[PM] Split the LoopInfo object apart from the legacy pass, creating
[oota-llvm.git] / lib / Transforms / Scalar / LoopDeletion.cpp
1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/IR/Dominators.h"
23 using namespace llvm;
24
25 #define DEBUG_TYPE "loop-delete"
26
27 STATISTIC(NumDeleted, "Number of loops deleted");
28
29 namespace {
30   class LoopDeletion : public LoopPass {
31   public:
32     static char ID; // Pass ID, replacement for typeid
33     LoopDeletion() : LoopPass(ID) {
34       initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
35     }
36
37     // Possibly eliminate loop L if it is dead.
38     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
39
40     void getAnalysisUsage(AnalysisUsage &AU) const override {
41       AU.addRequired<DominatorTreeWrapperPass>();
42       AU.addRequired<LoopInfoWrapperPass>();
43       AU.addRequired<ScalarEvolution>();
44       AU.addRequiredID(LoopSimplifyID);
45       AU.addRequiredID(LCSSAID);
46
47       AU.addPreserved<ScalarEvolution>();
48       AU.addPreserved<DominatorTreeWrapperPass>();
49       AU.addPreserved<LoopInfoWrapperPass>();
50       AU.addPreservedID(LoopSimplifyID);
51       AU.addPreservedID(LCSSAID);
52     }
53
54   private:
55     bool isLoopDead(Loop *L, SmallVectorImpl<BasicBlock *> &exitingBlocks,
56                     SmallVectorImpl<BasicBlock *> &exitBlocks,
57                     bool &Changed, BasicBlock *Preheader);
58
59   };
60 }
61
62 char LoopDeletion::ID = 0;
63 INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
64                 "Delete dead loops", false, false)
65 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
66 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
67 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
68 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
69 INITIALIZE_PASS_DEPENDENCY(LCSSA)
70 INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
71                 "Delete dead loops", false, false)
72
73 Pass *llvm::createLoopDeletionPass() {
74   return new LoopDeletion();
75 }
76
77 /// isLoopDead - Determined if a loop is dead.  This assumes that we've already
78 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
79 /// form.
80 bool LoopDeletion::isLoopDead(Loop *L,
81                               SmallVectorImpl<BasicBlock *> &exitingBlocks,
82                               SmallVectorImpl<BasicBlock *> &exitBlocks,
83                               bool &Changed, BasicBlock *Preheader) {
84   BasicBlock *exitBlock = exitBlocks[0];
85
86   // Make sure that all PHI entries coming from the loop are loop invariant.
87   // Because the code is in LCSSA form, any values used outside of the loop
88   // must pass through a PHI in the exit block, meaning that this check is
89   // sufficient to guarantee that no loop-variant values are used outside
90   // of the loop.
91   BasicBlock::iterator BI = exitBlock->begin();
92   while (PHINode *P = dyn_cast<PHINode>(BI)) {
93     Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
94
95     // Make sure all exiting blocks produce the same incoming value for the exit
96     // block.  If there are different incoming values for different exiting
97     // blocks, then it is impossible to statically determine which value should
98     // be used.
99     for (unsigned i = 1, e = exitingBlocks.size(); i < e; ++i) {
100       if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
101         return false;
102     }
103
104     if (Instruction *I = dyn_cast<Instruction>(incoming))
105       if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
106         return false;
107
108     ++BI;
109   }
110
111   // Make sure that no instructions in the block have potential side-effects.
112   // This includes instructions that could write to memory, and loads that are
113   // marked volatile.  This could be made more aggressive by using aliasing
114   // information to identify readonly and readnone calls.
115   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
116        LI != LE; ++LI) {
117     for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
118          BI != BE; ++BI) {
119       if (BI->mayHaveSideEffects())
120         return false;
121     }
122   }
123
124   return true;
125 }
126
127 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
128 /// observable behavior of the program other than finite running time.  Note
129 /// we do ensure that this never remove a loop that might be infinite, as doing
130 /// so could change the halting/non-halting nature of a program.
131 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
132 /// in order to make various safety checks work.
133 bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &LPM) {
134   if (skipOptnoneFunction(L))
135     return false;
136
137   // We can only remove the loop if there is a preheader that we can
138   // branch from after removing it.
139   BasicBlock *preheader = L->getLoopPreheader();
140   if (!preheader)
141     return false;
142
143   // If LoopSimplify form is not available, stay out of trouble.
144   if (!L->hasDedicatedExits())
145     return false;
146
147   // We can't remove loops that contain subloops.  If the subloops were dead,
148   // they would already have been removed in earlier executions of this pass.
149   if (L->begin() != L->end())
150     return false;
151
152   SmallVector<BasicBlock*, 4> exitingBlocks;
153   L->getExitingBlocks(exitingBlocks);
154
155   SmallVector<BasicBlock*, 4> exitBlocks;
156   L->getUniqueExitBlocks(exitBlocks);
157
158   // We require that the loop only have a single exit block.  Otherwise, we'd
159   // be in the situation of needing to be able to solve statically which exit
160   // block will be branched to, or trying to preserve the branching logic in
161   // a loop invariant manner.
162   if (exitBlocks.size() != 1)
163     return false;
164
165   // Finally, we have to check that the loop really is dead.
166   bool Changed = false;
167   if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
168     return Changed;
169
170   // Don't remove loops for which we can't solve the trip count.
171   // They could be infinite, in which case we'd be changing program behavior.
172   ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
173   const SCEV *S = SE.getMaxBackedgeTakenCount(L);
174   if (isa<SCEVCouldNotCompute>(S))
175     return Changed;
176
177   // Now that we know the removal is safe, remove the loop by changing the
178   // branch from the preheader to go to the single exit block.
179   BasicBlock *exitBlock = exitBlocks[0];
180
181   // Because we're deleting a large chunk of code at once, the sequence in which
182   // we remove things is very important to avoid invalidation issues.  Don't
183   // mess with this unless you have good reason and know what you're doing.
184
185   // Tell ScalarEvolution that the loop is deleted. Do this before
186   // deleting the loop so that ScalarEvolution can look at the loop
187   // to determine what it needs to clean up.
188   SE.forgetLoop(L);
189
190   // Connect the preheader directly to the exit block.
191   TerminatorInst *TI = preheader->getTerminator();
192   TI->replaceUsesOfWith(L->getHeader(), exitBlock);
193
194   // Rewrite phis in the exit block to get their inputs from
195   // the preheader instead of the exiting block.
196   BasicBlock *exitingBlock = exitingBlocks[0];
197   BasicBlock::iterator BI = exitBlock->begin();
198   while (PHINode *P = dyn_cast<PHINode>(BI)) {
199     int j = P->getBasicBlockIndex(exitingBlock);
200     assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
201     P->setIncomingBlock(j, preheader);
202     for (unsigned i = 1; i < exitingBlocks.size(); ++i)
203       P->removeIncomingValue(exitingBlocks[i]);
204     ++BI;
205   }
206
207   // Update the dominator tree and remove the instructions and blocks that will
208   // be deleted from the reference counting scheme.
209   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
210   SmallVector<DomTreeNode*, 8> ChildNodes;
211   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
212        LI != LE; ++LI) {
213     // Move all of the block's children to be children of the preheader, which
214     // allows us to remove the domtree entry for the block.
215     ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
216     for (SmallVectorImpl<DomTreeNode *>::iterator DI = ChildNodes.begin(),
217          DE = ChildNodes.end(); DI != DE; ++DI) {
218       DT.changeImmediateDominator(*DI, DT[preheader]);
219     }
220
221     ChildNodes.clear();
222     DT.eraseNode(*LI);
223
224     // Remove the block from the reference counting scheme, so that we can
225     // delete it freely later.
226     (*LI)->dropAllReferences();
227   }
228
229   // Erase the instructions and the blocks without having to worry
230   // about ordering because we already dropped the references.
231   // NOTE: This iteration is safe because erasing the block does not remove its
232   // entry from the loop's block list.  We do that in the next section.
233   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
234        LI != LE; ++LI)
235     (*LI)->eraseFromParent();
236
237   // Finally, the blocks from loopinfo.  This has to happen late because
238   // otherwise our loop iterators won't work.
239   LoopInfo &loopInfo = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
240   SmallPtrSet<BasicBlock*, 8> blocks;
241   blocks.insert(L->block_begin(), L->block_end());
242   for (BasicBlock *BB : blocks)
243     loopInfo.removeBlock(BB);
244
245   // The last step is to inform the loop pass manager that we've
246   // eliminated this loop.
247   LPM.deleteLoopFromQueue(L);
248   Changed = true;
249
250   ++NumDeleted;
251
252   return Changed;
253 }