[LoopIdiomRecognize] Transform backedge-taken count check into an assertion.
[oota-llvm.git] / lib / Transforms / Scalar / LoopIdiomRecognize.cpp
1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements an idiom recognizer that transforms simple loops into a
11 // non-loop form.  In cases that this kicks in, it can be a significant
12 // performance win.
13 //
14 //===----------------------------------------------------------------------===//
15 //
16 // TODO List:
17 //
18 // Future loop memory idioms to recognize:
19 //   memcmp, memmove, strlen, etc.
20 // Future floating point idioms to recognize in -ffast-math mode:
21 //   fpowi
22 // Future integer operation idioms to recognize:
23 //   ctpop, ctlz, cttz
24 //
25 // Beware that isel's default lowering for ctpop is highly inefficient for
26 // i64 and larger types when i64 is legal and the value has few bits set.  It
27 // would be good to enhance isel to emit a loop for ctpop in this case.
28 //
29 // We should enhance the memset/memcpy recognition to handle multiple stores in
30 // the loop.  This would handle things like:
31 //   void foo(_Complex float *P)
32 //     for (i) { __real__(*P) = 0;  __imag__(*P) = 0; }
33 //
34 // We should enhance this to handle negative strides through memory.
35 // Alternatively (and perhaps better) we could rely on an earlier pass to force
36 // forward iteration through memory, which is generally better for cache
37 // behavior.  Negative strides *do* happen for memset/memcpy loops.
38 //
39 // This could recognize common matrix multiplies and dot product idioms and
40 // replace them with calls to BLAS (if linked in??).
41 //
42 //===----------------------------------------------------------------------===//
43
44 #include "llvm/Transforms/Scalar.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/LoopPass.h"
48 #include "llvm/Analysis/ScalarEvolutionExpander.h"
49 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/Analysis/ValueTracking.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 using namespace llvm;
62
63 #define DEBUG_TYPE "loop-idiom"
64
65 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
66 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
67
68 namespace {
69
70   class LoopIdiomRecognize;
71
72   /// This class defines some utility functions for loop idiom recognization.
73   class LIRUtil {
74   public:
75     /// Return true iff the block contains nothing but an uncondition branch
76     /// (aka goto instruction).
77     static bool isAlmostEmpty(BasicBlock *);
78
79     static BranchInst *getBranch(BasicBlock *BB) {
80       return dyn_cast<BranchInst>(BB->getTerminator());
81     }
82
83     /// Derive the precondition block (i.e the block that guards the loop
84     /// preheader) from the given preheader.
85     static BasicBlock *getPrecondBb(BasicBlock *PreHead);
86   };
87
88   /// This class is to recoginize idioms of population-count conducted in
89   /// a noncountable loop. Currently it only recognizes this pattern:
90   /// \code
91   ///   while(x) {cnt++; ...; x &= x - 1; ...}
92   /// \endcode
93   class NclPopcountRecognize {
94     LoopIdiomRecognize &LIR;
95     Loop *CurLoop;
96     BasicBlock *PreCondBB;
97
98     typedef IRBuilder<> IRBuilderTy;
99
100   public:
101     explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR);
102     bool recognize();
103
104   private:
105     /// Take a glimpse of the loop to see if we need to go ahead recoginizing
106     /// the idiom.
107     bool preliminaryScreen();
108
109     /// Check if the given conditional branch is based on the comparison
110     /// between a variable and zero, and if the variable is non-zero, the
111     /// control yields to the loop entry. If the branch matches the behavior,
112     /// the variable involved in the comparion is returned. This function will
113     /// be called to see if the precondition and postcondition of the loop
114     /// are in desirable form.
115     Value *matchCondition(BranchInst *Br, BasicBlock *NonZeroTarget) const;
116
117     /// Return true iff the idiom is detected in the loop. and 1) \p CntInst
118     /// is set to the instruction counting the population bit. 2) \p CntPhi
119     /// is set to the corresponding phi node. 3) \p Var is set to the value
120     /// whose population bits are being counted.
121     bool detectIdiom
122       (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const;
123
124     /// Insert ctpop intrinsic function and some obviously dead instructions.
125     void transform(Instruction *CntInst, PHINode *CntPhi, Value *Var);
126
127     /// Create llvm.ctpop.* intrinsic function.
128     CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL);
129   };
130
131   class LoopIdiomRecognize : public LoopPass {
132     Loop *CurLoop;
133     DominatorTree *DT;
134     ScalarEvolution *SE;
135     TargetLibraryInfo *TLI;
136     const TargetTransformInfo *TTI;
137   public:
138     static char ID;
139     explicit LoopIdiomRecognize() : LoopPass(ID) {
140       initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
141       DT = nullptr;
142       SE = nullptr;
143       TLI = nullptr;
144       TTI = nullptr;
145     }
146
147     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
148     bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
149                         SmallVectorImpl<BasicBlock*> &ExitBlocks);
150
151     bool processLoopStore(StoreInst *SI, const SCEV *BECount);
152     bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
153
154     bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
155                                  unsigned StoreAlignment,
156                                  Value *SplatValue, Instruction *TheStore,
157                                  const SCEVAddRecExpr *Ev,
158                                  const SCEV *BECount);
159     bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
160                                     const SCEVAddRecExpr *StoreEv,
161                                     const SCEVAddRecExpr *LoadEv,
162                                     const SCEV *BECount);
163
164     /// This transformation requires natural loop information & requires that
165     /// loop preheaders be inserted into the CFG.
166     ///
167     void getAnalysisUsage(AnalysisUsage &AU) const override {
168       AU.addRequired<LoopInfoWrapperPass>();
169       AU.addPreserved<LoopInfoWrapperPass>();
170       AU.addRequiredID(LoopSimplifyID);
171       AU.addPreservedID(LoopSimplifyID);
172       AU.addRequiredID(LCSSAID);
173       AU.addPreservedID(LCSSAID);
174       AU.addRequired<AliasAnalysis>();
175       AU.addPreserved<AliasAnalysis>();
176       AU.addRequired<ScalarEvolution>();
177       AU.addPreserved<ScalarEvolution>();
178       AU.addPreserved<DominatorTreeWrapperPass>();
179       AU.addRequired<DominatorTreeWrapperPass>();
180       AU.addRequired<TargetLibraryInfoWrapperPass>();
181       AU.addRequired<TargetTransformInfoWrapperPass>();
182     }
183
184     DominatorTree *getDominatorTree() {
185       return DT ? DT
186                 : (DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree());
187     }
188
189     ScalarEvolution *getScalarEvolution() {
190       return SE ? SE : (SE = &getAnalysis<ScalarEvolution>());
191     }
192
193     TargetLibraryInfo *getTargetLibraryInfo() {
194       if (!TLI)
195         TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
196
197       return TLI;
198     }
199
200     const TargetTransformInfo *getTargetTransformInfo() {
201       return TTI ? TTI
202                  : (TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
203                         *CurLoop->getHeader()->getParent()));
204     }
205
206     Loop *getLoop() const { return CurLoop; }
207
208   private:
209     bool runOnNoncountableLoop();
210     bool runOnCountableLoop();
211   };
212 }
213
214 char LoopIdiomRecognize::ID = 0;
215 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
216                       false, false)
217 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
218 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
219 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
220 INITIALIZE_PASS_DEPENDENCY(LCSSA)
221 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
222 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
223 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
224 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
225 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
226                     false, false)
227
228 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
229
230 /// deleteDeadInstruction - Delete this instruction.  Before we do, go through
231 /// and zero out all the operands of this instruction.  If any of them become
232 /// dead, delete them and the computation tree that feeds them.
233 ///
234 static void deleteDeadInstruction(Instruction *I,
235                                   const TargetLibraryInfo *TLI) {
236   SmallVector<Value *, 16> Operands(I->value_op_begin(), I->value_op_end());
237   I->replaceAllUsesWith(UndefValue::get(I->getType()));
238   I->eraseFromParent();
239   for (Value *Op : Operands)
240     RecursivelyDeleteTriviallyDeadInstructions(Op, TLI);
241 }
242
243 //===----------------------------------------------------------------------===//
244 //
245 //          Implementation of LIRUtil
246 //
247 //===----------------------------------------------------------------------===//
248
249 // This function will return true iff the given block contains nothing but goto.
250 // A typical usage of this function is to check if the preheader function is
251 // "almost" empty such that generated intrinsic functions can be moved across
252 // the preheader and be placed at the end of the precondition block without
253 // the concern of breaking data dependence.
254 bool LIRUtil::isAlmostEmpty(BasicBlock *BB) {
255   if (BranchInst *Br = getBranch(BB)) {
256     return Br->isUnconditional() && Br == BB->begin();
257   }
258   return false;
259 }
260
261 BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) {
262   if (BasicBlock *BB = PreHead->getSinglePredecessor()) {
263     BranchInst *Br = getBranch(BB);
264     return Br && Br->isConditional() ? BB : nullptr;
265   }
266   return nullptr;
267 }
268
269 //===----------------------------------------------------------------------===//
270 //
271 //          Implementation of NclPopcountRecognize
272 //
273 //===----------------------------------------------------------------------===//
274
275 NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR):
276   LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(nullptr) {
277 }
278
279 bool NclPopcountRecognize::preliminaryScreen() {
280   const TargetTransformInfo *TTI = LIR.getTargetTransformInfo();
281   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
282     return false;
283
284   // Counting population are usually conducted by few arithmetic instructions.
285   // Such instructions can be easilly "absorbed" by vacant slots in a
286   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
287   // in a compact loop.
288
289   // Give up if the loop has multiple blocks or multiple backedges.
290   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
291     return false;
292
293   BasicBlock *LoopBody = *(CurLoop->block_begin());
294   if (LoopBody->size() >= 20) {
295     // The loop is too big, bail out.
296     return false;
297   }
298
299   // It should have a preheader containing nothing but a goto instruction.
300   BasicBlock *PreHead = CurLoop->getLoopPreheader();
301   if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead))
302     return false;
303
304   // It should have a precondition block where the generated popcount instrinsic
305   // function will be inserted.
306   PreCondBB = LIRUtil::getPrecondBb(PreHead);
307   if (!PreCondBB)
308     return false;
309
310   return true;
311 }
312
313 Value *NclPopcountRecognize::matchCondition(BranchInst *Br,
314                                             BasicBlock *LoopEntry) const {
315   if (!Br || !Br->isConditional())
316     return nullptr;
317
318   ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition());
319   if (!Cond)
320     return nullptr;
321
322   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
323   if (!CmpZero || !CmpZero->isZero())
324     return nullptr;
325
326   ICmpInst::Predicate Pred = Cond->getPredicate();
327   if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) ||
328       (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry))
329     return Cond->getOperand(0);
330
331   return nullptr;
332 }
333
334 bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst,
335                                        PHINode *&CntPhi,
336                                        Value *&Var) const {
337   // Following code tries to detect this idiom:
338   //
339   //    if (x0 != 0)
340   //      goto loop-exit // the precondition of the loop
341   //    cnt0 = init-val;
342   //    do {
343   //       x1 = phi (x0, x2);
344   //       cnt1 = phi(cnt0, cnt2);
345   //
346   //       cnt2 = cnt1 + 1;
347   //        ...
348   //       x2 = x1 & (x1 - 1);
349   //        ...
350   //    } while(x != 0);
351   //
352   // loop-exit:
353   //
354
355   // step 1: Check to see if the look-back branch match this pattern:
356   //    "if (a!=0) goto loop-entry".
357   BasicBlock *LoopEntry;
358   Instruction *DefX2, *CountInst;
359   Value *VarX1, *VarX0;
360   PHINode *PhiX, *CountPhi;
361
362   DefX2 = CountInst = nullptr;
363   VarX1 = VarX0 = nullptr;
364   PhiX = CountPhi = nullptr;
365   LoopEntry = *(CurLoop->block_begin());
366
367   // step 1: Check if the loop-back branch is in desirable form.
368   {
369     if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry))
370       DefX2 = dyn_cast<Instruction>(T);
371     else
372       return false;
373   }
374
375   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
376   {
377     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
378       return false;
379
380     BinaryOperator *SubOneOp;
381
382     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
383       VarX1 = DefX2->getOperand(1);
384     else {
385       VarX1 = DefX2->getOperand(0);
386       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
387     }
388     if (!SubOneOp)
389       return false;
390
391     Instruction *SubInst = cast<Instruction>(SubOneOp);
392     ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1));
393     if (!Dec ||
394         !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) ||
395           (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) {
396       return false;
397     }
398   }
399
400   // step 3: Check the recurrence of variable X
401   {
402     PhiX = dyn_cast<PHINode>(VarX1);
403     if (!PhiX ||
404         (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) {
405       return false;
406     }
407   }
408
409   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
410   {
411     CountInst = nullptr;
412     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(),
413            IterE = LoopEntry->end(); Iter != IterE; Iter++) {
414       Instruction *Inst = Iter;
415       if (Inst->getOpcode() != Instruction::Add)
416         continue;
417
418       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
419       if (!Inc || !Inc->isOne())
420         continue;
421
422       PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0));
423       if (!Phi || Phi->getParent() != LoopEntry)
424         continue;
425
426       // Check if the result of the instruction is live of the loop.
427       bool LiveOutLoop = false;
428       for (User *U : Inst->users()) {
429         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
430           LiveOutLoop = true; break;
431         }
432       }
433
434       if (LiveOutLoop) {
435         CountInst = Inst;
436         CountPhi = Phi;
437         break;
438       }
439     }
440
441     if (!CountInst)
442       return false;
443   }
444
445   // step 5: check if the precondition is in this form:
446   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
447   {
448     BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
449     Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader());
450     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
451       return false;
452
453     CntInst = CountInst;
454     CntPhi = CountPhi;
455     Var = T;
456   }
457
458   return true;
459 }
460
461 void NclPopcountRecognize::transform(Instruction *CntInst,
462                                      PHINode *CntPhi, Value *Var) {
463
464   ScalarEvolution *SE = LIR.getScalarEvolution();
465   TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo();
466   BasicBlock *PreHead = CurLoop->getLoopPreheader();
467   BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB);
468   const DebugLoc DL = CntInst->getDebugLoc();
469
470   // Assuming before transformation, the loop is following:
471   //  if (x) // the precondition
472   //     do { cnt++; x &= x - 1; } while(x);
473
474   // Step 1: Insert the ctpop instruction at the end of the precondition block
475   IRBuilderTy Builder(PreCondBr);
476   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
477   {
478     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
479     NewCount = PopCntZext =
480       Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
481
482     if (NewCount != PopCnt)
483       (cast<Instruction>(NewCount))->setDebugLoc(DL);
484
485     // TripCnt is exactly the number of iterations the loop has
486     TripCnt = NewCount;
487
488     // If the population counter's initial value is not zero, insert Add Inst.
489     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
490     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
491     if (!InitConst || !InitConst->isZero()) {
492       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
493       (cast<Instruction>(NewCount))->setDebugLoc(DL);
494     }
495   }
496
497   // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to
498   //   "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic
499   //   function would be partial dead code, and downstream passes will drag
500   //   it back from the precondition block to the preheader.
501   {
502     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
503
504     Value *Opnd0 = PopCntZext;
505     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
506     if (PreCond->getOperand(0) != Var)
507       std::swap(Opnd0, Opnd1);
508
509     ICmpInst *NewPreCond =
510       cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
511     PreCond->replaceAllUsesWith(NewPreCond);
512
513     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
514   }
515
516   // Step 3: Note that the population count is exactly the trip count of the
517   // loop in question, which enble us to to convert the loop from noncountable
518   // loop into a countable one. The benefit is twofold:
519   //
520   //  - If the loop only counts population, the entire loop become dead after
521   //    the transformation. It is lots easier to prove a countable loop dead
522   //    than to prove a noncountable one. (In some C dialects, a infite loop
523   //    isn't dead even if it computes nothing useful. In general, DCE needs
524   //    to prove a noncountable loop finite before safely delete it.)
525   //
526   //  - If the loop also performs something else, it remains alive.
527   //    Since it is transformed to countable form, it can be aggressively
528   //    optimized by some optimizations which are in general not applicable
529   //    to a noncountable loop.
530   //
531   // After this step, this loop (conceptually) would look like following:
532   //   newcnt = __builtin_ctpop(x);
533   //   t = newcnt;
534   //   if (x)
535   //     do { cnt++; x &= x-1; t--) } while (t > 0);
536   BasicBlock *Body = *(CurLoop->block_begin());
537   {
538     BranchInst *LbBr = LIRUtil::getBranch(Body);
539     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
540     Type *Ty = TripCnt->getType();
541
542     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin());
543
544     Builder.SetInsertPoint(LbCond);
545     Value *Opnd1 = cast<Value>(TcPhi);
546     Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1));
547     Instruction *TcDec =
548       cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true));
549
550     TcPhi->addIncoming(TripCnt, PreHead);
551     TcPhi->addIncoming(TcDec, Body);
552
553     CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ?
554       CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
555     LbCond->setPredicate(Pred);
556     LbCond->setOperand(0, TcDec);
557     LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0)));
558   }
559
560   // Step 4: All the references to the original population counter outside
561   //  the loop are replaced with the NewCount -- the value returned from
562   //  __builtin_ctpop().
563   CntInst->replaceUsesOutsideBlock(NewCount, Body);
564
565   // step 5: Forget the "non-computable" trip-count SCEV associated with the
566   //   loop. The loop would otherwise not be deleted even if it becomes empty.
567   SE->forgetLoop(CurLoop);
568 }
569
570 CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder,
571                                                       Value *Val, DebugLoc DL) {
572   Value *Ops[] = { Val };
573   Type *Tys[] = { Val->getType() };
574
575   Module *M = (*(CurLoop->block_begin()))->getParent()->getParent();
576   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
577   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
578   CI->setDebugLoc(DL);
579
580   return CI;
581 }
582
583 /// recognize - detect population count idiom in a non-countable loop. If
584 ///   detected, transform the relevant code to popcount intrinsic function
585 ///   call, and return true; otherwise, return false.
586 bool NclPopcountRecognize::recognize() {
587
588   if (!LIR.getTargetTransformInfo())
589     return false;
590
591   LIR.getScalarEvolution();
592
593   if (!preliminaryScreen())
594     return false;
595
596   Instruction *CntInst;
597   PHINode *CntPhi;
598   Value *Val;
599   if (!detectIdiom(CntInst, CntPhi, Val))
600     return false;
601
602   transform(CntInst, CntPhi, Val);
603   return true;
604 }
605
606 //===----------------------------------------------------------------------===//
607 //
608 //          Implementation of LoopIdiomRecognize
609 //
610 //===----------------------------------------------------------------------===//
611
612 bool LoopIdiomRecognize::runOnCountableLoop() {
613   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
614   assert(!isa<SCEVCouldNotCompute>(BECount) &&
615     "runOnCountableLoop() called on a loop without a predictable"
616     "backedge-taken count");
617
618   // If this loop executes exactly one time, then it should be peeled, not
619   // optimized by this pass.
620   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
621     if (BECst->getValue()->getValue() == 0)
622       return false;
623
624   // set DT
625   (void)getDominatorTree();
626
627   LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
628   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
629
630   // set TLI
631   (void)getTargetLibraryInfo();
632
633   SmallVector<BasicBlock*, 8> ExitBlocks;
634   CurLoop->getUniqueExitBlocks(ExitBlocks);
635
636   DEBUG(dbgs() << "loop-idiom Scanning: F["
637                << CurLoop->getHeader()->getParent()->getName()
638                << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
639
640   bool MadeChange = false;
641   // Scan all the blocks in the loop that are not in subloops.
642   for (Loop::block_iterator BI = CurLoop->block_begin(),
643          E = CurLoop->block_end(); BI != E; ++BI) {
644     // Ignore blocks in subloops.
645     if (LI.getLoopFor(*BI) != CurLoop)
646       continue;
647
648     MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks);
649   }
650   return MadeChange;
651 }
652
653 bool LoopIdiomRecognize::runOnNoncountableLoop() {
654   NclPopcountRecognize Popcount(*this);
655   if (Popcount.recognize())
656     return true;
657
658   return false;
659 }
660
661 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
662   if (skipOptnoneFunction(L))
663     return false;
664
665   CurLoop = L;
666
667   // If the loop could not be converted to canonical form, it must have an
668   // indirectbr in it, just give up.
669   if (!L->getLoopPreheader())
670     return false;
671
672   // Disable loop idiom recognition if the function's name is a common idiom.
673   StringRef Name = L->getHeader()->getParent()->getName();
674   if (Name == "memset" || Name == "memcpy")
675     return false;
676
677   SE = &getAnalysis<ScalarEvolution>();
678   if (SE->hasLoopInvariantBackedgeTakenCount(L))
679     return runOnCountableLoop();
680   return runOnNoncountableLoop();
681 }
682
683 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
684 /// with the specified backedge count.  This block is known to be in the current
685 /// loop and not in any subloops.
686 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
687                                      SmallVectorImpl<BasicBlock*> &ExitBlocks) {
688   // We can only promote stores in this block if they are unconditionally
689   // executed in the loop.  For a block to be unconditionally executed, it has
690   // to dominate all the exit blocks of the loop.  Verify this now.
691   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
692     if (!DT->dominates(BB, ExitBlocks[i]))
693       return false;
694
695   bool MadeChange = false;
696   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
697     Instruction *Inst = I++;
698     // Look for store instructions, which may be optimized to memset/memcpy.
699     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))  {
700       WeakVH InstPtr(I);
701       if (!processLoopStore(SI, BECount)) continue;
702       MadeChange = true;
703
704       // If processing the store invalidated our iterator, start over from the
705       // top of the block.
706       if (!InstPtr)
707         I = BB->begin();
708       continue;
709     }
710
711     // Look for memset instructions, which may be optimized to a larger memset.
712     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst))  {
713       WeakVH InstPtr(I);
714       if (!processLoopMemSet(MSI, BECount)) continue;
715       MadeChange = true;
716
717       // If processing the memset invalidated our iterator, start over from the
718       // top of the block.
719       if (!InstPtr)
720         I = BB->begin();
721       continue;
722     }
723   }
724
725   return MadeChange;
726 }
727
728
729 /// processLoopStore - See if this store can be promoted to a memset or memcpy.
730 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
731   if (!SI->isSimple()) return false;
732
733   Value *StoredVal = SI->getValueOperand();
734   Value *StorePtr = SI->getPointerOperand();
735
736   // Reject stores that are so large that they overflow an unsigned.
737   auto &DL = CurLoop->getHeader()->getModule()->getDataLayout();
738   uint64_t SizeInBits = DL.getTypeSizeInBits(StoredVal->getType());
739   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
740     return false;
741
742   // See if the pointer expression is an AddRec like {base,+,1} on the current
743   // loop, which indicates a strided store.  If we have something else, it's a
744   // random store we can't handle.
745   const SCEVAddRecExpr *StoreEv =
746     dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
747   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
748     return false;
749
750   // Check to see if the stride matches the size of the store.  If so, then we
751   // know that every byte is touched in the loop.
752   unsigned StoreSize = (unsigned)SizeInBits >> 3;
753   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
754
755   if (!Stride || StoreSize != Stride->getValue()->getValue()) {
756     // TODO: Could also handle negative stride here someday, that will require
757     // the validity check in mayLoopAccessLocation to be updated though.
758     // Enable this to print exact negative strides.
759     if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) {
760       dbgs() << "NEGATIVE STRIDE: " << *SI << "\n";
761       dbgs() << "BB: " << *SI->getParent();
762     }
763
764     return false;
765   }
766
767   // See if we can optimize just this store in isolation.
768   if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
769                               StoredVal, SI, StoreEv, BECount))
770     return true;
771
772   // If the stored value is a strided load in the same loop with the same stride
773   // this this may be transformable into a memcpy.  This kicks in for stuff like
774   //   for (i) A[i] = B[i];
775   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
776     const SCEVAddRecExpr *LoadEv =
777       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0)));
778     if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() &&
779         StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple())
780       if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount))
781         return true;
782   }
783   //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n";
784
785   return false;
786 }
787
788 /// processLoopMemSet - See if this memset can be promoted to a large memset.
789 bool LoopIdiomRecognize::
790 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) {
791   // We can only handle non-volatile memsets with a constant size.
792   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false;
793
794   // If we're not allowed to hack on memset, we fail.
795   if (!TLI->has(LibFunc::memset))
796     return false;
797
798   Value *Pointer = MSI->getDest();
799
800   // See if the pointer expression is an AddRec like {base,+,1} on the current
801   // loop, which indicates a strided store.  If we have something else, it's a
802   // random store we can't handle.
803   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
804   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
805     return false;
806
807   // Reject memsets that are so large that they overflow an unsigned.
808   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
809   if ((SizeInBytes >> 32) != 0)
810     return false;
811
812   // Check to see if the stride matches the size of the memset.  If so, then we
813   // know that every byte is touched in the loop.
814   const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
815
816   // TODO: Could also handle negative stride here someday, that will require the
817   // validity check in mayLoopAccessLocation to be updated though.
818   if (!Stride || MSI->getLength() != Stride->getValue())
819     return false;
820
821   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
822                                  MSI->getAlignment(), MSI->getValue(),
823                                  MSI, Ev, BECount);
824 }
825
826
827 /// mayLoopAccessLocation - Return true if the specified loop might access the
828 /// specified pointer location, which is a loop-strided access.  The 'Access'
829 /// argument specifies what the verboten forms of access are (read or write).
830 static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access,
831                                   Loop *L, const SCEV *BECount,
832                                   unsigned StoreSize, AliasAnalysis &AA,
833                                   Instruction *IgnoredStore) {
834   // Get the location that may be stored across the loop.  Since the access is
835   // strided positively through memory, we say that the modified location starts
836   // at the pointer and has infinite size.
837   uint64_t AccessSize = AliasAnalysis::UnknownSize;
838
839   // If the loop iterates a fixed number of times, we can refine the access size
840   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
841   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
842     AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
843
844   // TODO: For this to be really effective, we have to dive into the pointer
845   // operand in the store.  Store to &A[i] of 100 will always return may alias
846   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
847   // which will then no-alias a store to &A[100].
848   AliasAnalysis::Location StoreLoc(Ptr, AccessSize);
849
850   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
851        ++BI)
852     for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
853       if (&*I != IgnoredStore &&
854           (AA.getModRefInfo(I, StoreLoc) & Access))
855         return true;
856
857   return false;
858 }
859
860 /// getMemSetPatternValue - If a strided store of the specified value is safe to
861 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
862 /// be passed in.  Otherwise, return null.
863 ///
864 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
865 /// just replicate their input array and then pass on to memset_pattern16.
866 static Constant *getMemSetPatternValue(Value *V, const DataLayout &DL) {
867   // If the value isn't a constant, we can't promote it to being in a constant
868   // array.  We could theoretically do a store to an alloca or something, but
869   // that doesn't seem worthwhile.
870   Constant *C = dyn_cast<Constant>(V);
871   if (!C) return nullptr;
872
873   // Only handle simple values that are a power of two bytes in size.
874   uint64_t Size = DL.getTypeSizeInBits(V->getType());
875   if (Size == 0 || (Size & 7) || (Size & (Size-1)))
876     return nullptr;
877
878   // Don't care enough about darwin/ppc to implement this.
879   if (DL.isBigEndian())
880     return nullptr;
881
882   // Convert to size in bytes.
883   Size /= 8;
884
885   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
886   // if the top and bottom are the same (e.g. for vectors and large integers).
887   if (Size > 16) return nullptr;
888
889   // If the constant is exactly 16 bytes, just use it.
890   if (Size == 16) return C;
891
892   // Otherwise, we'll use an array of the constants.
893   unsigned ArraySize = 16/Size;
894   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
895   return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C));
896 }
897
898
899 /// processLoopStridedStore - We see a strided store of some value.  If we can
900 /// transform this into a memset or memset_pattern in the loop preheader, do so.
901 bool LoopIdiomRecognize::
902 processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
903                         unsigned StoreAlignment, Value *StoredVal,
904                         Instruction *TheStore, const SCEVAddRecExpr *Ev,
905                         const SCEV *BECount) {
906
907   // If the stored value is a byte-wise value (like i32 -1), then it may be
908   // turned into a memset of i8 -1, assuming that all the consecutive bytes
909   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
910   // but it can be turned into memset_pattern if the target supports it.
911   Value *SplatValue = isBytewiseValue(StoredVal);
912   Constant *PatternValue = nullptr;
913   auto &DL = CurLoop->getHeader()->getModule()->getDataLayout();
914   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
915
916   // If we're allowed to form a memset, and the stored value would be acceptable
917   // for memset, use it.
918   if (SplatValue && TLI->has(LibFunc::memset) &&
919       // Verify that the stored value is loop invariant.  If not, we can't
920       // promote the memset.
921       CurLoop->isLoopInvariant(SplatValue)) {
922     // Keep and use SplatValue.
923     PatternValue = nullptr;
924   } else if (DestAS == 0 && TLI->has(LibFunc::memset_pattern16) &&
925              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
926     // Don't create memset_pattern16s with address spaces.
927     // It looks like we can use PatternValue!
928     SplatValue = nullptr;
929   } else {
930     // Otherwise, this isn't an idiom we can transform.  For example, we can't
931     // do anything with a 3-byte store.
932     return false;
933   }
934
935   // The trip count of the loop and the base pointer of the addrec SCEV is
936   // guaranteed to be loop invariant, which means that it should dominate the
937   // header.  This allows us to insert code for it in the preheader.
938   BasicBlock *Preheader = CurLoop->getLoopPreheader();
939   IRBuilder<> Builder(Preheader->getTerminator());
940   SCEVExpander Expander(*SE, DL, "loop-idiom");
941
942   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
943
944   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
945   // this into a memset in the loop preheader now if we want.  However, this
946   // would be unsafe to do if there is anything else in the loop that may read
947   // or write to the aliased location.  Check for any overlap by generating the
948   // base pointer and checking the region.
949   Value *BasePtr =
950     Expander.expandCodeFor(Ev->getStart(), DestInt8PtrTy,
951                            Preheader->getTerminator());
952
953   if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef,
954                             CurLoop, BECount,
955                             StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) {
956     Expander.clear();
957     // If we generated new code for the base pointer, clean up.
958     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
959     return false;
960   }
961
962   // Okay, everything looks good, insert the memset.
963
964   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
965   // pointer size if it isn't already.
966   Type *IntPtr = Builder.getIntPtrTy(DL, DestAS);
967   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr);
968
969   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
970                                          SCEV::FlagNUW);
971   if (StoreSize != 1) {
972     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
973                                SCEV::FlagNUW);
974   }
975
976   Value *NumBytes =
977     Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
978
979   CallInst *NewCall;
980   if (SplatValue) {
981     NewCall = Builder.CreateMemSet(BasePtr,
982                                    SplatValue,
983                                    NumBytes,
984                                    StoreAlignment);
985   } else {
986     // Everything is emitted in default address space
987     Type *Int8PtrTy = DestInt8PtrTy;
988
989     Module *M = TheStore->getParent()->getParent()->getParent();
990     Value *MSP = M->getOrInsertFunction("memset_pattern16",
991                                         Builder.getVoidTy(),
992                                         Int8PtrTy,
993                                         Int8PtrTy,
994                                         IntPtr,
995                                         (void*)nullptr);
996
997     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
998     // an constant array of 16-bytes.  Plop the value into a mergable global.
999     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1000                                             GlobalValue::PrivateLinkage,
1001                                             PatternValue, ".memset_pattern");
1002     GV->setUnnamedAddr(true); // Ok to merge these.
1003     GV->setAlignment(16);
1004     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1005     NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes);
1006   }
1007
1008   DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1009                << "    from store to: " << *Ev << " at: " << *TheStore << "\n");
1010   NewCall->setDebugLoc(TheStore->getDebugLoc());
1011
1012   // Okay, the memset has been formed.  Zap the original store and anything that
1013   // feeds into it.
1014   deleteDeadInstruction(TheStore, TLI);
1015   ++NumMemSet;
1016   return true;
1017 }
1018
1019 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a
1020 /// same-strided load.
1021 bool LoopIdiomRecognize::
1022 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
1023                            const SCEVAddRecExpr *StoreEv,
1024                            const SCEVAddRecExpr *LoadEv,
1025                            const SCEV *BECount) {
1026   // If we're not allowed to form memcpy, we fail.
1027   if (!TLI->has(LibFunc::memcpy))
1028     return false;
1029
1030   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1031
1032   // The trip count of the loop and the base pointer of the addrec SCEV is
1033   // guaranteed to be loop invariant, which means that it should dominate the
1034   // header.  This allows us to insert code for it in the preheader.
1035   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1036   IRBuilder<> Builder(Preheader->getTerminator());
1037   const DataLayout &DL = Preheader->getModule()->getDataLayout();
1038   SCEVExpander Expander(*SE, DL, "loop-idiom");
1039
1040   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1041   // this into a memcpy in the loop preheader now if we want.  However, this
1042   // would be unsafe to do if there is anything else in the loop that may read
1043   // or write the memory region we're storing to.  This includes the load that
1044   // feeds the stores.  Check for an alias by generating the base address and
1045   // checking everything.
1046   Value *StoreBasePtr =
1047     Expander.expandCodeFor(StoreEv->getStart(),
1048                            Builder.getInt8PtrTy(SI->getPointerAddressSpace()),
1049                            Preheader->getTerminator());
1050
1051   if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef,
1052                             CurLoop, BECount, StoreSize,
1053                             getAnalysis<AliasAnalysis>(), SI)) {
1054     Expander.clear();
1055     // If we generated new code for the base pointer, clean up.
1056     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1057     return false;
1058   }
1059
1060   // For a memcpy, we have to make sure that the input array is not being
1061   // mutated by the loop.
1062   Value *LoadBasePtr =
1063     Expander.expandCodeFor(LoadEv->getStart(),
1064                            Builder.getInt8PtrTy(LI->getPointerAddressSpace()),
1065                            Preheader->getTerminator());
1066
1067   if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount,
1068                             StoreSize, getAnalysis<AliasAnalysis>(), SI)) {
1069     Expander.clear();
1070     // If we generated new code for the base pointer, clean up.
1071     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
1072     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1073     return false;
1074   }
1075
1076   // Okay, everything is safe, we can transform this!
1077
1078
1079   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
1080   // pointer size if it isn't already.
1081   Type *IntPtrTy = Builder.getIntPtrTy(DL, SI->getPointerAddressSpace());
1082   BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
1083
1084   const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1),
1085                                          SCEV::FlagNUW);
1086   if (StoreSize != 1)
1087     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
1088                                SCEV::FlagNUW);
1089
1090   Value *NumBytes =
1091     Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
1092
1093   CallInst *NewCall =
1094     Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes,
1095                          std::min(SI->getAlignment(), LI->getAlignment()));
1096   NewCall->setDebugLoc(SI->getDebugLoc());
1097
1098   DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1099                << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1100                << "    from store ptr=" << *StoreEv << " at: " << *SI << "\n");
1101
1102
1103   // Okay, the memset has been formed.  Zap the original store and anything that
1104   // feeds into it.
1105   deleteDeadInstruction(SI, TLI);
1106   ++NumMemCpy;
1107   return true;
1108 }