/CFG.h"
62 #include "llvm/Analysis/InstructionSimplify.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CallSite.h"
65 #include "llvm/IR/Dominators.h"
66 #include "llvm/IR/Function.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/InstIterator.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/Intrinsics.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/Module.h"
73 #include "llvm/IR/Statepoint.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Scalar.h"
80 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
81 #include "llvm/Transforms/Utils/Cloning.h"
82 #include "llvm/Transforms/Utils/Local.h"
83
84 #define DEBUG_TYPE "safepoint-placement"
85 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
86 STATISTIC(NumCallSafepoints, "Number of call safepoints inserted");
87 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
88
89 STATISTIC(CallInLoop, "Number of loops w/o safepoints due to calls in loop");
90 STATISTIC(FiniteExecution, "Number of loops w/o safepoints finite execution");
91
92 using namespace llvm;
93
94 // Ignore opportunities to avoid placing safepoints on backedges, useful for
95 // validation
96 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
97                                   cl::init(false));
98
99 /// How narrow does the trip count of a loop have to be to have to be considered
100 /// "counted"?  Counted loops do not get safepoints at backedges.
101 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
102                                          cl::Hidden, cl::init(32));
103
104 // If true, split the backedge of a loop when placing the safepoint, otherwise
105 // split the latch block itself.  Both are useful to support for
106 // experimentation, but in practice, it looks like splitting the backedge
107 // optimizes better.
108 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
109                                    cl::init(false));
110
111 // Print tracing output
112 static cl::opt<bool> TraceLSP("spp-trace", cl::Hidden, cl::init(false));
113
114 namespace {
115
116 /// An analysis pass whose purpose is to identify each of the backedges in
117 /// the function which require a safepoint poll to be inserted.
118 struct PlaceBackedgeSafepointsImpl : public FunctionPass {
119   static char ID;
120
121   /// The output of the pass - gives a list of each backedge (described by
122   /// pointing at the branch) which need a poll inserted.
123   std::vector<TerminatorInst *> PollLocations;
124
125   /// True unless we're running spp-no-calls in which case we need to disable
126   /// the call-dependent placement opts.
127   bool CallSafepointsEnabled;
128
129   ScalarEvolution *SE = nullptr;
130   DominatorTree *DT = nullptr;
131   LoopInfo *LI = nullptr;
132
133   PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
134       : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
135     initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
136   }
137
138   bool runOnLoop(Loop *);
139   void runOnLoopAndSubLoops(Loop *L) {
140     // Visit all the subloops
141     for (auto I = L->begin(), E = L->end(); I != E; I++)
142       runOnLoopAndSubLoops(*I);
143     runOnLoop(L);
144   }
145
146   bool runOnFunction(Function &F) override {
147     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
148     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
149     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
150     for (auto I = LI->begin(), E = LI->end(); I != E; I++) {
151       runOnLoopAndSubLoops(*I);
152     }
153     return false;
154   }
155
156   void getAnalysisUsage(AnalysisUsage &AU) const override {
157     AU.addRequired<DominatorTreeWrapperPass>();
158     AU.addRequired<ScalarEvolutionWrapperPass>();
159     AU.addRequired<LoopInfoWrapperPass>();
160     // We no longer modify the IR at all in this pass.  Thus all
161     // analysis are preserved.
162     AU.setPreservesAll();
163   }
164 };
165 }
166
167 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
168 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
169 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
170
171 namespace {
172 struct PlaceSafepoints : public FunctionPass {
173   static char ID; // Pass identification, replacement for typeid
174
175   PlaceSafepoints() : FunctionPass(ID) {
176     initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
177   }
178   bool runOnFunction(Function &F) override;
179
180   void getAnalysisUsage(AnalysisUsage &AU) const override {
181     // We modify the graph wholesale (inlining, block insertion, etc).  We
182     // preserve nothing at the moment.  We could potentially preserve dom tree
183     // if that was worth doing
184   }
185 };
186 }
187
188 // Insert a safepoint poll immediately before the given instruction.  Does
189 // not handle the parsability of state at the runtime call, that's the
190 // callers job.
191 static void
192 InsertSafepointPoll(Instruction *InsertBefore,
193                     std::vector<CallSite> &ParsePointsNeeded /*rval*/);
194
195 static bool needsStatepoint(const CallSite &CS) {
196   if (callsGCLeafFunction(CS))
197     return false;
198   if (CS.isCall()) {
199     CallInst *call = cast<CallInst>(CS.getInstruction());
200     if (call->isInlineAsm())
201       return false;
202   }
203   if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)) {
204     return false;
205   }
206   return true;
207 }
208
209 static Value *ReplaceWithStatepoint(const CallSite &CS);
210
211 /// Returns true if this loop is known to contain a call safepoint which
212 /// must unconditionally execute on any iteration of the loop which returns
213 /// to the loop header via an edge from Pred.  Returns a conservative correct
214 /// answer; i.e. false is always valid.
215 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
216                                                BasicBlock *Pred,
217                                                DominatorTree &DT) {
218   // In general, we're looking for any cut of the graph which ensures
219   // there's a call safepoint along every edge between Header and Pred.
220   // For the moment, we look only for the 'cuts' that consist of a single call
221   // instruction in a block which is dominated by the Header and dominates the
222   // loop latch (Pred) block.  Somewhat surprisingly, walking the entire chain
223   // of such dominating blocks gets substantially more occurrences than just
224   // checking the Pred and Header blocks themselves.  This may be due to the
225   // density of loop exit conditions caused by range and null checks.
226   // TODO: structure this as an analysis pass, cache the result for subloops,
227   // avoid dom tree recalculations
228   assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
229
230   BasicBlock *Current = Pred;
231   while (true) {
232     for (Instruction &I : *Current) {
233       if (auto CS = CallSite(&I))
234         // Note: Technically, needing a safepoint isn't quite the right
235         // condition here.  We should instead be checking if the target method
236         // has an
237         // unconditional poll. In practice, this is only a theoretical concern
238         // since we don't have any methods with conditional-only safepoint
239         // polls.
240         if (needsStatepoint(CS))
241           return true;
242     }
243
244     if (Current == Header)
245       break;
246     Current = DT.getNode(Current)->getIDom()->getBlock();
247   }
248
249   return false;
250 }
251
252 /// Returns true if this loop is known to terminate in a finite number of
253 /// iterations.  Note that this function may return false for a loop which
254 /// does actual terminate in a finite constant number of iterations due to
255 /// conservatism in the analysis.
256 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
257                                     BasicBlock *Pred) {
258   // A conservative bound on the loop as a whole.
259   const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L);
260   if (MaxTrips != SE->getCouldNotCompute() &&
261       SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
262           CountedLoopTripWidth))
263     return true;
264
265   // If this is a conditional branch to the header with the alternate path
266   // being outside the loop, we can ask questions about the execution frequency
267   // of the exit block.
268   if (L->isLoopExiting(Pred)) {
269     // This returns an exact expression only.  TODO: We really only need an
270     // upper bound here, but SE doesn't expose that.
271     const SCEV *MaxExec = SE->getExitCount(L, Pred);
272     if (MaxExec != SE->getCouldNotCompute() &&
273         SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
274             CountedLoopTripWidth))
275         return true;
276   }
277
278   return /* not finite */ false;
279 }
280
281 static void scanOneBB(Instruction *start, Instruction *end,
282                       std::vector<CallInst *> &calls,
283                       std::set<BasicBlock *> &seen,
284                       std::vector<BasicBlock *> &worklist) {
285   for (BasicBlock::iterator itr(start);
286        itr != start->getParent()->end() && itr != BasicBlock::iterator(end);
287        itr++) {
288     if (CallInst *CI = dyn_cast<CallInst>(&*itr)) {
289       calls.push_back(CI);
290     }
291     // FIXME: This code does not handle invokes
292     assert(!dyn_cast<InvokeInst>(&*itr) &&
293            "support for invokes in poll code needed");
294     // Only add the successor blocks if we reach the terminator instruction
295     // without encountering end first
296     if (itr->isTerminator()) {
297       BasicBlock *BB = itr->getParent();
298       for (BasicBlock *Succ : successors(BB)) {
299         if (seen.count(Succ) == 0) {
300           worklist.push_back(Succ);
301           seen.insert(Succ);
302         }
303       }
304     }
305   }
306 }
307 static void scanInlinedCode(Instruction *start, Instruction *end,
308                             std::vector<CallInst *> &calls,
309                             std::set<BasicBlock *> &seen) {
310   calls.clear();
311   std::vector<BasicBlock *> worklist;
312   seen.insert(start->getParent());
313   scanOneBB(start, end, calls, seen, worklist);
314   while (!worklist.empty()) {
315     BasicBlock *BB = worklist.back();
316     worklist.pop_back();
317     scanOneBB(&*BB->begin(), end, calls, seen, worklist);
318   }
319 }
320
321 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
322   // Loop through all loop latches (branches controlling backedges).  We need
323   // to place a safepoint on every backedge (potentially).
324   // Note: In common usage, there will be only one edge due to LoopSimplify
325   // having run sometime earlier in the pipeline, but this code must be correct
326   // w.r.t. loops with multiple backedges.
327   BasicBlock *header = L->getHeader();
328   SmallVector<BasicBlock*, 16> LoopLatches;
329   L->getLoopLatches(LoopLatches);
330   for (BasicBlock *pred : LoopLatches) {
331     assert(L->contains(pred));
332
333     // Make a policy decision about whether this loop needs a safepoint or
334     // not.  Note that this is about unburdening the optimizer in loops, not
335     // avoiding the runtime cost of the actual safepoint.
336     if (!AllBackedges) {
337       if (mustBeFiniteCountedLoop(L, SE, pred)) {
338         if (TraceLSP)
339           errs() << "skipping safepoint placement in finite loop\n";
340         FiniteExecution++;
341         continue;
342       }
343       if (CallSafepointsEnabled &&
344           containsUnconditionalCallSafepoint(L, header, pred, *DT)) {
345         // Note: This is only semantically legal since we won't do any further
346         // IPO or inlining before the actual call insertion..  If we hadn't, we
347         // might latter loose this call safepoint.
348         if (TraceLSP)
349           errs() << "skipping safepoint placement due to unconditional call\n";
350         CallInLoop++;
351         continue;
352       }
353     }
354
355     // TODO: We can create an inner loop which runs a finite number of
356     // iterations with an outer loop which contains a safepoint.  This would
357     // not help runtime performance that much, but it might help our ability to
358     // optimize the inner loop.
359
360     // Safepoint insertion would involve creating a new basic block (as the
361     // target of the current backedge) which does the safepoint (of all live
362     // variables) and branches to the true header
363     TerminatorInst *term = pred->getTerminator();
364
365     if (TraceLSP) {
366       errs() << "[LSP] terminator instruction: ";
367       term->dump();
368     }
369
370     PollLocations.push_back(term);
371   }
372
373   return false;
374 }
375
376 /// Returns true if an entry safepoint is not required before this callsite in
377 /// the caller function.
378 static bool doesNotRequireEntrySafepointBefore(const CallSite &CS) {
379   Instruction *Inst = CS.getInstruction();
380   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
381     switch (II->getIntrinsicID()) {
382     case Intrinsic::experimental_gc_statepoint:
383     case Intrinsic::experimental_patchpoint_void:
384     case Intrinsic::experimental_patchpoint_i64:
385       // The can wrap an actual call which may grow the stack by an unbounded
386       // amount or run forever.
387       return false;
388     default:
389       // Most LLVM intrinsics are things which do not expand to actual calls, or
390       // at least if they do, are leaf functions that cause only finite stack
391       // growth.  In particular, the optimizer likes to form things like memsets
392       // out of stores in the original IR.  Another important example is
393       // llvm.localescape which must occur in the entry block.  Inserting a
394       // safepoint before it is not legal since it could push the localescape
395       // out of the entry block.
396       return true;
397     }
398   }
399   return false;
400 }
401
402 static Instruction *findLocationForEntrySafepoint(Function &F,
403                                                   DominatorTree &DT) {
404
405   // Conceptually, this poll needs to be on method entry, but in
406   // practice, we place it as late in the entry block as possible.  We
407   // can place it as late as we want as long as it dominates all calls
408   // that can grow the stack.  This, combined with backedge polls,
409   // give us all the progress guarantees we need.
410
411   // hasNextInstruction and nextInstruction are used to iterate
412   // through a "straight line" execution sequence.
413
414   auto hasNextInstruction = [](Instruction *I) {
415     if (!I->isTerminator()) {
416       return true;
417     }
418     BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
419     return nextBB && (nextBB->getUniquePredecessor() != nullptr);
420   };
421
422   auto nextInstruction = [&hasNextInstruction](Instruction *I) {
423     assert(hasNextInstruction(I) &&
424            "first check if there is a next instruction!");
425     if (I->isTerminator()) {
426       return &I->getParent()->getUniqueSuccessor()->front();
427     } else {
428       return &*++I->getIterator();
429     }
430   };
431
432   Instruction *cursor = nullptr;
433   for (cursor = &F.getEntryBlock().front(); hasNextInstruction(cursor);
434        cursor = nextInstruction(cursor)) {
435
436     // We need to ensure a safepoint poll occurs before any 'real' call.  The
437     // easiest way to ensure finite execution between safepoints in the face of
438     // recursive and mutually recursive functions is to enforce that each take
439     // a safepoint.  Additionally, we need to ensure a poll before any call
440     // which can grow the stack by an unbounded amount.  This isn't required
441     // for GC semantics per se, but is a common requirement for languages
442     // which detect stack overflow via guard pages and then throw exceptions.
443     if (auto CS = CallSite(cursor)) {
444       if (doesNotRequireEntrySafepointBefore(CS))
445         continue;
446       break;
447     }
448   }
449
450   assert((hasNextInstruction(cursor) || cursor->isTerminator()) &&
451          "either we stopped because of a call, or because of terminator");
452
453   return cursor;
454 }
455
456 /// Identify the list of call sites which need to be have parseable state
457 static void findCallSafepoints(Function &F,
458                                std::vector<CallSite> &Found /*rval*/) {
459   assert(Found.empty() && "must be empty!");
460   for (Instruction &I : instructions(F)) {
461     Instruction *inst = &I;
462     if (isa<CallInst>(inst) || isa<InvokeInst>(inst)) {
463       CallSite CS(inst);
464
465       // No safepoint needed or wanted
466       if (!needsStatepoint(CS)) {
467         continue;
468       }
469
470       Found.push_back(CS);
471     }
472   }
473 }
474
475 /// Implement a unique function which doesn't require we sort the input
476 /// vector.  Doing so has the effect of changing the output of a couple of
477 /// tests in ways which make them less useful in testing fused safepoints.
478 template <typename T> static void unique_unsorted(std::vector<T> &vec) {
479   std::set<T> seen;
480   std::vector<T> tmp;
481   vec.reserve(vec.size());
482   std::swap(tmp, vec);
483   for (auto V : tmp) {
484     if (seen.insert(V).second) {
485       vec.push_back(V);
486     }
487   }
488 }
489
490 static const char *const GCSafepointPollName = "gc.safepoint_poll";
491
492 static bool isGCSafepointPoll(Function &F) {
493   return F.getName().equals(GCSafepointPollName);
494 }
495
496 /// Returns true if this function should be rewritten to include safepoint
497 /// polls and parseable call sites.  The main point of this function is to be
498 /// an extension point for custom logic.
499 static bool shouldRewriteFunction(Function &F) {
500   // TODO: This should check the GCStrategy
501   if (F.hasGC()) {
502     const auto &FunctionGCName = F.getGC();
503     const StringRef StatepointExampleName("statepoint-example");
504     const StringRef CoreCLRName("coreclr");
505     return (StatepointExampleName == FunctionGCName) ||
506            (CoreCLRName == FunctionGCName);
507   } else
508     return false;
509 }
510
511 // TODO: These should become properties of the GCStrategy, possibly with
512 // command line overrides.
513 static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
514 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
515 static bool enableCallSafepoints(Function &F) { return !NoCall; }
516
517 // Normalize basic block to make it ready to be target of invoke statepoint.
518 // Ensure that 'BB' does not have phi nodes. It may require spliting it.
519 static BasicBlock *normalizeForInvokeSafepoint(BasicBlock *BB,
520                                                BasicBlock *InvokeParent) {
521   BasicBlock *ret = BB;
522
523   if (!BB->getUniquePredecessor()) {
524     ret = SplitBlockPredecessors(BB, InvokeParent, "");
525   }
526
527   // Now that 'ret' has unique predecessor we can safely remove all phi nodes
528   // from it
529   FoldSingleEntryPHINodes(ret);
530   assert(!isa<PHINode>(ret->begin()));
531
532   return ret;
533 }
534
535 bool PlaceSafepoints::runOnFunction(Function &F) {
536   if (F.isDeclaration() || F.empty()) {
537     // This is a declaration, nothing to do.  Must exit early to avoid crash in
538     // dom tree calculation
539     return false;
540   }
541
542   if (isGCSafepointPoll(F)) {
543     // Given we're inlining this inside of safepoint poll insertion, this
544     // doesn't make any sense.  Note that we do make any contained calls
545     // parseable after we inline a poll.
546     return false;
547   }
548
549   if (!shouldRewriteFunction(F))
550     return false;
551
552   bool modified = false;
553
554   // In various bits below, we rely on the fact that uses are reachable from
555   // defs.  When there are basic blocks unreachable from the entry, dominance
556   // and reachablity queries return non-sensical results.  Thus, we preprocess
557   // the function to ensure these properties hold.
558   modified |= removeUnreachableBlocks(F);
559
560   // STEP 1 - Insert the safepoint polling locations.  We do not need to
561   // actually insert parse points yet.  That will be done for all polls and
562   // calls in a single pass.
563
564   DominatorTree DT;
565   DT.recalculate(F);
566
567   SmallVector<Instruction *, 16> PollsNeeded;
568   std::vector<CallSite> ParsePointNeeded;
569
570   if (enableBackedgeSafepoints(F)) {
571     // Construct a pass manager to run the LoopPass backedge logic.  We
572     // need the pass manager to handle scheduling all the loop passes
573     // appropriately.  Doing this by hand is painful and just not worth messing
574     // with for the moment.
575     legacy::FunctionPassManager FPM(F.getParent());
576     bool CanAssumeCallSafepoints = enableCallSafepoints(F);
577     PlaceBackedgeSafepointsImpl *PBS =
578       new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
579     FPM.add(PBS);
580     FPM.run(F);
581
582     // We preserve dominance information when inserting the poll, otherwise
583     // we'd have to recalculate this on every insert
584     DT.recalculate(F);
585
586     auto &PollLocations = PBS->PollLocations;
587
588     auto OrderByBBName = [](Instruction *a, Instruction *b) {
589       return a->getParent()->getName() < b->getParent()->getName();
590     };
591     // We need the order of list to be stable so that naming ends up stable
592     // when we split edges.  This makes test cases much easier to write.
593     std::sort(PollLocations.begin(), PollLocations.end(), OrderByBBName);
594
595     // We can sometimes end up with duplicate poll locations.  This happens if
596     // a single loop is visited more than once.   The fact this happens seems
597     // wrong, but it does happen for the split-backedge.ll test case.
598     PollLocations.erase(std::unique(PollLocations.begin(),
599                                     PollLocations.end()),
600                         PollLocations.end());
601
602     // Insert a poll at each point the analysis pass identified
603     // The poll location must be the terminator of a loop latch block.
604     for (TerminatorInst *Term : PollLocations) {
605       // We are inserting a poll, the function is modified
606       modified = true;
607
608       if (SplitBackedge) {
609         // Split the backedge of the loop and insert the poll within that new
610         // basic block.  This creates a loop with two latches per original
611         // latch (which is non-ideal), but this appears to be easier to
612         // optimize in practice than inserting the poll immediately before the
613         // latch test.
614
615         // Since this is a latch, at least one of the successors must dominate
616         // it. Its possible that we have a) duplicate edges to the same header
617         // and b) edges to distinct loop headers.  We need to insert pools on
618         // each.
619         SetVector<BasicBlock *> Headers;
620         for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
621           BasicBlock *Succ = Term->getSuccessor(i);
622           if (DT.dominates(Succ, Term->getParent())) {
623             Headers.insert(Succ);
624           }
625         }
626         assert(!Headers.empty() && "poll location is not a loop latch?");
627
628         // The split loop structure here is so that we only need to recalculate
629         // the dominator tree once.  Alternatively, we could just keep it up to
630         // date and use a more natural merged loop.
631         SetVector<BasicBlock *> SplitBackedges;
632         for (BasicBlock *Header : Headers) {
633           BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
634           PollsNeeded.push_back(NewBB->getTerminator());
635           NumBackedgeSafepoints++;
636         }
637       } else {
638         // Split the latch block itself, right before the terminator.
639         PollsNeeded.push_back(Term);
640         NumBackedgeSafepoints++;
641       }
642     }
643   }
644
645   if (enableEntrySafepoints(F)) {
646     Instruction *Location = findLocationForEntrySafepoint(F, DT);
647     if (!Location) {
648       // policy choice not to insert?
649     } else {
650       PollsNeeded.push_back(Location);
651       modified = true;
652       NumEntrySafepoints++;
653     }
654   }
655
656   // Now that we've identified all the needed safepoint poll locations, insert
657   // safepoint polls themselves.
658   for (Instruction *PollLocation : PollsNeeded) {
659     std::vector<CallSite> RuntimeCalls;
660     InsertSafepointPoll(PollLocation, RuntimeCalls);
661     ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
662                             RuntimeCalls.end());
663   }
664   PollsNeeded.clear(); // make sure we don't accidentally use
665   // The dominator tree has been invalidated by the inlining performed in the
666   // above loop.  TODO: Teach the inliner how to update the dom tree?
667   DT.recalculate(F);
668
669   if (enableCallSafepoints(F)) {
670     std::vector<CallSite> Calls;
671     findCallSafepoints(F, Calls);
672     NumCallSafepoints += Calls.size();
673     ParsePointNeeded.insert(ParsePointNeeded.end(), Calls.begin(), Calls.end());
674   }
675
676   // Unique the vectors since we can end up with duplicates if we scan the call
677   // site for call safepoints after we add it for entry or backedge.  The
678   // only reason we need tracking at all is that some functions might have
679   // polls but not call safepoints and thus we might miss marking the runtime
680   // calls for the polls. (This is useful in test cases!)
681   unique_unsorted(ParsePointNeeded);
682
683   // Any parse point (no matter what source) will be handled here
684
685   // We're about to start modifying the function
686   if (!ParsePointNeeded.empty())
687     modified = true;
688
689   // Now run through and insert the safepoints, but do _NOT_ update or remove
690   // any existing uses.  We have references to live variables that need to
691   // survive to the last iteration of this loop.
692   std::vector<Value *> Results;
693   Results.reserve(ParsePointNeeded.size());
694   for (size_t i = 0; i < ParsePointNeeded.size(); i++) {
695     CallSite &CS = ParsePointNeeded[i];
696
697     // For invoke statepoints we need to remove all phi nodes at the normal
698     // destination block.
699     // Reason for this is that we can place gc_result only after last phi node
700     // in basic block. We will get malformed code after RAUW for the
701     // gc_result if one of this phi nodes uses result from the invoke.
702     if (InvokeInst *Invoke = dyn_cast<InvokeInst>(CS.getInstruction())) {
703       normalizeForInvokeSafepoint(Invoke->getNormalDest(),
704                                   Invoke->getParent());
705     }
706
707     Value *GCResult = ReplaceWithStatepoint(CS);
708     Results.push_back(GCResult);
709   }
710   assert(Results.size() == ParsePointNeeded.size());
711
712   // Adjust all users of the old call sites to use the new ones instead
713   for (size_t i = 0; i < ParsePointNeeded.size(); i++) {
714     CallSite &CS = ParsePointNeeded[i];
715     Value *GCResult = Results[i];
716     if (GCResult) {
717       // Can not RAUW for the invoke gc result in case of phi nodes preset.
718       assert(CS.isCall() || !isa<PHINode>(cast<Instruction>(GCResult)->getParent()->begin()));
719
720       // Replace all uses with the new call
721       CS.getInstruction()->replaceAllUsesWith(GCResult);
722     }
723
724     // Now that we've handled all uses, remove the original call itself
725     // Note: The insert point can't be the deleted instruction!
726     CS.getInstruction()->eraseFromParent();
727   }
728   return modified;
729 }
730
731 char PlaceBackedgeSafepointsImpl::ID = 0;
732 char PlaceSafepoints::ID = 0;
733
734 FunctionPass *llvm::createPlaceSafepointsPass() {
735   return new PlaceSafepoints();
736 }
737
738 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
739                       "place-backedge-safepoints-impl",
740                       "Place Backedge Safepoints", false, false)
741 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
742 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
743 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
744 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
745                     "place-backedge-safepoints-impl",
746                     "Place Backedge Safepoints", false, false)
747
748 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
749                       false, false)
750 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
751                     false, false)
752
753 static void
754 InsertSafepointPoll(Instruction *InsertBefore,
755                     std::vector<CallSite> &ParsePointsNeeded /*rval*/) {
756   BasicBlock *OrigBB = InsertBefore->getParent();
757   Module *M = InsertBefore->getModule();
758   assert(M && "must be part of a module");
759
760   // Inline the safepoint poll implementation - this will get all the branch,
761   // control flow, etc..  Most importantly, it will introduce the actual slow
762   // path call - where we need to insert a safepoint (parsepoint).
763
764   auto *F = M->getFunction(GCSafepointPollName);
765   assert(F && "gc.safepoint_poll function is missing");
766   assert(F->getType()->getElementType() ==
767          FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
768          "gc.safepoint_poll declared with wrong type");
769   assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
770   CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
771
772   // Record some information about the call site we're replacing
773   BasicBlock::iterator before(PollCall), after(PollCall);
774   bool isBegin(false);
775   if (before == OrigBB->begin()) {
776     isBegin = true;
777   } else {
778     before--;
779   }
780   after++;
781   assert(after != OrigBB->end() && "must have successor");
782
783   // do the actual inlining
784   InlineFunctionInfo IFI;
785   bool InlineStatus = InlineFunction(PollCall, IFI);
786   assert(InlineStatus && "inline must succeed");
787   (void)InlineStatus; // suppress warning in release-asserts
788
789   // Check post conditions
790   assert(IFI.StaticAllocas.empty() && "can't have allocs");
791
792   std::vector<CallInst *> calls; // new calls
793   std::set<BasicBlock *> BBs;    // new BBs + insertee
794   // Include only the newly inserted instructions, Note: begin may not be valid
795   // if we inserted to the beginning of the basic block
796   BasicBlock::iterator start;
797   if (isBegin) {
798     start = OrigBB->begin();
799   } else {
800     start = before;
801     start++;
802   }
803
804   // If your poll function includes an unreachable at the end, that's not
805   // valid.  Bugpoint likes to create this, so check for it.
806   assert(isPotentiallyReachable(&*start, &*after, nullptr, nullptr) &&
807          "malformed poll function");
808
809   scanInlinedCode(&*(start), &*(after), calls, BBs);
810   assert(!calls.empty() && "slow path not found for safepoint poll");
811
812   // Record the fact we need a parsable state at the runtime call contained in
813   // the poll function.  This is required so that the runtime knows how to
814   // parse the last frame when we actually take  the safepoint (i.e. execute
815   // the slow path)
816   assert(ParsePointsNeeded.empty());
817   for (size_t i = 0; i < calls.size(); i++) {
818
819     // No safepoint needed or wanted
820     if (!needsStatepoint(calls[i])) {
821       continue;
822     }
823
824     // These are likely runtime calls.  Should we assert that via calling
825     // convention or something?
826     ParsePointsNeeded.push_back(CallSite(calls[i]));
827   }
828   assert(ParsePointsNeeded.size() <= calls.size());
829 }
830
831 /// Replaces the given call site (Call or Invoke) with a gc.statepoint
832 /// intrinsic with an empty deoptimization arguments list.  This does
833 /// NOT do explicit relocation for GC support.
834 static Value *ReplaceWithStatepoint(const CallSite &CS /* to replace */) {
835   assert(CS.getInstruction()->getModule() && "must be set");
836
837   // TODO: technically, a pass is not allowed to get functions from within a
838   // function pass since it might trigger a new function addition.  Refactor
839   // this logic out to the initialization of the pass.  Doesn't appear to
840   // matter in practice.
841
842   // Then go ahead and use the builder do actually do the inserts.  We insert
843   // immediately before the previous instruction under the assumption that all
844   // arguments will be available here.  We can't insert afterwards since we may
845   // be replacing a terminator.
846   IRBuilder<> Builder(CS.getInstruction());
847
848   // Note: The gc args are not filled in at this time, that's handled by
849   // RewriteStatepointsForGC (which is currently under review).
850
851   // Create the statepoint given all the arguments
852   Instruction *Token = nullptr;
853
854   uint64_t ID;
855   uint32_t NumPatchBytes;
856
857   AttributeSet OriginalAttrs = CS.getAttributes();
858   Attribute AttrID =
859       OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, "statepoint-id");
860   Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
861       AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
862
863   AttrBuilder AttrsToRemove;
864   bool HasID = AttrID.isStringAttribute() &&
865                !AttrID.getValueAsString().getAsInteger(10, ID);
866
867   if (HasID)
868     AttrsToRemove.addAttribute("statepoint-id");
869   else
870     ID = 0xABCDEF00;
871
872   bool HasNumPatchBytes =
873       AttrNumPatchBytes.isStringAttribute() &&
874       !AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
875
876   if (HasNumPatchBytes)
877     AttrsToRemove.addAttribute("statepoint-num-patch-bytes");
878   else
879     NumPatchBytes = 0;
880
881   OriginalAttrs = OriginalAttrs.removeAttributes(
882       CS.getInstruction()->getContext(), AttributeSet::FunctionIndex,
883       AttrsToRemove);
884
885   if (CS.isCall()) {
886     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
887     CallInst *Call = Builder.CreateGCStatepointCall(
888         ID, NumPatchBytes, CS.getCalledValue(),
889         makeArrayRef(CS.arg_begin(), CS.arg_end()), None, None,
890         "safepoint_token");
891     Call->setTailCall(ToReplace->isTailCall());
892     Call->setCallingConv(ToReplace->getCallingConv());
893
894     // In case if we can handle this set of attributes - set up function
895     // attributes directly on statepoint and return attributes later for
896     // gc_result intrinsic.
897     Call->setAttributes(OriginalAttrs.getFnAttributes());
898
899     Token = Call;
900
901     // Put the following gc_result and gc_relocate calls immediately after
902     // the old call (which we're about to delete).
903     assert(ToReplace->getNextNode() && "not a terminator, must have next");
904     Builder.SetInsertPoint(ToReplace->getNextNode());
905     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
906   } else if (CS.isInvoke()) {
907     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
908
909     // Insert the new invoke into the old block.  We'll remove the old one in a
910     // moment at which point this will become the new terminator for the
911     // original block.
912     Builder.SetInsertPoint(ToReplace->getParent());
913     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
914         ID, NumPatchBytes, CS.getCalledValue(), ToReplace->getNormalDest(),
915         ToReplace->getUnwindDest(), makeArrayRef(CS.arg_begin(), CS.arg_end()),
916         None, None, "safepoint_token");
917
918     Invoke->setCallingConv(ToReplace->getCallingConv());
919
920     // In case if we can handle this set of attributes - set up function
921     // attributes directly on statepoint and return attributes later for
922     // gc_result intrinsic.
923     Invoke->setAttributes(OriginalAttrs.getFnAttributes());
924
925     Token = Invoke;
926
927     // We'll insert the gc.result into the normal block
928     BasicBlock *NormalDest = ToReplace->getNormalDest();
929     // Can not insert gc.result in case of phi nodes preset.
930     // Should have removed this cases prior to running this function
931     assert(!isa<PHINode>(NormalDest->begin()));
932     Instruction *IP = &*(NormalDest->getFirstInsertionPt());
933     Builder.SetInsertPoint(IP);
934   } else {
935     llvm_unreachable("unexpect type of CallSite");
936   }
937   assert(Token);
938
939   // Handle the return value of the original call - update all uses to use a
940   // gc_result hanging off the statepoint node we just inserted
941
942   // Only add the gc_result iff there is actually a used result
943   if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
944     std::string TakenName =
945         CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
946     CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), TakenName);
947     GCResult->setAttributes(OriginalAttrs.getRetAttributes());
948     return GCResult;
949   } else {
950     // No return value for the call.
951     return nullptr;
952   }
953 }