[SCEV] Add and use SCEVConstant::getAPInt; NFCI
[oota-llvm.git] / lib / Transforms / Scalar / LoopLoadElimination.cpp
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implement a loop-aware load elimination pass.
11 //
12 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
13 // distance of one between stores and loads.  These form the candidates for the
14 // transformation.  The source value of each store then propagated to the user
15 // of the corresponding load.  This makes the load dead.
16 //
17 // The pass can also version the loop and add memchecks in order to prove that
18 // may-aliasing stores can't change the value in memory before it's read by the
19 // load.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/LoopAccessAnalysis.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Transforms/Utils/LoopVersioning.h"
32 #include <forward_list>
33
34 #define LLE_OPTION "loop-load-elim"
35 #define DEBUG_TYPE LLE_OPTION
36
37 using namespace llvm;
38
39 static cl::opt<unsigned> CheckPerElim(
40     "runtime-check-per-loop-load-elim", cl::Hidden,
41     cl::desc("Max number of memchecks allowed per eliminated load on average"),
42     cl::init(1));
43
44 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
45     "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
46     cl::desc("The maximum number of SCEV checks allowed for Loop "
47              "Load Elimination"));
48
49
50 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
51
52 namespace {
53
54 /// \brief Represent a store-to-forwarding candidate.
55 struct StoreToLoadForwardingCandidate {
56   LoadInst *Load;
57   StoreInst *Store;
58
59   StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
60       : Load(Load), Store(Store) {}
61
62   /// \brief Return true if the dependence from the store to the load has a
63   /// distance of one.  E.g. A[i+1] = A[i]
64   bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE) const {
65     Value *LoadPtr = Load->getPointerOperand();
66     Value *StorePtr = Store->getPointerOperand();
67     Type *LoadPtrType = LoadPtr->getType();
68     Type *LoadType = LoadPtrType->getPointerElementType();
69
70     assert(LoadPtrType->getPointerAddressSpace() ==
71                StorePtr->getType()->getPointerAddressSpace() &&
72            LoadType == StorePtr->getType()->getPointerElementType() &&
73            "Should be a known dependence");
74
75     auto &DL = Load->getParent()->getModule()->getDataLayout();
76     unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
77
78     auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
79     auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
80
81     // We don't need to check non-wrapping here because forward/backward
82     // dependence wouldn't be valid if these weren't monotonic accesses.
83     auto *Dist = cast<SCEVConstant>(
84         PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
85     const APInt &Val = Dist->getAPInt();
86     return Val.abs() == TypeByteSize;
87   }
88
89   Value *getLoadPtr() const { return Load->getPointerOperand(); }
90
91 #ifndef NDEBUG
92   friend raw_ostream &operator<<(raw_ostream &OS,
93                                  const StoreToLoadForwardingCandidate &Cand) {
94     OS << *Cand.Store << " -->\n";
95     OS.indent(2) << *Cand.Load << "\n";
96     return OS;
97   }
98 #endif
99 };
100
101 /// \brief Check if the store dominates all latches, so as long as there is no
102 /// intervening store this value will be loaded in the next iteration.
103 bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
104                                   DominatorTree *DT) {
105   SmallVector<BasicBlock *, 8> Latches;
106   L->getLoopLatches(Latches);
107   return std::all_of(Latches.begin(), Latches.end(),
108                      [&](const BasicBlock *Latch) {
109                        return DT->dominates(StoreBlock, Latch);
110                      });
111 }
112
113 /// \brief The per-loop class that does most of the work.
114 class LoadEliminationForLoop {
115 public:
116   LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
117                          DominatorTree *DT)
118       : L(L), LI(LI), LAI(LAI), DT(DT), PSE(LAI.PSE) {}
119
120   /// \brief Look through the loop-carried and loop-independent dependences in
121   /// this loop and find store->load dependences.
122   ///
123   /// Note that no candidate is returned if LAA has failed to analyze the loop
124   /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
125   std::forward_list<StoreToLoadForwardingCandidate>
126   findStoreToLoadDependences(const LoopAccessInfo &LAI) {
127     std::forward_list<StoreToLoadForwardingCandidate> Candidates;
128
129     const auto *Deps = LAI.getDepChecker().getDependences();
130     if (!Deps)
131       return Candidates;
132
133     // Find store->load dependences (consequently true dep).  Both lexically
134     // forward and backward dependences qualify.  Disqualify loads that have
135     // other unknown dependences.
136
137     SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
138
139     for (const auto &Dep : *Deps) {
140       Instruction *Source = Dep.getSource(LAI);
141       Instruction *Destination = Dep.getDestination(LAI);
142
143       if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
144         if (isa<LoadInst>(Source))
145           LoadsWithUnknownDepedence.insert(Source);
146         if (isa<LoadInst>(Destination))
147           LoadsWithUnknownDepedence.insert(Destination);
148         continue;
149       }
150
151       if (Dep.isBackward())
152         // Note that the designations source and destination follow the program
153         // order, i.e. source is always first.  (The direction is given by the
154         // DepType.)
155         std::swap(Source, Destination);
156       else
157         assert(Dep.isForward() && "Needs to be a forward dependence");
158
159       auto *Store = dyn_cast<StoreInst>(Source);
160       if (!Store)
161         continue;
162       auto *Load = dyn_cast<LoadInst>(Destination);
163       if (!Load)
164         continue;
165       Candidates.emplace_front(Load, Store);
166     }
167
168     if (!LoadsWithUnknownDepedence.empty())
169       Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
170         return LoadsWithUnknownDepedence.count(C.Load);
171       });
172
173     return Candidates;
174   }
175
176   /// \brief Return the index of the instruction according to program order.
177   unsigned getInstrIndex(Instruction *Inst) {
178     auto I = InstOrder.find(Inst);
179     assert(I != InstOrder.end() && "No index for instruction");
180     return I->second;
181   }
182
183   /// \brief If a load has multiple candidates associated (i.e. different
184   /// stores), it means that it could be forwarding from multiple stores
185   /// depending on control flow.  Remove these candidates.
186   ///
187   /// Here, we rely on LAA to include the relevant loop-independent dependences.
188   /// LAA is known to omit these in the very simple case when the read and the
189   /// write within an alias set always takes place using the *same* pointer.
190   ///
191   /// However, we know that this is not the case here, i.e. we can rely on LAA
192   /// to provide us with loop-independent dependences for the cases we're
193   /// interested.  Consider the case for example where a loop-independent
194   /// dependece S1->S2 invalidates the forwarding S3->S2.
195   ///
196   ///         A[i]   = ...   (S1)
197   ///         ...    = A[i]  (S2)
198   ///         A[i+1] = ...   (S3)
199   ///
200   /// LAA will perform dependence analysis here because there are two
201   /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
202   void removeDependencesFromMultipleStores(
203       std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
204     // If Store is nullptr it means that we have multiple stores forwarding to
205     // this store.
206     typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
207         LoadToSingleCandT;
208     LoadToSingleCandT LoadToSingleCand;
209
210     for (const auto &Cand : Candidates) {
211       bool NewElt;
212       LoadToSingleCandT::iterator Iter;
213
214       std::tie(Iter, NewElt) =
215           LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
216       if (!NewElt) {
217         const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
218         // Already multiple stores forward to this load.
219         if (OtherCand == nullptr)
220           continue;
221
222         // Handle the very basic of case when the two stores are in the same
223         // block so deciding which one forwards is easy.  The later one forwards
224         // as long as they both have a dependence distance of one to the load.
225         if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
226             Cand.isDependenceDistanceOfOne(PSE) &&
227             OtherCand->isDependenceDistanceOfOne(PSE)) {
228           // They are in the same block, the later one will forward to the load.
229           if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
230             OtherCand = &Cand;
231         } else
232           OtherCand = nullptr;
233       }
234     }
235
236     Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
237       if (LoadToSingleCand[Cand.Load] != &Cand) {
238         DEBUG(dbgs() << "Removing from candidates: \n" << Cand
239                      << "  The load may have multiple stores forwarding to "
240                      << "it\n");
241         return true;
242       }
243       return false;
244     });
245   }
246
247   /// \brief Given two pointers operations by their RuntimePointerChecking
248   /// indices, return true if they require an alias check.
249   ///
250   /// We need a check if one is a pointer for a candidate load and the other is
251   /// a pointer for a possibly intervening store.
252   bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
253                      const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
254                      const std::set<Value *> &CandLoadPtrs) {
255     Value *Ptr1 =
256         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
257     Value *Ptr2 =
258         LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
259     return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
260             (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
261   }
262
263   /// \brief Return pointers that are possibly written to on the path from a
264   /// forwarding store to a load.
265   ///
266   /// These pointers need to be alias-checked against the forwarding candidates.
267   SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
268       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
269     // From FirstStore to LastLoad neither of the elimination candidate loads
270     // should overlap with any of the stores.
271     //
272     // E.g.:
273     //
274     // st1 C[i]
275     // ld1 B[i] <-------,
276     // ld0 A[i] <----,  |              * LastLoad
277     // ...           |  |
278     // st2 E[i]      |  |
279     // st3 B[i+1] -- | -'              * FirstStore
280     // st0 A[i+1] ---'
281     // st4 D[i]
282     //
283     // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
284     // ld0.
285
286     LoadInst *LastLoad =
287         std::max_element(Candidates.begin(), Candidates.end(),
288                          [&](const StoreToLoadForwardingCandidate &A,
289                              const StoreToLoadForwardingCandidate &B) {
290                            return getInstrIndex(A.Load) < getInstrIndex(B.Load);
291                          })
292             ->Load;
293     StoreInst *FirstStore =
294         std::min_element(Candidates.begin(), Candidates.end(),
295                          [&](const StoreToLoadForwardingCandidate &A,
296                              const StoreToLoadForwardingCandidate &B) {
297                            return getInstrIndex(A.Store) <
298                                   getInstrIndex(B.Store);
299                          })
300             ->Store;
301
302     // We're looking for stores after the first forwarding store until the end
303     // of the loop, then from the beginning of the loop until the last
304     // forwarded-to load.  Collect the pointer for the stores.
305     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
306
307     auto InsertStorePtr = [&](Instruction *I) {
308       if (auto *S = dyn_cast<StoreInst>(I))
309         PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
310     };
311     const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
312     std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
313                   MemInstrs.end(), InsertStorePtr);
314     std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
315                   InsertStorePtr);
316
317     return PtrsWrittenOnFwdingPath;
318   }
319
320   /// \brief Determine the pointer alias checks to prove that there are no
321   /// intervening stores.
322   SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
323       const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
324
325     SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
326         findPointersWrittenOnForwardingPath(Candidates);
327
328     // Collect the pointers of the candidate loads.
329     // FIXME: SmallSet does not work with std::inserter.
330     std::set<Value *> CandLoadPtrs;
331     std::transform(Candidates.begin(), Candidates.end(),
332                    std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
333                    std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
334
335     const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
336     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
337
338     std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
339                  [&](const RuntimePointerChecking::PointerCheck &Check) {
340                    for (auto PtrIdx1 : Check.first->Members)
341                      for (auto PtrIdx2 : Check.second->Members)
342                        if (needsChecking(PtrIdx1, PtrIdx2,
343                                          PtrsWrittenOnFwdingPath, CandLoadPtrs))
344                          return true;
345                    return false;
346                  });
347
348     DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
349     DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
350
351     return Checks;
352   }
353
354   /// \brief Perform the transformation for a candidate.
355   void
356   propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
357                                   SCEVExpander &SEE) {
358     //
359     // loop:
360     //      %x = load %gep_i
361     //         = ... %x
362     //      store %y, %gep_i_plus_1
363     //
364     // =>
365     //
366     // ph:
367     //      %x.initial = load %gep_0
368     // loop:
369     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
370     //      %x = load %gep_i            <---- now dead
371     //         = ... %x.storeforward
372     //      store %y, %gep_i_plus_1
373
374     Value *Ptr = Cand.Load->getPointerOperand();
375     auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
376     auto *PH = L->getLoopPreheader();
377     Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
378                                           PH->getTerminator());
379     Value *Initial =
380         new LoadInst(InitialPtr, "load_initial", PH->getTerminator());
381     PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
382                                    &L->getHeader()->front());
383     PHI->addIncoming(Initial, PH);
384     PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
385
386     Cand.Load->replaceAllUsesWith(PHI);
387   }
388
389   /// \brief Top-level driver for each loop: find store->load forwarding
390   /// candidates, add run-time checks and perform transformation.
391   bool processLoop() {
392     DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
393                  << "\" checking " << *L << "\n");
394     // Look for store-to-load forwarding cases across the
395     // backedge. E.g.:
396     //
397     // loop:
398     //      %x = load %gep_i
399     //         = ... %x
400     //      store %y, %gep_i_plus_1
401     //
402     // =>
403     //
404     // ph:
405     //      %x.initial = load %gep_0
406     // loop:
407     //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
408     //      %x = load %gep_i            <---- now dead
409     //         = ... %x.storeforward
410     //      store %y, %gep_i_plus_1
411
412     // First start with store->load dependences.
413     auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
414     if (StoreToLoadDependences.empty())
415       return false;
416
417     // Generate an index for each load and store according to the original
418     // program order.  This will be used later.
419     InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
420
421     // To keep things simple for now, remove those where the load is potentially
422     // fed by multiple stores.
423     removeDependencesFromMultipleStores(StoreToLoadDependences);
424     if (StoreToLoadDependences.empty())
425       return false;
426
427     // Filter the candidates further.
428     SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
429     unsigned NumForwarding = 0;
430     for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
431       DEBUG(dbgs() << "Candidate " << Cand);
432       // Make sure that the stored values is available everywhere in the loop in
433       // the next iteration.
434       if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
435         continue;
436
437       // Check whether the SCEV difference is the same as the induction step,
438       // thus we load the value in the next iteration.
439       if (!Cand.isDependenceDistanceOfOne(PSE))
440         continue;
441
442       ++NumForwarding;
443       DEBUG(dbgs()
444             << NumForwarding
445             << ". Valid store-to-load forwarding across the loop backedge\n");
446       Candidates.push_back(Cand);
447     }
448     if (Candidates.empty())
449       return false;
450
451     // Check intervening may-alias stores.  These need runtime checks for alias
452     // disambiguation.
453     SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
454         collectMemchecks(Candidates);
455
456     // Too many checks are likely to outweigh the benefits of forwarding.
457     if (Checks.size() > Candidates.size() * CheckPerElim) {
458       DEBUG(dbgs() << "Too many run-time checks needed.\n");
459       return false;
460     }
461
462     if (LAI.PSE.getUnionPredicate().getComplexity() >
463         LoadElimSCEVCheckThreshold) {
464       DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
465       return false;
466     }
467
468     // Point of no-return, start the transformation.  First, version the loop if
469     // necessary.
470     if (!Checks.empty() || !LAI.PSE.getUnionPredicate().isAlwaysTrue()) {
471       LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
472       LV.setAliasChecks(std::move(Checks));
473       LV.setSCEVChecks(LAI.PSE.getUnionPredicate());
474       LV.versionLoop();
475     }
476
477     // Next, propagate the value stored by the store to the users of the load.
478     // Also for the first iteration, generate the initial value of the load.
479     SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
480                      "storeforward");
481     for (const auto &Cand : Candidates)
482       propagateStoredValueToLoadUsers(Cand, SEE);
483     NumLoopLoadEliminted += NumForwarding;
484
485     return true;
486   }
487
488 private:
489   Loop *L;
490
491   /// \brief Maps the load/store instructions to their index according to
492   /// program order.
493   DenseMap<Instruction *, unsigned> InstOrder;
494
495   // Analyses used.
496   LoopInfo *LI;
497   const LoopAccessInfo &LAI;
498   DominatorTree *DT;
499   PredicatedScalarEvolution PSE;
500 };
501
502 /// \brief The pass.  Most of the work is delegated to the per-loop
503 /// LoadEliminationForLoop class.
504 class LoopLoadElimination : public FunctionPass {
505 public:
506   LoopLoadElimination() : FunctionPass(ID) {
507     initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
508   }
509
510   bool runOnFunction(Function &F) override {
511     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
512     auto *LAA = &getAnalysis<LoopAccessAnalysis>();
513     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
514
515     // Build up a worklist of inner-loops to vectorize. This is necessary as the
516     // act of distributing a loop creates new loops and can invalidate iterators
517     // across the loops.
518     SmallVector<Loop *, 8> Worklist;
519
520     for (Loop *TopLevelLoop : *LI)
521       for (Loop *L : depth_first(TopLevelLoop))
522         // We only handle inner-most loops.
523         if (L->empty())
524           Worklist.push_back(L);
525
526     // Now walk the identified inner loops.
527     bool Changed = false;
528     for (Loop *L : Worklist) {
529       const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
530       // The actual work is performed by LoadEliminationForLoop.
531       LoadEliminationForLoop LEL(L, LI, LAI, DT);
532       Changed |= LEL.processLoop();
533     }
534
535     // Process each loop nest in the function.
536     return Changed;
537   }
538
539   void getAnalysisUsage(AnalysisUsage &AU) const override {
540     AU.addRequired<LoopInfoWrapperPass>();
541     AU.addPreserved<LoopInfoWrapperPass>();
542     AU.addRequired<LoopAccessAnalysis>();
543     AU.addRequired<ScalarEvolutionWrapperPass>();
544     AU.addRequired<DominatorTreeWrapperPass>();
545     AU.addPreserved<DominatorTreeWrapperPass>();
546   }
547
548   static char ID;
549 };
550 }
551
552 char LoopLoadElimination::ID;
553 static const char LLE_name[] = "Loop Load Elimination";
554
555 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
556 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
557 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
558 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
559 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
560 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
561
562 namespace llvm {
563 FunctionPass *createLoopLoadEliminationPass() {
564   return new LoopLoadElimination();
565 }
566 }