Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used.
[oota-llvm.git] / lib / Transforms / Scalar / MemCpyOptimizer.cpp
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include <list>
34 using namespace llvm;
35
36 #define DEBUG_TYPE "memcpyopt"
37
38 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
39 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
40 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
41 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
42
43 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
44                                   bool &VariableIdxFound,
45                                   const DataLayout &DL) {
46   // Skip over the first indices.
47   gep_type_iterator GTI = gep_type_begin(GEP);
48   for (unsigned i = 1; i != Idx; ++i, ++GTI)
49     /*skip along*/;
50
51   // Compute the offset implied by the rest of the indices.
52   int64_t Offset = 0;
53   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
54     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
55     if (!OpC)
56       return VariableIdxFound = true;
57     if (OpC->isZero()) continue;  // No offset.
58
59     // Handle struct indices, which add their field offset to the pointer.
60     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
61       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
62       continue;
63     }
64
65     // Otherwise, we have a sequential type like an array or vector.  Multiply
66     // the index by the ElementSize.
67     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
68     Offset += Size*OpC->getSExtValue();
69   }
70
71   return Offset;
72 }
73
74 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
75 /// constant offset, and return that constant offset.  For example, Ptr1 might
76 /// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
77 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
78                             const DataLayout &DL) {
79   Ptr1 = Ptr1->stripPointerCasts();
80   Ptr2 = Ptr2->stripPointerCasts();
81
82   // Handle the trivial case first.
83   if (Ptr1 == Ptr2) {
84     Offset = 0;
85     return true;
86   }
87
88   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
89   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
90
91   bool VariableIdxFound = false;
92
93   // If one pointer is a GEP and the other isn't, then see if the GEP is a
94   // constant offset from the base, as in "P" and "gep P, 1".
95   if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
96     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
97     return !VariableIdxFound;
98   }
99
100   if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
101     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
102     return !VariableIdxFound;
103   }
104
105   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
106   // base.  After that base, they may have some number of common (and
107   // potentially variable) indices.  After that they handle some constant
108   // offset, which determines their offset from each other.  At this point, we
109   // handle no other case.
110   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
111     return false;
112
113   // Skip any common indices and track the GEP types.
114   unsigned Idx = 1;
115   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
116     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
117       break;
118
119   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
120   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
121   if (VariableIdxFound) return false;
122
123   Offset = Offset2-Offset1;
124   return true;
125 }
126
127
128 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
129 /// This allows us to analyze stores like:
130 ///   store 0 -> P+1
131 ///   store 0 -> P+0
132 ///   store 0 -> P+3
133 ///   store 0 -> P+2
134 /// which sometimes happens with stores to arrays of structs etc.  When we see
135 /// the first store, we make a range [1, 2).  The second store extends the range
136 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
137 /// two ranges into [0, 3) which is memset'able.
138 namespace {
139 struct MemsetRange {
140   // Start/End - A semi range that describes the span that this range covers.
141   // The range is closed at the start and open at the end: [Start, End).
142   int64_t Start, End;
143
144   /// StartPtr - The getelementptr instruction that points to the start of the
145   /// range.
146   Value *StartPtr;
147
148   /// Alignment - The known alignment of the first store.
149   unsigned Alignment;
150
151   /// TheStores - The actual stores that make up this range.
152   SmallVector<Instruction*, 16> TheStores;
153
154   bool isProfitableToUseMemset(const DataLayout &DL) const;
155 };
156 } // end anon namespace
157
158 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
159   // If we found more than 4 stores to merge or 16 bytes, use memset.
160   if (TheStores.size() >= 4 || End-Start >= 16) return true;
161
162   // If there is nothing to merge, don't do anything.
163   if (TheStores.size() < 2) return false;
164
165   // If any of the stores are a memset, then it is always good to extend the
166   // memset.
167   for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
168     if (!isa<StoreInst>(TheStores[i]))
169       return true;
170
171   // Assume that the code generator is capable of merging pairs of stores
172   // together if it wants to.
173   if (TheStores.size() == 2) return false;
174
175   // If we have fewer than 8 stores, it can still be worthwhile to do this.
176   // For example, merging 4 i8 stores into an i32 store is useful almost always.
177   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
178   // memset will be split into 2 32-bit stores anyway) and doing so can
179   // pessimize the llvm optimizer.
180   //
181   // Since we don't have perfect knowledge here, make some assumptions: assume
182   // the maximum GPR width is the same size as the largest legal integer
183   // size. If so, check to see whether we will end up actually reducing the
184   // number of stores used.
185   unsigned Bytes = unsigned(End-Start);
186   unsigned MaxIntSize = DL.getLargestLegalIntTypeSize();
187   if (MaxIntSize == 0)
188     MaxIntSize = 1;
189   unsigned NumPointerStores = Bytes / MaxIntSize;
190
191   // Assume the remaining bytes if any are done a byte at a time.
192   unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize;
193
194   // If we will reduce the # stores (according to this heuristic), do the
195   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
196   // etc.
197   return TheStores.size() > NumPointerStores+NumByteStores;
198 }
199
200
201 namespace {
202 class MemsetRanges {
203   /// Ranges - A sorted list of the memset ranges.  We use std::list here
204   /// because each element is relatively large and expensive to copy.
205   std::list<MemsetRange> Ranges;
206   typedef std::list<MemsetRange>::iterator range_iterator;
207   const DataLayout &DL;
208 public:
209   MemsetRanges(const DataLayout &DL) : DL(DL) {}
210
211   typedef std::list<MemsetRange>::const_iterator const_iterator;
212   const_iterator begin() const { return Ranges.begin(); }
213   const_iterator end() const { return Ranges.end(); }
214   bool empty() const { return Ranges.empty(); }
215
216   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
217     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
218       addStore(OffsetFromFirst, SI);
219     else
220       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
221   }
222
223   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
224     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
225
226     addRange(OffsetFromFirst, StoreSize,
227              SI->getPointerOperand(), SI->getAlignment(), SI);
228   }
229
230   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
231     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
232     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
233   }
234
235   void addRange(int64_t Start, int64_t Size, Value *Ptr,
236                 unsigned Alignment, Instruction *Inst);
237
238 };
239
240 } // end anon namespace
241
242
243 /// addRange - Add a new store to the MemsetRanges data structure.  This adds a
244 /// new range for the specified store at the specified offset, merging into
245 /// existing ranges as appropriate.
246 ///
247 /// Do a linear search of the ranges to see if this can be joined and/or to
248 /// find the insertion point in the list.  We keep the ranges sorted for
249 /// simplicity here.  This is a linear search of a linked list, which is ugly,
250 /// however the number of ranges is limited, so this won't get crazy slow.
251 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
252                             unsigned Alignment, Instruction *Inst) {
253   int64_t End = Start+Size;
254   range_iterator I = Ranges.begin(), E = Ranges.end();
255
256   while (I != E && Start > I->End)
257     ++I;
258
259   // We now know that I == E, in which case we didn't find anything to merge
260   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
261   // to insert a new range.  Handle this now.
262   if (I == E || End < I->Start) {
263     MemsetRange &R = *Ranges.insert(I, MemsetRange());
264     R.Start        = Start;
265     R.End          = End;
266     R.StartPtr     = Ptr;
267     R.Alignment    = Alignment;
268     R.TheStores.push_back(Inst);
269     return;
270   }
271
272   // This store overlaps with I, add it.
273   I->TheStores.push_back(Inst);
274
275   // At this point, we may have an interval that completely contains our store.
276   // If so, just add it to the interval and return.
277   if (I->Start <= Start && I->End >= End)
278     return;
279
280   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
281   // but is not entirely contained within the range.
282
283   // See if the range extends the start of the range.  In this case, it couldn't
284   // possibly cause it to join the prior range, because otherwise we would have
285   // stopped on *it*.
286   if (Start < I->Start) {
287     I->Start = Start;
288     I->StartPtr = Ptr;
289     I->Alignment = Alignment;
290   }
291
292   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
293   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
294   // End.
295   if (End > I->End) {
296     I->End = End;
297     range_iterator NextI = I;
298     while (++NextI != E && End >= NextI->Start) {
299       // Merge the range in.
300       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
301       if (NextI->End > I->End)
302         I->End = NextI->End;
303       Ranges.erase(NextI);
304       NextI = I;
305     }
306   }
307 }
308
309 //===----------------------------------------------------------------------===//
310 //                         MemCpyOpt Pass
311 //===----------------------------------------------------------------------===//
312
313 namespace {
314   class MemCpyOpt : public FunctionPass {
315     MemoryDependenceAnalysis *MD;
316     TargetLibraryInfo *TLI;
317   public:
318     static char ID; // Pass identification, replacement for typeid
319     MemCpyOpt() : FunctionPass(ID) {
320       initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
321       MD = nullptr;
322       TLI = nullptr;
323     }
324
325     bool runOnFunction(Function &F) override;
326
327   private:
328     // This transformation requires dominator postdominator info
329     void getAnalysisUsage(AnalysisUsage &AU) const override {
330       AU.setPreservesCFG();
331       AU.addRequired<AssumptionCacheTracker>();
332       AU.addRequired<DominatorTreeWrapperPass>();
333       AU.addRequired<MemoryDependenceAnalysis>();
334       AU.addRequired<AliasAnalysis>();
335       AU.addRequired<TargetLibraryInfoWrapperPass>();
336       AU.addPreserved<AliasAnalysis>();
337       AU.addPreserved<MemoryDependenceAnalysis>();
338     }
339
340     // Helper fuctions
341     bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
342     bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
343     bool processMemCpy(MemCpyInst *M);
344     bool processMemMove(MemMoveInst *M);
345     bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
346                               uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
347     bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
348                                        uint64_t MSize);
349     bool processByValArgument(CallSite CS, unsigned ArgNo);
350     Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
351                                       Value *ByteVal);
352
353     bool iterateOnFunction(Function &F);
354   };
355
356   char MemCpyOpt::ID = 0;
357 }
358
359 // createMemCpyOptPass - The public interface to this file...
360 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
361
362 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
363                       false, false)
364 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
365 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
366 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
367 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
368 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
369 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
370                     false, false)
371
372 /// tryMergingIntoMemset - When scanning forward over instructions, we look for
373 /// some other patterns to fold away.  In particular, this looks for stores to
374 /// neighboring locations of memory.  If it sees enough consecutive ones, it
375 /// attempts to merge them together into a memcpy/memset.
376 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
377                                              Value *StartPtr, Value *ByteVal) {
378   const DataLayout &DL = StartInst->getModule()->getDataLayout();
379
380   // Okay, so we now have a single store that can be splatable.  Scan to find
381   // all subsequent stores of the same value to offset from the same pointer.
382   // Join these together into ranges, so we can decide whether contiguous blocks
383   // are stored.
384   MemsetRanges Ranges(DL);
385
386   BasicBlock::iterator BI = StartInst;
387   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
388     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
389       // If the instruction is readnone, ignore it, otherwise bail out.  We
390       // don't even allow readonly here because we don't want something like:
391       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
392       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
393         break;
394       continue;
395     }
396
397     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
398       // If this is a store, see if we can merge it in.
399       if (!NextStore->isSimple()) break;
400
401       // Check to see if this stored value is of the same byte-splattable value.
402       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
403         break;
404
405       // Check to see if this store is to a constant offset from the start ptr.
406       int64_t Offset;
407       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
408                            DL))
409         break;
410
411       Ranges.addStore(Offset, NextStore);
412     } else {
413       MemSetInst *MSI = cast<MemSetInst>(BI);
414
415       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
416           !isa<ConstantInt>(MSI->getLength()))
417         break;
418
419       // Check to see if this store is to a constant offset from the start ptr.
420       int64_t Offset;
421       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
422         break;
423
424       Ranges.addMemSet(Offset, MSI);
425     }
426   }
427
428   // If we have no ranges, then we just had a single store with nothing that
429   // could be merged in.  This is a very common case of course.
430   if (Ranges.empty())
431     return nullptr;
432
433   // If we had at least one store that could be merged in, add the starting
434   // store as well.  We try to avoid this unless there is at least something
435   // interesting as a small compile-time optimization.
436   Ranges.addInst(0, StartInst);
437
438   // If we create any memsets, we put it right before the first instruction that
439   // isn't part of the memset block.  This ensure that the memset is dominated
440   // by any addressing instruction needed by the start of the block.
441   IRBuilder<> Builder(BI);
442
443   // Now that we have full information about ranges, loop over the ranges and
444   // emit memset's for anything big enough to be worthwhile.
445   Instruction *AMemSet = nullptr;
446   for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
447        I != E; ++I) {
448     const MemsetRange &Range = *I;
449
450     if (Range.TheStores.size() == 1) continue;
451
452     // If it is profitable to lower this range to memset, do so now.
453     if (!Range.isProfitableToUseMemset(DL))
454       continue;
455
456     // Otherwise, we do want to transform this!  Create a new memset.
457     // Get the starting pointer of the block.
458     StartPtr = Range.StartPtr;
459
460     // Determine alignment
461     unsigned Alignment = Range.Alignment;
462     if (Alignment == 0) {
463       Type *EltType =
464         cast<PointerType>(StartPtr->getType())->getElementType();
465       Alignment = DL.getABITypeAlignment(EltType);
466     }
467
468     AMemSet =
469       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
470
471     DEBUG(dbgs() << "Replace stores:\n";
472           for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
473             dbgs() << *Range.TheStores[i] << '\n';
474           dbgs() << "With: " << *AMemSet << '\n');
475
476     if (!Range.TheStores.empty())
477       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
478
479     // Zap all the stores.
480     for (SmallVectorImpl<Instruction *>::const_iterator
481          SI = Range.TheStores.begin(),
482          SE = Range.TheStores.end(); SI != SE; ++SI) {
483       MD->removeInstruction(*SI);
484       (*SI)->eraseFromParent();
485     }
486     ++NumMemSetInfer;
487   }
488
489   return AMemSet;
490 }
491
492
493 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
494   if (!SI->isSimple()) return false;
495   const DataLayout &DL = SI->getModule()->getDataLayout();
496
497   // Detect cases where we're performing call slot forwarding, but
498   // happen to be using a load-store pair to implement it, rather than
499   // a memcpy.
500   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
501     if (LI->isSimple() && LI->hasOneUse() &&
502         LI->getParent() == SI->getParent()) {
503       MemDepResult ldep = MD->getDependency(LI);
504       CallInst *C = nullptr;
505       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
506         C = dyn_cast<CallInst>(ldep.getInst());
507
508       if (C) {
509         // Check that nothing touches the dest of the "copy" between
510         // the call and the store.
511         AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
512         AliasAnalysis::Location StoreLoc = AA.getLocation(SI);
513         for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
514                                   E = C; I != E; --I) {
515           if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
516             C = nullptr;
517             break;
518           }
519         }
520       }
521
522       if (C) {
523         unsigned storeAlign = SI->getAlignment();
524         if (!storeAlign)
525           storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
526         unsigned loadAlign = LI->getAlignment();
527         if (!loadAlign)
528           loadAlign = DL.getABITypeAlignment(LI->getType());
529
530         bool changed = performCallSlotOptzn(
531             LI, SI->getPointerOperand()->stripPointerCasts(),
532             LI->getPointerOperand()->stripPointerCasts(),
533             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
534             std::min(storeAlign, loadAlign), C);
535         if (changed) {
536           MD->removeInstruction(SI);
537           SI->eraseFromParent();
538           MD->removeInstruction(LI);
539           LI->eraseFromParent();
540           ++NumMemCpyInstr;
541           return true;
542         }
543       }
544     }
545   }
546
547   // There are two cases that are interesting for this code to handle: memcpy
548   // and memset.  Right now we only handle memset.
549
550   // Ensure that the value being stored is something that can be memset'able a
551   // byte at a time like "0" or "-1" or any width, as well as things like
552   // 0xA0A0A0A0 and 0.0.
553   if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
554     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
555                                               ByteVal)) {
556       BBI = I;  // Don't invalidate iterator.
557       return true;
558     }
559
560   return false;
561 }
562
563 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
564   // See if there is another memset or store neighboring this memset which
565   // allows us to widen out the memset to do a single larger store.
566   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
567     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
568                                               MSI->getValue())) {
569       BBI = I;  // Don't invalidate iterator.
570       return true;
571     }
572   return false;
573 }
574
575
576 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
577 /// and checks for the possibility of a call slot optimization by having
578 /// the call write its result directly into the destination of the memcpy.
579 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
580                                      Value *cpyDest, Value *cpySrc,
581                                      uint64_t cpyLen, unsigned cpyAlign,
582                                      CallInst *C) {
583   // The general transformation to keep in mind is
584   //
585   //   call @func(..., src, ...)
586   //   memcpy(dest, src, ...)
587   //
588   // ->
589   //
590   //   memcpy(dest, src, ...)
591   //   call @func(..., dest, ...)
592   //
593   // Since moving the memcpy is technically awkward, we additionally check that
594   // src only holds uninitialized values at the moment of the call, meaning that
595   // the memcpy can be discarded rather than moved.
596
597   // Deliberately get the source and destination with bitcasts stripped away,
598   // because we'll need to do type comparisons based on the underlying type.
599   CallSite CS(C);
600
601   // Require that src be an alloca.  This simplifies the reasoning considerably.
602   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
603   if (!srcAlloca)
604     return false;
605
606   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
607   if (!srcArraySize)
608     return false;
609
610   const DataLayout &DL = cpy->getModule()->getDataLayout();
611   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
612                      srcArraySize->getZExtValue();
613
614   if (cpyLen < srcSize)
615     return false;
616
617   // Check that accessing the first srcSize bytes of dest will not cause a
618   // trap.  Otherwise the transform is invalid since it might cause a trap
619   // to occur earlier than it otherwise would.
620   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
621     // The destination is an alloca.  Check it is larger than srcSize.
622     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
623     if (!destArraySize)
624       return false;
625
626     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
627                         destArraySize->getZExtValue();
628
629     if (destSize < srcSize)
630       return false;
631   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
632     if (A->getDereferenceableBytes() < srcSize) {
633       // If the destination is an sret parameter then only accesses that are
634       // outside of the returned struct type can trap.
635       if (!A->hasStructRetAttr())
636         return false;
637
638       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
639       if (!StructTy->isSized()) {
640         // The call may never return and hence the copy-instruction may never
641         // be executed, and therefore it's not safe to say "the destination
642         // has at least <cpyLen> bytes, as implied by the copy-instruction",
643         return false;
644       }
645
646       uint64_t destSize = DL.getTypeAllocSize(StructTy);
647       if (destSize < srcSize)
648         return false;
649     }
650   } else {
651     return false;
652   }
653
654   // Check that dest points to memory that is at least as aligned as src.
655   unsigned srcAlign = srcAlloca->getAlignment();
656   if (!srcAlign)
657     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
658   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
659   // If dest is not aligned enough and we can't increase its alignment then
660   // bail out.
661   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
662     return false;
663
664   // Check that src is not accessed except via the call and the memcpy.  This
665   // guarantees that it holds only undefined values when passed in (so the final
666   // memcpy can be dropped), that it is not read or written between the call and
667   // the memcpy, and that writing beyond the end of it is undefined.
668   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
669                                    srcAlloca->user_end());
670   while (!srcUseList.empty()) {
671     User *U = srcUseList.pop_back_val();
672
673     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
674       for (User *UU : U->users())
675         srcUseList.push_back(UU);
676       continue;
677     }
678     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
679       if (!G->hasAllZeroIndices())
680         return false;
681
682       for (User *UU : U->users())
683         srcUseList.push_back(UU);
684       continue;
685     }
686     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
687       if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
688           IT->getIntrinsicID() == Intrinsic::lifetime_end)
689         continue;
690
691     if (U != C && U != cpy)
692       return false;
693   }
694
695   // Check that src isn't captured by the called function since the
696   // transformation can cause aliasing issues in that case.
697   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
698     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
699       return false;
700
701   // Since we're changing the parameter to the callsite, we need to make sure
702   // that what would be the new parameter dominates the callsite.
703   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
704   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
705     if (!DT.dominates(cpyDestInst, C))
706       return false;
707
708   // In addition to knowing that the call does not access src in some
709   // unexpected manner, for example via a global, which we deduce from
710   // the use analysis, we also need to know that it does not sneakily
711   // access dest.  We rely on AA to figure this out for us.
712   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
713   AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize);
714   // If necessary, perform additional analysis.
715   if (MR != AliasAnalysis::NoModRef)
716     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
717   if (MR != AliasAnalysis::NoModRef)
718     return false;
719
720   // All the checks have passed, so do the transformation.
721   bool changedArgument = false;
722   for (unsigned i = 0; i < CS.arg_size(); ++i)
723     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
724       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
725         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
726                                       cpyDest->getName(), C);
727       changedArgument = true;
728       if (CS.getArgument(i)->getType() == Dest->getType())
729         CS.setArgument(i, Dest);
730       else
731         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
732                           CS.getArgument(i)->getType(), Dest->getName(), C));
733     }
734
735   if (!changedArgument)
736     return false;
737
738   // If the destination wasn't sufficiently aligned then increase its alignment.
739   if (!isDestSufficientlyAligned) {
740     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
741     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
742   }
743
744   // Drop any cached information about the call, because we may have changed
745   // its dependence information by changing its parameter.
746   MD->removeInstruction(C);
747
748   // Update AA metadata
749   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
750   // handled here, but combineMetadata doesn't support them yet
751   unsigned KnownIDs[] = {
752     LLVMContext::MD_tbaa,
753     LLVMContext::MD_alias_scope,
754     LLVMContext::MD_noalias,
755   };
756   combineMetadata(C, cpy, KnownIDs);
757
758   // Remove the memcpy.
759   MD->removeInstruction(cpy);
760   ++NumMemCpyInstr;
761
762   return true;
763 }
764
765 /// processMemCpyMemCpyDependence - We've found that the (upward scanning)
766 /// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
767 /// copy from MDep's input if we can.  MSize is the size of M's copy.
768 ///
769 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
770                                               uint64_t MSize) {
771   // We can only transforms memcpy's where the dest of one is the source of the
772   // other.
773   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
774     return false;
775
776   // If dep instruction is reading from our current input, then it is a noop
777   // transfer and substituting the input won't change this instruction.  Just
778   // ignore the input and let someone else zap MDep.  This handles cases like:
779   //    memcpy(a <- a)
780   //    memcpy(b <- a)
781   if (M->getSource() == MDep->getSource())
782     return false;
783
784   // Second, the length of the memcpy's must be the same, or the preceding one
785   // must be larger than the following one.
786   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
787   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
788   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
789     return false;
790
791   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
792
793   // Verify that the copied-from memory doesn't change in between the two
794   // transfers.  For example, in:
795   //    memcpy(a <- b)
796   //    *b = 42;
797   //    memcpy(c <- a)
798   // It would be invalid to transform the second memcpy into memcpy(c <- b).
799   //
800   // TODO: If the code between M and MDep is transparent to the destination "c",
801   // then we could still perform the xform by moving M up to the first memcpy.
802   //
803   // NOTE: This is conservative, it will stop on any read from the source loc,
804   // not just the defining memcpy.
805   MemDepResult SourceDep =
806     MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
807                                  false, M, M->getParent());
808   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
809     return false;
810
811   // If the dest of the second might alias the source of the first, then the
812   // source and dest might overlap.  We still want to eliminate the intermediate
813   // value, but we have to generate a memmove instead of memcpy.
814   bool UseMemMove = false;
815   if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
816     UseMemMove = true;
817
818   // If all checks passed, then we can transform M.
819
820   // Make sure to use the lesser of the alignment of the source and the dest
821   // since we're changing where we're reading from, but don't want to increase
822   // the alignment past what can be read from or written to.
823   // TODO: Is this worth it if we're creating a less aligned memcpy? For
824   // example we could be moving from movaps -> movq on x86.
825   unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
826
827   IRBuilder<> Builder(M);
828   if (UseMemMove)
829     Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
830                           Align, M->isVolatile());
831   else
832     Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
833                          Align, M->isVolatile());
834
835   // Remove the instruction we're replacing.
836   MD->removeInstruction(M);
837   M->eraseFromParent();
838   ++NumMemCpyInstr;
839   return true;
840 }
841
842
843 /// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
844 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
845 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
846 /// circumstances). This allows later passes to remove the first memcpy
847 /// altogether.
848 bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
849   // We can only optimize non-volatile memcpy's.
850   if (M->isVolatile()) return false;
851
852   // If the source and destination of the memcpy are the same, then zap it.
853   if (M->getSource() == M->getDest()) {
854     MD->removeInstruction(M);
855     M->eraseFromParent();
856     return false;
857   }
858
859   // If copying from a constant, try to turn the memcpy into a memset.
860   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
861     if (GV->isConstant() && GV->hasDefinitiveInitializer())
862       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
863         IRBuilder<> Builder(M);
864         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
865                              M->getAlignment(), false);
866         MD->removeInstruction(M);
867         M->eraseFromParent();
868         ++NumCpyToSet;
869         return true;
870       }
871
872   // The optimizations after this point require the memcpy size.
873   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
874   if (!CopySize) return false;
875
876   // The are three possible optimizations we can do for memcpy:
877   //   a) memcpy-memcpy xform which exposes redundance for DSE.
878   //   b) call-memcpy xform for return slot optimization.
879   //   c) memcpy from freshly alloca'd space or space that has just started its
880   //      lifetime copies undefined data, and we can therefore eliminate the
881   //      memcpy in favor of the data that was already at the destination.
882   MemDepResult DepInfo = MD->getDependency(M);
883   if (DepInfo.isClobber()) {
884     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
885       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
886                                CopySize->getZExtValue(), M->getAlignment(),
887                                C)) {
888         MD->removeInstruction(M);
889         M->eraseFromParent();
890         return true;
891       }
892     }
893   }
894
895   AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M);
896   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true,
897                                                          M, M->getParent());
898   if (SrcDepInfo.isClobber()) {
899     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
900       return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
901   } else if (SrcDepInfo.isDef()) {
902     Instruction *I = SrcDepInfo.getInst();
903     bool hasUndefContents = false;
904
905     if (isa<AllocaInst>(I)) {
906       hasUndefContents = true;
907     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
908       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
909         if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
910           if (LTSize->getZExtValue() >= CopySize->getZExtValue())
911             hasUndefContents = true;
912     }
913
914     if (hasUndefContents) {
915       MD->removeInstruction(M);
916       M->eraseFromParent();
917       ++NumMemCpyInstr;
918       return true;
919     }
920   }
921
922   return false;
923 }
924
925 /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
926 /// are guaranteed not to alias.
927 bool MemCpyOpt::processMemMove(MemMoveInst *M) {
928   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
929
930   if (!TLI->has(LibFunc::memmove))
931     return false;
932
933   // See if the pointers alias.
934   if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
935     return false;
936
937   DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
938
939   // If not, then we know we can transform this.
940   Module *Mod = M->getParent()->getParent()->getParent();
941   Type *ArgTys[3] = { M->getRawDest()->getType(),
942                       M->getRawSource()->getType(),
943                       M->getLength()->getType() };
944   M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
945                                                  ArgTys));
946
947   // MemDep may have over conservative information about this instruction, just
948   // conservatively flush it from the cache.
949   MD->removeInstruction(M);
950
951   ++NumMoveToCpy;
952   return true;
953 }
954
955 /// processByValArgument - This is called on every byval argument in call sites.
956 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
957   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
958   // Find out what feeds this byval argument.
959   Value *ByValArg = CS.getArgument(ArgNo);
960   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
961   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
962   MemDepResult DepInfo =
963     MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
964                                  true, CS.getInstruction(),
965                                  CS.getInstruction()->getParent());
966   if (!DepInfo.isClobber())
967     return false;
968
969   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
970   // a memcpy, see if we can byval from the source of the memcpy instead of the
971   // result.
972   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
973   if (!MDep || MDep->isVolatile() ||
974       ByValArg->stripPointerCasts() != MDep->getDest())
975     return false;
976
977   // The length of the memcpy must be larger or equal to the size of the byval.
978   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
979   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
980     return false;
981
982   // Get the alignment of the byval.  If the call doesn't specify the alignment,
983   // then it is some target specific value that we can't know.
984   unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
985   if (ByValAlign == 0) return false;
986
987   // If it is greater than the memcpy, then we check to see if we can force the
988   // source of the memcpy to the alignment we need.  If we fail, we bail out.
989   AssumptionCache &AC =
990       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
991           *CS->getParent()->getParent());
992   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
993   if (MDep->getAlignment() < ByValAlign &&
994       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
995                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
996     return false;
997
998   // Verify that the copied-from memory doesn't change in between the memcpy and
999   // the byval call.
1000   //    memcpy(a <- b)
1001   //    *b = 42;
1002   //    foo(*a)
1003   // It would be invalid to transform the second memcpy into foo(*b).
1004   //
1005   // NOTE: This is conservative, it will stop on any read from the source loc,
1006   // not just the defining memcpy.
1007   MemDepResult SourceDep =
1008     MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
1009                                  false, CS.getInstruction(), MDep->getParent());
1010   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1011     return false;
1012
1013   Value *TmpCast = MDep->getSource();
1014   if (MDep->getSource()->getType() != ByValArg->getType())
1015     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1016                               "tmpcast", CS.getInstruction());
1017
1018   DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
1019                << "  " << *MDep << "\n"
1020                << "  " << *CS.getInstruction() << "\n");
1021
1022   // Otherwise we're good!  Update the byval argument.
1023   CS.setArgument(ArgNo, TmpCast);
1024   ++NumMemCpyInstr;
1025   return true;
1026 }
1027
1028 /// iterateOnFunction - Executes one iteration of MemCpyOpt.
1029 bool MemCpyOpt::iterateOnFunction(Function &F) {
1030   bool MadeChange = false;
1031
1032   // Walk all instruction in the function.
1033   for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
1034     for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
1035       // Avoid invalidating the iterator.
1036       Instruction *I = BI++;
1037
1038       bool RepeatInstruction = false;
1039
1040       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1041         MadeChange |= processStore(SI, BI);
1042       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1043         RepeatInstruction = processMemSet(M, BI);
1044       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1045         RepeatInstruction = processMemCpy(M);
1046       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1047         RepeatInstruction = processMemMove(M);
1048       else if (CallSite CS = (Value*)I) {
1049         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1050           if (CS.isByValArgument(i))
1051             MadeChange |= processByValArgument(CS, i);
1052       }
1053
1054       // Reprocess the instruction if desired.
1055       if (RepeatInstruction) {
1056         if (BI != BB->begin()) --BI;
1057         MadeChange = true;
1058       }
1059     }
1060   }
1061
1062   return MadeChange;
1063 }
1064
1065 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
1066 // function.
1067 //
1068 bool MemCpyOpt::runOnFunction(Function &F) {
1069   if (skipOptnoneFunction(F))
1070     return false;
1071
1072   bool MadeChange = false;
1073   MD = &getAnalysis<MemoryDependenceAnalysis>();
1074   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1075
1076   // If we don't have at least memset and memcpy, there is little point of doing
1077   // anything here.  These are required by a freestanding implementation, so if
1078   // even they are disabled, there is no point in trying hard.
1079   if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
1080     return false;
1081
1082   while (1) {
1083     if (!iterateOnFunction(F))
1084       break;
1085     MadeChange = true;
1086   }
1087
1088   MD = nullptr;
1089   return MadeChange;
1090 }