Use the new script to sort the includes of every file under lib.
[oota-llvm.git] / lib / Transforms / Scalar / MemCpyOptimizer.cpp
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "memcpyopt"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/DataLayout.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/IRBuilder.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/IntrinsicInst.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/GetElementPtrTypeIterator.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetLibraryInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include <list>
34 using namespace llvm;
35
36 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
37 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
38 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
39 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
40
41 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
42                                   bool &VariableIdxFound, const DataLayout &TD){
43   // Skip over the first indices.
44   gep_type_iterator GTI = gep_type_begin(GEP);
45   for (unsigned i = 1; i != Idx; ++i, ++GTI)
46     /*skip along*/;
47
48   // Compute the offset implied by the rest of the indices.
49   int64_t Offset = 0;
50   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
51     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
52     if (OpC == 0)
53       return VariableIdxFound = true;
54     if (OpC->isZero()) continue;  // No offset.
55
56     // Handle struct indices, which add their field offset to the pointer.
57     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
58       Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
59       continue;
60     }
61
62     // Otherwise, we have a sequential type like an array or vector.  Multiply
63     // the index by the ElementSize.
64     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
65     Offset += Size*OpC->getSExtValue();
66   }
67
68   return Offset;
69 }
70
71 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
72 /// constant offset, and return that constant offset.  For example, Ptr1 might
73 /// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
74 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
75                             const DataLayout &TD) {
76   Ptr1 = Ptr1->stripPointerCasts();
77   Ptr2 = Ptr2->stripPointerCasts();
78   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
79   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
80
81   bool VariableIdxFound = false;
82
83   // If one pointer is a GEP and the other isn't, then see if the GEP is a
84   // constant offset from the base, as in "P" and "gep P, 1".
85   if (GEP1 && GEP2 == 0 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
86     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
87     return !VariableIdxFound;
88   }
89
90   if (GEP2 && GEP1 == 0 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
91     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
92     return !VariableIdxFound;
93   }
94
95   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
96   // base.  After that base, they may have some number of common (and
97   // potentially variable) indices.  After that they handle some constant
98   // offset, which determines their offset from each other.  At this point, we
99   // handle no other case.
100   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
101     return false;
102
103   // Skip any common indices and track the GEP types.
104   unsigned Idx = 1;
105   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
106     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
107       break;
108
109   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
110   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
111   if (VariableIdxFound) return false;
112
113   Offset = Offset2-Offset1;
114   return true;
115 }
116
117
118 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
119 /// This allows us to analyze stores like:
120 ///   store 0 -> P+1
121 ///   store 0 -> P+0
122 ///   store 0 -> P+3
123 ///   store 0 -> P+2
124 /// which sometimes happens with stores to arrays of structs etc.  When we see
125 /// the first store, we make a range [1, 2).  The second store extends the range
126 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
127 /// two ranges into [0, 3) which is memset'able.
128 namespace {
129 struct MemsetRange {
130   // Start/End - A semi range that describes the span that this range covers.
131   // The range is closed at the start and open at the end: [Start, End).
132   int64_t Start, End;
133
134   /// StartPtr - The getelementptr instruction that points to the start of the
135   /// range.
136   Value *StartPtr;
137
138   /// Alignment - The known alignment of the first store.
139   unsigned Alignment;
140
141   /// TheStores - The actual stores that make up this range.
142   SmallVector<Instruction*, 16> TheStores;
143
144   bool isProfitableToUseMemset(const DataLayout &TD) const;
145
146 };
147 } // end anon namespace
148
149 bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const {
150   // If we found more than 4 stores to merge or 16 bytes, use memset.
151   if (TheStores.size() >= 4 || End-Start >= 16) return true;
152
153   // If there is nothing to merge, don't do anything.
154   if (TheStores.size() < 2) return false;
155
156   // If any of the stores are a memset, then it is always good to extend the
157   // memset.
158   for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
159     if (!isa<StoreInst>(TheStores[i]))
160       return true;
161
162   // Assume that the code generator is capable of merging pairs of stores
163   // together if it wants to.
164   if (TheStores.size() == 2) return false;
165
166   // If we have fewer than 8 stores, it can still be worthwhile to do this.
167   // For example, merging 4 i8 stores into an i32 store is useful almost always.
168   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
169   // memset will be split into 2 32-bit stores anyway) and doing so can
170   // pessimize the llvm optimizer.
171   //
172   // Since we don't have perfect knowledge here, make some assumptions: assume
173   // the maximum GPR width is the same size as the pointer size and assume that
174   // this width can be stored.  If so, check to see whether we will end up
175   // actually reducing the number of stores used.
176   unsigned Bytes = unsigned(End-Start);
177   unsigned NumPointerStores = Bytes/TD.getPointerSize();
178
179   // Assume the remaining bytes if any are done a byte at a time.
180   unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
181
182   // If we will reduce the # stores (according to this heuristic), do the
183   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
184   // etc.
185   return TheStores.size() > NumPointerStores+NumByteStores;
186 }
187
188
189 namespace {
190 class MemsetRanges {
191   /// Ranges - A sorted list of the memset ranges.  We use std::list here
192   /// because each element is relatively large and expensive to copy.
193   std::list<MemsetRange> Ranges;
194   typedef std::list<MemsetRange>::iterator range_iterator;
195   const DataLayout &TD;
196 public:
197   MemsetRanges(const DataLayout &td) : TD(td) {}
198
199   typedef std::list<MemsetRange>::const_iterator const_iterator;
200   const_iterator begin() const { return Ranges.begin(); }
201   const_iterator end() const { return Ranges.end(); }
202   bool empty() const { return Ranges.empty(); }
203
204   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
205     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
206       addStore(OffsetFromFirst, SI);
207     else
208       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
209   }
210
211   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
212     int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
213
214     addRange(OffsetFromFirst, StoreSize,
215              SI->getPointerOperand(), SI->getAlignment(), SI);
216   }
217
218   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
219     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
220     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
221   }
222
223   void addRange(int64_t Start, int64_t Size, Value *Ptr,
224                 unsigned Alignment, Instruction *Inst);
225
226 };
227
228 } // end anon namespace
229
230
231 /// addRange - Add a new store to the MemsetRanges data structure.  This adds a
232 /// new range for the specified store at the specified offset, merging into
233 /// existing ranges as appropriate.
234 ///
235 /// Do a linear search of the ranges to see if this can be joined and/or to
236 /// find the insertion point in the list.  We keep the ranges sorted for
237 /// simplicity here.  This is a linear search of a linked list, which is ugly,
238 /// however the number of ranges is limited, so this won't get crazy slow.
239 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
240                             unsigned Alignment, Instruction *Inst) {
241   int64_t End = Start+Size;
242   range_iterator I = Ranges.begin(), E = Ranges.end();
243
244   while (I != E && Start > I->End)
245     ++I;
246
247   // We now know that I == E, in which case we didn't find anything to merge
248   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
249   // to insert a new range.  Handle this now.
250   if (I == E || End < I->Start) {
251     MemsetRange &R = *Ranges.insert(I, MemsetRange());
252     R.Start        = Start;
253     R.End          = End;
254     R.StartPtr     = Ptr;
255     R.Alignment    = Alignment;
256     R.TheStores.push_back(Inst);
257     return;
258   }
259
260   // This store overlaps with I, add it.
261   I->TheStores.push_back(Inst);
262
263   // At this point, we may have an interval that completely contains our store.
264   // If so, just add it to the interval and return.
265   if (I->Start <= Start && I->End >= End)
266     return;
267
268   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
269   // but is not entirely contained within the range.
270
271   // See if the range extends the start of the range.  In this case, it couldn't
272   // possibly cause it to join the prior range, because otherwise we would have
273   // stopped on *it*.
274   if (Start < I->Start) {
275     I->Start = Start;
276     I->StartPtr = Ptr;
277     I->Alignment = Alignment;
278   }
279
280   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
281   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
282   // End.
283   if (End > I->End) {
284     I->End = End;
285     range_iterator NextI = I;
286     while (++NextI != E && End >= NextI->Start) {
287       // Merge the range in.
288       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
289       if (NextI->End > I->End)
290         I->End = NextI->End;
291       Ranges.erase(NextI);
292       NextI = I;
293     }
294   }
295 }
296
297 //===----------------------------------------------------------------------===//
298 //                         MemCpyOpt Pass
299 //===----------------------------------------------------------------------===//
300
301 namespace {
302   class MemCpyOpt : public FunctionPass {
303     MemoryDependenceAnalysis *MD;
304     TargetLibraryInfo *TLI;
305     const DataLayout *TD;
306   public:
307     static char ID; // Pass identification, replacement for typeid
308     MemCpyOpt() : FunctionPass(ID) {
309       initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
310       MD = 0;
311       TLI = 0;
312       TD = 0;
313     }
314
315     bool runOnFunction(Function &F);
316
317   private:
318     // This transformation requires dominator postdominator info
319     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
320       AU.setPreservesCFG();
321       AU.addRequired<DominatorTree>();
322       AU.addRequired<MemoryDependenceAnalysis>();
323       AU.addRequired<AliasAnalysis>();
324       AU.addRequired<TargetLibraryInfo>();
325       AU.addPreserved<AliasAnalysis>();
326       AU.addPreserved<MemoryDependenceAnalysis>();
327     }
328
329     // Helper fuctions
330     bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
331     bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
332     bool processMemCpy(MemCpyInst *M);
333     bool processMemMove(MemMoveInst *M);
334     bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
335                               uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
336     bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
337                                        uint64_t MSize);
338     bool processByValArgument(CallSite CS, unsigned ArgNo);
339     Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
340                                       Value *ByteVal);
341
342     bool iterateOnFunction(Function &F);
343   };
344
345   char MemCpyOpt::ID = 0;
346 }
347
348 // createMemCpyOptPass - The public interface to this file...
349 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
350
351 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
352                       false, false)
353 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
354 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
355 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
356 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
357 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
358                     false, false)
359
360 /// tryMergingIntoMemset - When scanning forward over instructions, we look for
361 /// some other patterns to fold away.  In particular, this looks for stores to
362 /// neighboring locations of memory.  If it sees enough consecutive ones, it
363 /// attempts to merge them together into a memcpy/memset.
364 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
365                                              Value *StartPtr, Value *ByteVal) {
366   if (TD == 0) return 0;
367
368   // Okay, so we now have a single store that can be splatable.  Scan to find
369   // all subsequent stores of the same value to offset from the same pointer.
370   // Join these together into ranges, so we can decide whether contiguous blocks
371   // are stored.
372   MemsetRanges Ranges(*TD);
373
374   BasicBlock::iterator BI = StartInst;
375   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
376     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
377       // If the instruction is readnone, ignore it, otherwise bail out.  We
378       // don't even allow readonly here because we don't want something like:
379       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
380       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
381         break;
382       continue;
383     }
384
385     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
386       // If this is a store, see if we can merge it in.
387       if (!NextStore->isSimple()) break;
388
389       // Check to see if this stored value is of the same byte-splattable value.
390       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
391         break;
392
393       // Check to see if this store is to a constant offset from the start ptr.
394       int64_t Offset;
395       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
396                            Offset, *TD))
397         break;
398
399       Ranges.addStore(Offset, NextStore);
400     } else {
401       MemSetInst *MSI = cast<MemSetInst>(BI);
402
403       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
404           !isa<ConstantInt>(MSI->getLength()))
405         break;
406
407       // Check to see if this store is to a constant offset from the start ptr.
408       int64_t Offset;
409       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD))
410         break;
411
412       Ranges.addMemSet(Offset, MSI);
413     }
414   }
415
416   // If we have no ranges, then we just had a single store with nothing that
417   // could be merged in.  This is a very common case of course.
418   if (Ranges.empty())
419     return 0;
420
421   // If we had at least one store that could be merged in, add the starting
422   // store as well.  We try to avoid this unless there is at least something
423   // interesting as a small compile-time optimization.
424   Ranges.addInst(0, StartInst);
425
426   // If we create any memsets, we put it right before the first instruction that
427   // isn't part of the memset block.  This ensure that the memset is dominated
428   // by any addressing instruction needed by the start of the block.
429   IRBuilder<> Builder(BI);
430
431   // Now that we have full information about ranges, loop over the ranges and
432   // emit memset's for anything big enough to be worthwhile.
433   Instruction *AMemSet = 0;
434   for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
435        I != E; ++I) {
436     const MemsetRange &Range = *I;
437
438     if (Range.TheStores.size() == 1) continue;
439
440     // If it is profitable to lower this range to memset, do so now.
441     if (!Range.isProfitableToUseMemset(*TD))
442       continue;
443
444     // Otherwise, we do want to transform this!  Create a new memset.
445     // Get the starting pointer of the block.
446     StartPtr = Range.StartPtr;
447
448     // Determine alignment
449     unsigned Alignment = Range.Alignment;
450     if (Alignment == 0) {
451       Type *EltType =
452         cast<PointerType>(StartPtr->getType())->getElementType();
453       Alignment = TD->getABITypeAlignment(EltType);
454     }
455
456     AMemSet =
457       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
458
459     DEBUG(dbgs() << "Replace stores:\n";
460           for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
461             dbgs() << *Range.TheStores[i] << '\n';
462           dbgs() << "With: " << *AMemSet << '\n');
463
464     if (!Range.TheStores.empty())
465       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
466
467     // Zap all the stores.
468     for (SmallVector<Instruction*, 16>::const_iterator
469          SI = Range.TheStores.begin(),
470          SE = Range.TheStores.end(); SI != SE; ++SI) {
471       MD->removeInstruction(*SI);
472       (*SI)->eraseFromParent();
473     }
474     ++NumMemSetInfer;
475   }
476
477   return AMemSet;
478 }
479
480
481 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
482   if (!SI->isSimple()) return false;
483
484   if (TD == 0) return false;
485
486   // Detect cases where we're performing call slot forwarding, but
487   // happen to be using a load-store pair to implement it, rather than
488   // a memcpy.
489   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
490     if (LI->isSimple() && LI->hasOneUse() &&
491         LI->getParent() == SI->getParent()) {
492       MemDepResult ldep = MD->getDependency(LI);
493       CallInst *C = 0;
494       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
495         C = dyn_cast<CallInst>(ldep.getInst());
496
497       if (C) {
498         // Check that nothing touches the dest of the "copy" between
499         // the call and the store.
500         AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
501         AliasAnalysis::Location StoreLoc = AA.getLocation(SI);
502         for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
503                                   E = C; I != E; --I) {
504           if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
505             C = 0;
506             break;
507           }
508         }
509       }
510
511       if (C) {
512         unsigned storeAlign = SI->getAlignment();
513         if (!storeAlign)
514           storeAlign = TD->getABITypeAlignment(SI->getOperand(0)->getType());
515         unsigned loadAlign = LI->getAlignment();
516         if (!loadAlign)
517           loadAlign = TD->getABITypeAlignment(LI->getType());
518
519         bool changed = performCallSlotOptzn(LI,
520                         SI->getPointerOperand()->stripPointerCasts(),
521                         LI->getPointerOperand()->stripPointerCasts(),
522                         TD->getTypeStoreSize(SI->getOperand(0)->getType()),
523                         std::min(storeAlign, loadAlign), C);
524         if (changed) {
525           MD->removeInstruction(SI);
526           SI->eraseFromParent();
527           MD->removeInstruction(LI);
528           LI->eraseFromParent();
529           ++NumMemCpyInstr;
530           return true;
531         }
532       }
533     }
534   }
535
536   // There are two cases that are interesting for this code to handle: memcpy
537   // and memset.  Right now we only handle memset.
538
539   // Ensure that the value being stored is something that can be memset'able a
540   // byte at a time like "0" or "-1" or any width, as well as things like
541   // 0xA0A0A0A0 and 0.0.
542   if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
543     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
544                                               ByteVal)) {
545       BBI = I;  // Don't invalidate iterator.
546       return true;
547     }
548
549   return false;
550 }
551
552 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
553   // See if there is another memset or store neighboring this memset which
554   // allows us to widen out the memset to do a single larger store.
555   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
556     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
557                                               MSI->getValue())) {
558       BBI = I;  // Don't invalidate iterator.
559       return true;
560     }
561   return false;
562 }
563
564
565 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
566 /// and checks for the possibility of a call slot optimization by having
567 /// the call write its result directly into the destination of the memcpy.
568 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
569                                      Value *cpyDest, Value *cpySrc,
570                                      uint64_t cpyLen, unsigned cpyAlign,
571                                      CallInst *C) {
572   // The general transformation to keep in mind is
573   //
574   //   call @func(..., src, ...)
575   //   memcpy(dest, src, ...)
576   //
577   // ->
578   //
579   //   memcpy(dest, src, ...)
580   //   call @func(..., dest, ...)
581   //
582   // Since moving the memcpy is technically awkward, we additionally check that
583   // src only holds uninitialized values at the moment of the call, meaning that
584   // the memcpy can be discarded rather than moved.
585
586   // Deliberately get the source and destination with bitcasts stripped away,
587   // because we'll need to do type comparisons based on the underlying type.
588   CallSite CS(C);
589
590   // Require that src be an alloca.  This simplifies the reasoning considerably.
591   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
592   if (!srcAlloca)
593     return false;
594
595   // Check that all of src is copied to dest.
596   if (TD == 0) return false;
597
598   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
599   if (!srcArraySize)
600     return false;
601
602   uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
603     srcArraySize->getZExtValue();
604
605   if (cpyLen < srcSize)
606     return false;
607
608   // Check that accessing the first srcSize bytes of dest will not cause a
609   // trap.  Otherwise the transform is invalid since it might cause a trap
610   // to occur earlier than it otherwise would.
611   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
612     // The destination is an alloca.  Check it is larger than srcSize.
613     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
614     if (!destArraySize)
615       return false;
616
617     uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
618       destArraySize->getZExtValue();
619
620     if (destSize < srcSize)
621       return false;
622   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
623     // If the destination is an sret parameter then only accesses that are
624     // outside of the returned struct type can trap.
625     if (!A->hasStructRetAttr())
626       return false;
627
628     Type *StructTy = cast<PointerType>(A->getType())->getElementType();
629     uint64_t destSize = TD->getTypeAllocSize(StructTy);
630
631     if (destSize < srcSize)
632       return false;
633   } else {
634     return false;
635   }
636
637   // Check that dest points to memory that is at least as aligned as src.
638   unsigned srcAlign = srcAlloca->getAlignment();
639   if (!srcAlign)
640     srcAlign = TD->getABITypeAlignment(srcAlloca->getAllocatedType());
641   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
642   // If dest is not aligned enough and we can't increase its alignment then
643   // bail out.
644   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
645     return false;
646
647   // Check that src is not accessed except via the call and the memcpy.  This
648   // guarantees that it holds only undefined values when passed in (so the final
649   // memcpy can be dropped), that it is not read or written between the call and
650   // the memcpy, and that writing beyond the end of it is undefined.
651   SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
652                                    srcAlloca->use_end());
653   while (!srcUseList.empty()) {
654     User *UI = srcUseList.pop_back_val();
655
656     if (isa<BitCastInst>(UI)) {
657       for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
658            I != E; ++I)
659         srcUseList.push_back(*I);
660     } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
661       if (G->hasAllZeroIndices())
662         for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
663              I != E; ++I)
664           srcUseList.push_back(*I);
665       else
666         return false;
667     } else if (UI != C && UI != cpy) {
668       return false;
669     }
670   }
671
672   // Since we're changing the parameter to the callsite, we need to make sure
673   // that what would be the new parameter dominates the callsite.
674   DominatorTree &DT = getAnalysis<DominatorTree>();
675   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
676     if (!DT.dominates(cpyDestInst, C))
677       return false;
678
679   // In addition to knowing that the call does not access src in some
680   // unexpected manner, for example via a global, which we deduce from
681   // the use analysis, we also need to know that it does not sneakily
682   // access dest.  We rely on AA to figure this out for us.
683   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
684   AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize);
685   // If necessary, perform additional analysis.
686   if (MR != AliasAnalysis::NoModRef)
687     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
688   if (MR != AliasAnalysis::NoModRef)
689     return false;
690
691   // All the checks have passed, so do the transformation.
692   bool changedArgument = false;
693   for (unsigned i = 0; i < CS.arg_size(); ++i)
694     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
695       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
696         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
697                                       cpyDest->getName(), C);
698       changedArgument = true;
699       if (CS.getArgument(i)->getType() == Dest->getType())
700         CS.setArgument(i, Dest);
701       else
702         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
703                           CS.getArgument(i)->getType(), Dest->getName(), C));
704     }
705
706   if (!changedArgument)
707     return false;
708
709   // If the destination wasn't sufficiently aligned then increase its alignment.
710   if (!isDestSufficientlyAligned) {
711     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
712     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
713   }
714
715   // Drop any cached information about the call, because we may have changed
716   // its dependence information by changing its parameter.
717   MD->removeInstruction(C);
718
719   // Remove the memcpy.
720   MD->removeInstruction(cpy);
721   ++NumMemCpyInstr;
722
723   return true;
724 }
725
726 /// processMemCpyMemCpyDependence - We've found that the (upward scanning)
727 /// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
728 /// copy from MDep's input if we can.  MSize is the size of M's copy.
729 ///
730 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
731                                               uint64_t MSize) {
732   // We can only transforms memcpy's where the dest of one is the source of the
733   // other.
734   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
735     return false;
736
737   // If dep instruction is reading from our current input, then it is a noop
738   // transfer and substituting the input won't change this instruction.  Just
739   // ignore the input and let someone else zap MDep.  This handles cases like:
740   //    memcpy(a <- a)
741   //    memcpy(b <- a)
742   if (M->getSource() == MDep->getSource())
743     return false;
744
745   // Second, the length of the memcpy's must be the same, or the preceding one
746   // must be larger than the following one.
747   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
748   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
749   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
750     return false;
751
752   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
753
754   // Verify that the copied-from memory doesn't change in between the two
755   // transfers.  For example, in:
756   //    memcpy(a <- b)
757   //    *b = 42;
758   //    memcpy(c <- a)
759   // It would be invalid to transform the second memcpy into memcpy(c <- b).
760   //
761   // TODO: If the code between M and MDep is transparent to the destination "c",
762   // then we could still perform the xform by moving M up to the first memcpy.
763   //
764   // NOTE: This is conservative, it will stop on any read from the source loc,
765   // not just the defining memcpy.
766   MemDepResult SourceDep =
767     MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
768                                  false, M, M->getParent());
769   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
770     return false;
771
772   // If the dest of the second might alias the source of the first, then the
773   // source and dest might overlap.  We still want to eliminate the intermediate
774   // value, but we have to generate a memmove instead of memcpy.
775   bool UseMemMove = false;
776   if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
777     UseMemMove = true;
778
779   // If all checks passed, then we can transform M.
780
781   // Make sure to use the lesser of the alignment of the source and the dest
782   // since we're changing where we're reading from, but don't want to increase
783   // the alignment past what can be read from or written to.
784   // TODO: Is this worth it if we're creating a less aligned memcpy? For
785   // example we could be moving from movaps -> movq on x86.
786   unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
787
788   IRBuilder<> Builder(M);
789   if (UseMemMove)
790     Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
791                           Align, M->isVolatile());
792   else
793     Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
794                          Align, M->isVolatile());
795
796   // Remove the instruction we're replacing.
797   MD->removeInstruction(M);
798   M->eraseFromParent();
799   ++NumMemCpyInstr;
800   return true;
801 }
802
803
804 /// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
805 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
806 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
807 /// circumstances). This allows later passes to remove the first memcpy
808 /// altogether.
809 bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
810   // We can only optimize statically-sized memcpy's that are non-volatile.
811   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
812   if (CopySize == 0 || M->isVolatile()) return false;
813
814   // If the source and destination of the memcpy are the same, then zap it.
815   if (M->getSource() == M->getDest()) {
816     MD->removeInstruction(M);
817     M->eraseFromParent();
818     return false;
819   }
820
821   // If copying from a constant, try to turn the memcpy into a memset.
822   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
823     if (GV->isConstant() && GV->hasDefinitiveInitializer())
824       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
825         IRBuilder<> Builder(M);
826         Builder.CreateMemSet(M->getRawDest(), ByteVal, CopySize,
827                              M->getAlignment(), false);
828         MD->removeInstruction(M);
829         M->eraseFromParent();
830         ++NumCpyToSet;
831         return true;
832       }
833
834   // The are two possible optimizations we can do for memcpy:
835   //   a) memcpy-memcpy xform which exposes redundance for DSE.
836   //   b) call-memcpy xform for return slot optimization.
837   MemDepResult DepInfo = MD->getDependency(M);
838   if (DepInfo.isClobber()) {
839     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
840       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
841                                CopySize->getZExtValue(), M->getAlignment(),
842                                C)) {
843         MD->removeInstruction(M);
844         M->eraseFromParent();
845         return true;
846       }
847     }
848   }
849
850   AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M);
851   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true,
852                                                          M, M->getParent());
853   if (SrcDepInfo.isClobber()) {
854     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
855       return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
856   }
857
858   return false;
859 }
860
861 /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
862 /// are guaranteed not to alias.
863 bool MemCpyOpt::processMemMove(MemMoveInst *M) {
864   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
865
866   if (!TLI->has(LibFunc::memmove))
867     return false;
868
869   // See if the pointers alias.
870   if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
871     return false;
872
873   DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
874
875   // If not, then we know we can transform this.
876   Module *Mod = M->getParent()->getParent()->getParent();
877   Type *ArgTys[3] = { M->getRawDest()->getType(),
878                       M->getRawSource()->getType(),
879                       M->getLength()->getType() };
880   M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
881                                                  ArgTys));
882
883   // MemDep may have over conservative information about this instruction, just
884   // conservatively flush it from the cache.
885   MD->removeInstruction(M);
886
887   ++NumMoveToCpy;
888   return true;
889 }
890
891 /// processByValArgument - This is called on every byval argument in call sites.
892 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
893   if (TD == 0) return false;
894
895   // Find out what feeds this byval argument.
896   Value *ByValArg = CS.getArgument(ArgNo);
897   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
898   uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
899   MemDepResult DepInfo =
900     MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
901                                  true, CS.getInstruction(),
902                                  CS.getInstruction()->getParent());
903   if (!DepInfo.isClobber())
904     return false;
905
906   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
907   // a memcpy, see if we can byval from the source of the memcpy instead of the
908   // result.
909   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
910   if (MDep == 0 || MDep->isVolatile() ||
911       ByValArg->stripPointerCasts() != MDep->getDest())
912     return false;
913
914   // The length of the memcpy must be larger or equal to the size of the byval.
915   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
916   if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
917     return false;
918
919   // Get the alignment of the byval.  If the call doesn't specify the alignment,
920   // then it is some target specific value that we can't know.
921   unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
922   if (ByValAlign == 0) return false;
923
924   // If it is greater than the memcpy, then we check to see if we can force the
925   // source of the memcpy to the alignment we need.  If we fail, we bail out.
926   if (MDep->getAlignment() < ByValAlign &&
927       getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, TD) < ByValAlign)
928     return false;
929
930   // Verify that the copied-from memory doesn't change in between the memcpy and
931   // the byval call.
932   //    memcpy(a <- b)
933   //    *b = 42;
934   //    foo(*a)
935   // It would be invalid to transform the second memcpy into foo(*b).
936   //
937   // NOTE: This is conservative, it will stop on any read from the source loc,
938   // not just the defining memcpy.
939   MemDepResult SourceDep =
940     MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
941                                  false, CS.getInstruction(), MDep->getParent());
942   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
943     return false;
944
945   Value *TmpCast = MDep->getSource();
946   if (MDep->getSource()->getType() != ByValArg->getType())
947     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
948                               "tmpcast", CS.getInstruction());
949
950   DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
951                << "  " << *MDep << "\n"
952                << "  " << *CS.getInstruction() << "\n");
953
954   // Otherwise we're good!  Update the byval argument.
955   CS.setArgument(ArgNo, TmpCast);
956   ++NumMemCpyInstr;
957   return true;
958 }
959
960 /// iterateOnFunction - Executes one iteration of MemCpyOpt.
961 bool MemCpyOpt::iterateOnFunction(Function &F) {
962   bool MadeChange = false;
963
964   // Walk all instruction in the function.
965   for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
966     for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
967       // Avoid invalidating the iterator.
968       Instruction *I = BI++;
969
970       bool RepeatInstruction = false;
971
972       if (StoreInst *SI = dyn_cast<StoreInst>(I))
973         MadeChange |= processStore(SI, BI);
974       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
975         RepeatInstruction = processMemSet(M, BI);
976       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
977         RepeatInstruction = processMemCpy(M);
978       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
979         RepeatInstruction = processMemMove(M);
980       else if (CallSite CS = (Value*)I) {
981         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
982           if (CS.isByValArgument(i))
983             MadeChange |= processByValArgument(CS, i);
984       }
985
986       // Reprocess the instruction if desired.
987       if (RepeatInstruction) {
988         if (BI != BB->begin()) --BI;
989         MadeChange = true;
990       }
991     }
992   }
993
994   return MadeChange;
995 }
996
997 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
998 // function.
999 //
1000 bool MemCpyOpt::runOnFunction(Function &F) {
1001   bool MadeChange = false;
1002   MD = &getAnalysis<MemoryDependenceAnalysis>();
1003   TD = getAnalysisIfAvailable<DataLayout>();
1004   TLI = &getAnalysis<TargetLibraryInfo>();
1005
1006   // If we don't have at least memset and memcpy, there is little point of doing
1007   // anything here.  These are required by a freestanding implementation, so if
1008   // even they are disabled, there is no point in trying hard.
1009   if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
1010     return false;
1011
1012   while (1) {
1013     if (!iterateOnFunction(F))
1014       break;
1015     MadeChange = true;
1016   }
1017
1018   MD = 0;
1019   return MadeChange;
1020 }