[RS4GC] Fix rematerialization of bitcast of bitcast.
[oota-llvm.git] / lib / Transforms / Scalar / JumpThreading.cpp
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LazyValueInfo.h"
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/SSAUpdater.h"
46 #include <algorithm>
47 #include <memory>
48 using namespace llvm;
49
50 #define DEBUG_TYPE "jump-threading"
51
52 STATISTIC(NumThreads, "Number of jumps threaded");
53 STATISTIC(NumFolds,   "Number of terminators folded");
54 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
55
56 static cl::opt<unsigned>
57 BBDuplicateThreshold("jump-threading-threshold",
58           cl::desc("Max block size to duplicate for jump threading"),
59           cl::init(6), cl::Hidden);
60
61 static cl::opt<unsigned>
62 ImplicationSearchThreshold(
63   "jump-threading-implication-search-threshold",
64   cl::desc("The number of predecessors to search for a stronger "
65            "condition to use to thread over a weaker condition"),
66   cl::init(3), cl::Hidden);
67
68 namespace {
69   // These are at global scope so static functions can use them too.
70   typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
71   typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
72
73   // This is used to keep track of what kind of constant we're currently hoping
74   // to find.
75   enum ConstantPreference {
76     WantInteger,
77     WantBlockAddress
78   };
79
80   /// This pass performs 'jump threading', which looks at blocks that have
81   /// multiple predecessors and multiple successors.  If one or more of the
82   /// predecessors of the block can be proven to always jump to one of the
83   /// successors, we forward the edge from the predecessor to the successor by
84   /// duplicating the contents of this block.
85   ///
86   /// An example of when this can occur is code like this:
87   ///
88   ///   if () { ...
89   ///     X = 4;
90   ///   }
91   ///   if (X < 3) {
92   ///
93   /// In this case, the unconditional branch at the end of the first if can be
94   /// revectored to the false side of the second if.
95   ///
96   class JumpThreading : public FunctionPass {
97     TargetLibraryInfo *TLI;
98     LazyValueInfo *LVI;
99     std::unique_ptr<BlockFrequencyInfo> BFI;
100     std::unique_ptr<BranchProbabilityInfo> BPI;
101     bool HasProfileData;
102 #ifdef NDEBUG
103     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
104 #else
105     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
106 #endif
107     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
108
109     unsigned BBDupThreshold;
110
111     // RAII helper for updating the recursion stack.
112     struct RecursionSetRemover {
113       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
114       std::pair<Value*, BasicBlock*> ThePair;
115
116       RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
117                           std::pair<Value*, BasicBlock*> P)
118         : TheSet(S), ThePair(P) { }
119
120       ~RecursionSetRemover() {
121         TheSet.erase(ThePair);
122       }
123     };
124   public:
125     static char ID; // Pass identification
126     JumpThreading(int T = -1) : FunctionPass(ID) {
127       BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130
131     bool runOnFunction(Function &F) override;
132
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       AU.addRequired<LazyValueInfo>();
135       AU.addPreserved<LazyValueInfo>();
136       AU.addPreserved<GlobalsAAWrapperPass>();
137       AU.addRequired<TargetLibraryInfoWrapperPass>();
138     }
139
140     void releaseMemory() override {
141       BFI.reset();
142       BPI.reset();
143     }
144
145     void FindLoopHeaders(Function &F);
146     bool ProcessBlock(BasicBlock *BB);
147     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
148                     BasicBlock *SuccBB);
149     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
150                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
151
152     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
153                                          PredValueInfo &Result,
154                                          ConstantPreference Preference,
155                                          Instruction *CxtI = nullptr);
156     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
157                                 ConstantPreference Preference,
158                                 Instruction *CxtI = nullptr);
159
160     bool ProcessBranchOnPHI(PHINode *PN);
161     bool ProcessBranchOnXOR(BinaryOperator *BO);
162     bool ProcessImpliedCondition(BasicBlock *BB);
163
164     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
165     bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
166
167   private:
168     BasicBlock *SplitBlockPreds(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
169                                 const char *Suffix);
170     void UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, BasicBlock *BB,
171                                       BasicBlock *NewBB, BasicBlock *SuccBB);
172   };
173 }
174
175 char JumpThreading::ID = 0;
176 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
177                 "Jump Threading", false, false)
178 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
179 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
180 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
181                 "Jump Threading", false, false)
182
183 // Public interface to the Jump Threading pass
184 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
185
186 /// runOnFunction - Top level algorithm.
187 ///
188 bool JumpThreading::runOnFunction(Function &F) {
189   if (skipOptnoneFunction(F))
190     return false;
191
192   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
193   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
194   LVI = &getAnalysis<LazyValueInfo>();
195   BFI.reset();
196   BPI.reset();
197   // When profile data is available, we need to update edge weights after
198   // successful jump threading, which requires both BPI and BFI being available.
199   HasProfileData = F.getEntryCount().hasValue();
200   if (HasProfileData) {
201     LoopInfo LI{DominatorTree(F)};
202     BPI.reset(new BranchProbabilityInfo(F, LI));
203     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
204   }
205
206   // Remove unreachable blocks from function as they may result in infinite
207   // loop. We do threading if we found something profitable. Jump threading a
208   // branch can create other opportunities. If these opportunities form a cycle
209   // i.e. if any jump threading is undoing previous threading in the path, then
210   // we will loop forever. We take care of this issue by not jump threading for
211   // back edges. This works for normal cases but not for unreachable blocks as
212   // they may have cycle with no back edge.
213   removeUnreachableBlocks(F);
214
215   FindLoopHeaders(F);
216
217   bool Changed, EverChanged = false;
218   do {
219     Changed = false;
220     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
221       BasicBlock *BB = &*I;
222       // Thread all of the branches we can over this block.
223       while (ProcessBlock(BB))
224         Changed = true;
225
226       ++I;
227
228       // If the block is trivially dead, zap it.  This eliminates the successor
229       // edges which simplifies the CFG.
230       if (pred_empty(BB) &&
231           BB != &BB->getParent()->getEntryBlock()) {
232         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
233               << "' with terminator: " << *BB->getTerminator() << '\n');
234         LoopHeaders.erase(BB);
235         LVI->eraseBlock(BB);
236         DeleteDeadBlock(BB);
237         Changed = true;
238         continue;
239       }
240
241       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
242
243       // Can't thread an unconditional jump, but if the block is "almost
244       // empty", we can replace uses of it with uses of the successor and make
245       // this dead.
246       if (BI && BI->isUnconditional() &&
247           BB != &BB->getParent()->getEntryBlock() &&
248           // If the terminator is the only non-phi instruction, try to nuke it.
249           BB->getFirstNonPHIOrDbg()->isTerminator()) {
250         // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
251         // block, we have to make sure it isn't in the LoopHeaders set.  We
252         // reinsert afterward if needed.
253         bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
254         BasicBlock *Succ = BI->getSuccessor(0);
255
256         // FIXME: It is always conservatively correct to drop the info
257         // for a block even if it doesn't get erased.  This isn't totally
258         // awesome, but it allows us to use AssertingVH to prevent nasty
259         // dangling pointer issues within LazyValueInfo.
260         LVI->eraseBlock(BB);
261         if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
262           Changed = true;
263           // If we deleted BB and BB was the header of a loop, then the
264           // successor is now the header of the loop.
265           BB = Succ;
266         }
267
268         if (ErasedFromLoopHeaders)
269           LoopHeaders.insert(BB);
270       }
271     }
272     EverChanged |= Changed;
273   } while (Changed);
274
275   LoopHeaders.clear();
276   return EverChanged;
277 }
278
279 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
280 /// thread across it. Stop scanning the block when passing the threshold.
281 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
282                                              unsigned Threshold) {
283   /// Ignore PHI nodes, these will be flattened when duplication happens.
284   BasicBlock::const_iterator I(BB->getFirstNonPHI());
285
286   // FIXME: THREADING will delete values that are just used to compute the
287   // branch, so they shouldn't count against the duplication cost.
288
289   // Sum up the cost of each instruction until we get to the terminator.  Don't
290   // include the terminator because the copy won't include it.
291   unsigned Size = 0;
292   for (; !isa<TerminatorInst>(I); ++I) {
293
294     // Stop scanning the block if we've reached the threshold.
295     if (Size > Threshold)
296       return Size;
297
298     // Debugger intrinsics don't incur code size.
299     if (isa<DbgInfoIntrinsic>(I)) continue;
300
301     // If this is a pointer->pointer bitcast, it is free.
302     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
303       continue;
304
305     // Bail out if this instruction gives back a token type, it is not possible
306     // to duplicate it if it is used outside this BB.
307     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
308       return ~0U;
309
310     // All other instructions count for at least one unit.
311     ++Size;
312
313     // Calls are more expensive.  If they are non-intrinsic calls, we model them
314     // as having cost of 4.  If they are a non-vector intrinsic, we model them
315     // as having cost of 2 total, and if they are a vector intrinsic, we model
316     // them as having cost 1.
317     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
318       if (CI->cannotDuplicate() || CI->isConvergent())
319         // Blocks with NoDuplicate are modelled as having infinite cost, so they
320         // are never duplicated.
321         return ~0U;
322       else if (!isa<IntrinsicInst>(CI))
323         Size += 3;
324       else if (!CI->getType()->isVectorTy())
325         Size += 1;
326     }
327   }
328
329   // Threading through a switch statement is particularly profitable.  If this
330   // block ends in a switch, decrease its cost to make it more likely to happen.
331   if (isa<SwitchInst>(I))
332     Size = Size > 6 ? Size-6 : 0;
333
334   // The same holds for indirect branches, but slightly more so.
335   if (isa<IndirectBrInst>(I))
336     Size = Size > 8 ? Size-8 : 0;
337
338   return Size;
339 }
340
341 /// FindLoopHeaders - We do not want jump threading to turn proper loop
342 /// structures into irreducible loops.  Doing this breaks up the loop nesting
343 /// hierarchy and pessimizes later transformations.  To prevent this from
344 /// happening, we first have to find the loop headers.  Here we approximate this
345 /// by finding targets of backedges in the CFG.
346 ///
347 /// Note that there definitely are cases when we want to allow threading of
348 /// edges across a loop header.  For example, threading a jump from outside the
349 /// loop (the preheader) to an exit block of the loop is definitely profitable.
350 /// It is also almost always profitable to thread backedges from within the loop
351 /// to exit blocks, and is often profitable to thread backedges to other blocks
352 /// within the loop (forming a nested loop).  This simple analysis is not rich
353 /// enough to track all of these properties and keep it up-to-date as the CFG
354 /// mutates, so we don't allow any of these transformations.
355 ///
356 void JumpThreading::FindLoopHeaders(Function &F) {
357   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
358   FindFunctionBackedges(F, Edges);
359
360   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
361     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
362 }
363
364 /// getKnownConstant - Helper method to determine if we can thread over a
365 /// terminator with the given value as its condition, and if so what value to
366 /// use for that. What kind of value this is depends on whether we want an
367 /// integer or a block address, but an undef is always accepted.
368 /// Returns null if Val is null or not an appropriate constant.
369 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
370   if (!Val)
371     return nullptr;
372
373   // Undef is "known" enough.
374   if (UndefValue *U = dyn_cast<UndefValue>(Val))
375     return U;
376
377   if (Preference == WantBlockAddress)
378     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
379
380   return dyn_cast<ConstantInt>(Val);
381 }
382
383 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
384 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
385 /// in any of our predecessors.  If so, return the known list of value and pred
386 /// BB in the result vector.
387 ///
388 /// This returns true if there were any known values.
389 ///
390 bool JumpThreading::
391 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
392                                 ConstantPreference Preference,
393                                 Instruction *CxtI) {
394   // This method walks up use-def chains recursively.  Because of this, we could
395   // get into an infinite loop going around loops in the use-def chain.  To
396   // prevent this, keep track of what (value, block) pairs we've already visited
397   // and terminate the search if we loop back to them
398   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
399     return false;
400
401   // An RAII help to remove this pair from the recursion set once the recursion
402   // stack pops back out again.
403   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
404
405   // If V is a constant, then it is known in all predecessors.
406   if (Constant *KC = getKnownConstant(V, Preference)) {
407     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
408       Result.push_back(std::make_pair(KC, *PI));
409
410     return true;
411   }
412
413   // If V is a non-instruction value, or an instruction in a different block,
414   // then it can't be derived from a PHI.
415   Instruction *I = dyn_cast<Instruction>(V);
416   if (!I || I->getParent() != BB) {
417
418     // Okay, if this is a live-in value, see if it has a known value at the end
419     // of any of our predecessors.
420     //
421     // FIXME: This should be an edge property, not a block end property.
422     /// TODO: Per PR2563, we could infer value range information about a
423     /// predecessor based on its terminator.
424     //
425     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
426     // "I" is a non-local compare-with-a-constant instruction.  This would be
427     // able to handle value inequalities better, for example if the compare is
428     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
429     // Perhaps getConstantOnEdge should be smart enough to do this?
430
431     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
432       BasicBlock *P = *PI;
433       // If the value is known by LazyValueInfo to be a constant in a
434       // predecessor, use that information to try to thread this block.
435       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
436       if (Constant *KC = getKnownConstant(PredCst, Preference))
437         Result.push_back(std::make_pair(KC, P));
438     }
439
440     return !Result.empty();
441   }
442
443   /// If I is a PHI node, then we know the incoming values for any constants.
444   if (PHINode *PN = dyn_cast<PHINode>(I)) {
445     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
446       Value *InVal = PN->getIncomingValue(i);
447       if (Constant *KC = getKnownConstant(InVal, Preference)) {
448         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
449       } else {
450         Constant *CI = LVI->getConstantOnEdge(InVal,
451                                               PN->getIncomingBlock(i),
452                                               BB, CxtI);
453         if (Constant *KC = getKnownConstant(CI, Preference))
454           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
455       }
456     }
457
458     return !Result.empty();
459   }
460
461   PredValueInfoTy LHSVals, RHSVals;
462
463   // Handle some boolean conditions.
464   if (I->getType()->getPrimitiveSizeInBits() == 1) {
465     assert(Preference == WantInteger && "One-bit non-integer type?");
466     // X | true -> true
467     // X & false -> false
468     if (I->getOpcode() == Instruction::Or ||
469         I->getOpcode() == Instruction::And) {
470       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
471                                       WantInteger, CxtI);
472       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
473                                       WantInteger, CxtI);
474
475       if (LHSVals.empty() && RHSVals.empty())
476         return false;
477
478       ConstantInt *InterestingVal;
479       if (I->getOpcode() == Instruction::Or)
480         InterestingVal = ConstantInt::getTrue(I->getContext());
481       else
482         InterestingVal = ConstantInt::getFalse(I->getContext());
483
484       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
485
486       // Scan for the sentinel.  If we find an undef, force it to the
487       // interesting value: x|undef -> true and x&undef -> false.
488       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
489         if (LHSVals[i].first == InterestingVal ||
490             isa<UndefValue>(LHSVals[i].first)) {
491           Result.push_back(LHSVals[i]);
492           Result.back().first = InterestingVal;
493           LHSKnownBBs.insert(LHSVals[i].second);
494         }
495       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
496         if (RHSVals[i].first == InterestingVal ||
497             isa<UndefValue>(RHSVals[i].first)) {
498           // If we already inferred a value for this block on the LHS, don't
499           // re-add it.
500           if (!LHSKnownBBs.count(RHSVals[i].second)) {
501             Result.push_back(RHSVals[i]);
502             Result.back().first = InterestingVal;
503           }
504         }
505
506       return !Result.empty();
507     }
508
509     // Handle the NOT form of XOR.
510     if (I->getOpcode() == Instruction::Xor &&
511         isa<ConstantInt>(I->getOperand(1)) &&
512         cast<ConstantInt>(I->getOperand(1))->isOne()) {
513       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
514                                       WantInteger, CxtI);
515       if (Result.empty())
516         return false;
517
518       // Invert the known values.
519       for (unsigned i = 0, e = Result.size(); i != e; ++i)
520         Result[i].first = ConstantExpr::getNot(Result[i].first);
521
522       return true;
523     }
524
525   // Try to simplify some other binary operator values.
526   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
527     assert(Preference != WantBlockAddress
528             && "A binary operator creating a block address?");
529     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
530       PredValueInfoTy LHSVals;
531       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
532                                       WantInteger, CxtI);
533
534       // Try to use constant folding to simplify the binary operator.
535       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
536         Constant *V = LHSVals[i].first;
537         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
538
539         if (Constant *KC = getKnownConstant(Folded, WantInteger))
540           Result.push_back(std::make_pair(KC, LHSVals[i].second));
541       }
542     }
543
544     return !Result.empty();
545   }
546
547   // Handle compare with phi operand, where the PHI is defined in this block.
548   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
549     assert(Preference == WantInteger && "Compares only produce integers");
550     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
551     if (PN && PN->getParent() == BB) {
552       const DataLayout &DL = PN->getModule()->getDataLayout();
553       // We can do this simplification if any comparisons fold to true or false.
554       // See if any do.
555       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
556         BasicBlock *PredBB = PN->getIncomingBlock(i);
557         Value *LHS = PN->getIncomingValue(i);
558         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
559
560         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
561         if (!Res) {
562           if (!isa<Constant>(RHS))
563             continue;
564
565           LazyValueInfo::Tristate
566             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
567                                            cast<Constant>(RHS), PredBB, BB,
568                                            CxtI ? CxtI : Cmp);
569           if (ResT == LazyValueInfo::Unknown)
570             continue;
571           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
572         }
573
574         if (Constant *KC = getKnownConstant(Res, WantInteger))
575           Result.push_back(std::make_pair(KC, PredBB));
576       }
577
578       return !Result.empty();
579     }
580
581     // If comparing a live-in value against a constant, see if we know the
582     // live-in value on any predecessors.
583     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
584       if (!isa<Instruction>(Cmp->getOperand(0)) ||
585           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
586         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
587
588         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
589           BasicBlock *P = *PI;
590           // If the value is known by LazyValueInfo to be a constant in a
591           // predecessor, use that information to try to thread this block.
592           LazyValueInfo::Tristate Res =
593             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
594                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
595           if (Res == LazyValueInfo::Unknown)
596             continue;
597
598           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
599           Result.push_back(std::make_pair(ResC, P));
600         }
601
602         return !Result.empty();
603       }
604
605       // Try to find a constant value for the LHS of a comparison,
606       // and evaluate it statically if we can.
607       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
608         PredValueInfoTy LHSVals;
609         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
610                                         WantInteger, CxtI);
611
612         for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
613           Constant *V = LHSVals[i].first;
614           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
615                                                       V, CmpConst);
616           if (Constant *KC = getKnownConstant(Folded, WantInteger))
617             Result.push_back(std::make_pair(KC, LHSVals[i].second));
618         }
619
620         return !Result.empty();
621       }
622     }
623   }
624
625   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
626     // Handle select instructions where at least one operand is a known constant
627     // and we can figure out the condition value for any predecessor block.
628     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
629     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
630     PredValueInfoTy Conds;
631     if ((TrueVal || FalseVal) &&
632         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
633                                         WantInteger, CxtI)) {
634       for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
635         Constant *Cond = Conds[i].first;
636
637         // Figure out what value to use for the condition.
638         bool KnownCond;
639         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
640           // A known boolean.
641           KnownCond = CI->isOne();
642         } else {
643           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
644           // Either operand will do, so be sure to pick the one that's a known
645           // constant.
646           // FIXME: Do this more cleverly if both values are known constants?
647           KnownCond = (TrueVal != nullptr);
648         }
649
650         // See if the select has a known constant value for this predecessor.
651         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
652           Result.push_back(std::make_pair(Val, Conds[i].second));
653       }
654
655       return !Result.empty();
656     }
657   }
658
659   // If all else fails, see if LVI can figure out a constant value for us.
660   Constant *CI = LVI->getConstant(V, BB, CxtI);
661   if (Constant *KC = getKnownConstant(CI, Preference)) {
662     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
663       Result.push_back(std::make_pair(KC, *PI));
664   }
665
666   return !Result.empty();
667 }
668
669
670
671 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
672 /// in an undefined jump, decide which block is best to revector to.
673 ///
674 /// Since we can pick an arbitrary destination, we pick the successor with the
675 /// fewest predecessors.  This should reduce the in-degree of the others.
676 ///
677 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
678   TerminatorInst *BBTerm = BB->getTerminator();
679   unsigned MinSucc = 0;
680   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
681   // Compute the successor with the minimum number of predecessors.
682   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
683   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
684     TestBB = BBTerm->getSuccessor(i);
685     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
686     if (NumPreds < MinNumPreds) {
687       MinSucc = i;
688       MinNumPreds = NumPreds;
689     }
690   }
691
692   return MinSucc;
693 }
694
695 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
696   if (!BB->hasAddressTaken()) return false;
697
698   // If the block has its address taken, it may be a tree of dead constants
699   // hanging off of it.  These shouldn't keep the block alive.
700   BlockAddress *BA = BlockAddress::get(BB);
701   BA->removeDeadConstantUsers();
702   return !BA->use_empty();
703 }
704
705 /// ProcessBlock - If there are any predecessors whose control can be threaded
706 /// through to a successor, transform them now.
707 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
708   // If the block is trivially dead, just return and let the caller nuke it.
709   // This simplifies other transformations.
710   if (pred_empty(BB) &&
711       BB != &BB->getParent()->getEntryBlock())
712     return false;
713
714   // If this block has a single predecessor, and if that pred has a single
715   // successor, merge the blocks.  This encourages recursive jump threading
716   // because now the condition in this block can be threaded through
717   // predecessors of our predecessor block.
718   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
719     const TerminatorInst *TI = SinglePred->getTerminator();
720     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
721         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
722       // If SinglePred was a loop header, BB becomes one.
723       if (LoopHeaders.erase(SinglePred))
724         LoopHeaders.insert(BB);
725
726       LVI->eraseBlock(SinglePred);
727       MergeBasicBlockIntoOnlyPred(BB);
728
729       return true;
730     }
731   }
732
733   // What kind of constant we're looking for.
734   ConstantPreference Preference = WantInteger;
735
736   // Look to see if the terminator is a conditional branch, switch or indirect
737   // branch, if not we can't thread it.
738   Value *Condition;
739   Instruction *Terminator = BB->getTerminator();
740   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
741     // Can't thread an unconditional jump.
742     if (BI->isUnconditional()) return false;
743     Condition = BI->getCondition();
744   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
745     Condition = SI->getCondition();
746   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
747     // Can't thread indirect branch with no successors.
748     if (IB->getNumSuccessors() == 0) return false;
749     Condition = IB->getAddress()->stripPointerCasts();
750     Preference = WantBlockAddress;
751   } else {
752     return false; // Must be an invoke.
753   }
754
755   // Run constant folding to see if we can reduce the condition to a simple
756   // constant.
757   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
758     Value *SimpleVal =
759         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
760     if (SimpleVal) {
761       I->replaceAllUsesWith(SimpleVal);
762       I->eraseFromParent();
763       Condition = SimpleVal;
764     }
765   }
766
767   // If the terminator is branching on an undef, we can pick any of the
768   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
769   if (isa<UndefValue>(Condition)) {
770     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
771
772     // Fold the branch/switch.
773     TerminatorInst *BBTerm = BB->getTerminator();
774     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
775       if (i == BestSucc) continue;
776       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
777     }
778
779     DEBUG(dbgs() << "  In block '" << BB->getName()
780           << "' folding undef terminator: " << *BBTerm << '\n');
781     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
782     BBTerm->eraseFromParent();
783     return true;
784   }
785
786   // If the terminator of this block is branching on a constant, simplify the
787   // terminator to an unconditional branch.  This can occur due to threading in
788   // other blocks.
789   if (getKnownConstant(Condition, Preference)) {
790     DEBUG(dbgs() << "  In block '" << BB->getName()
791           << "' folding terminator: " << *BB->getTerminator() << '\n');
792     ++NumFolds;
793     ConstantFoldTerminator(BB, true);
794     return true;
795   }
796
797   Instruction *CondInst = dyn_cast<Instruction>(Condition);
798
799   // All the rest of our checks depend on the condition being an instruction.
800   if (!CondInst) {
801     // FIXME: Unify this with code below.
802     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
803       return true;
804     return false;
805   }
806
807
808   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
809     // If we're branching on a conditional, LVI might be able to determine
810     // it's value at the branch instruction.  We only handle comparisons
811     // against a constant at this time.
812     // TODO: This should be extended to handle switches as well.
813     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
814     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
815     if (CondBr && CondConst && CondBr->isConditional()) {
816       LazyValueInfo::Tristate Ret =
817         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
818                             CondConst, CondBr);
819       if (Ret != LazyValueInfo::Unknown) {
820         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
821         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
822         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
823         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
824         CondBr->eraseFromParent();
825         if (CondCmp->use_empty())
826           CondCmp->eraseFromParent();
827         else if (CondCmp->getParent() == BB) {
828           // If the fact we just learned is true for all uses of the
829           // condition, replace it with a constant value
830           auto *CI = Ret == LazyValueInfo::True ?
831             ConstantInt::getTrue(CondCmp->getType()) :
832             ConstantInt::getFalse(CondCmp->getType());
833           CondCmp->replaceAllUsesWith(CI);
834           CondCmp->eraseFromParent();
835         }
836         return true;
837       }
838     }
839
840     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
841       return true;
842   }
843
844   // Check for some cases that are worth simplifying.  Right now we want to look
845   // for loads that are used by a switch or by the condition for the branch.  If
846   // we see one, check to see if it's partially redundant.  If so, insert a PHI
847   // which can then be used to thread the values.
848   //
849   Value *SimplifyValue = CondInst;
850   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
851     if (isa<Constant>(CondCmp->getOperand(1)))
852       SimplifyValue = CondCmp->getOperand(0);
853
854   // TODO: There are other places where load PRE would be profitable, such as
855   // more complex comparisons.
856   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
857     if (SimplifyPartiallyRedundantLoad(LI))
858       return true;
859
860
861   // Handle a variety of cases where we are branching on something derived from
862   // a PHI node in the current block.  If we can prove that any predecessors
863   // compute a predictable value based on a PHI node, thread those predecessors.
864   //
865   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
866     return true;
867
868   // If this is an otherwise-unfoldable branch on a phi node in the current
869   // block, see if we can simplify.
870   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
871     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
872       return ProcessBranchOnPHI(PN);
873
874
875   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
876   if (CondInst->getOpcode() == Instruction::Xor &&
877       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
878     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
879
880   // Search for a stronger dominating condition that can be used to simplify a
881   // conditional branch leaving BB.
882   if (ProcessImpliedCondition(BB))
883     return true;
884
885   return false;
886 }
887
888 bool JumpThreading::ProcessImpliedCondition(BasicBlock *BB) {
889   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
890   if (!BI || !BI->isConditional())
891     return false;
892
893   Value *Cond = BI->getCondition();
894   BasicBlock *CurrentBB = BB;
895   BasicBlock *CurrentPred = BB->getSinglePredecessor();
896   unsigned Iter = 0;
897
898   auto &DL = BB->getModule()->getDataLayout();
899
900   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
901     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
902     if (!PBI || !PBI->isConditional() || PBI->getSuccessor(0) != CurrentBB)
903       return false;
904
905     if (isImpliedCondition(PBI->getCondition(), Cond, DL)) {
906       BI->getSuccessor(1)->removePredecessor(BB);
907       BranchInst::Create(BI->getSuccessor(0), BI);
908       BI->eraseFromParent();
909       return true;
910     }
911     CurrentBB = CurrentPred;
912     CurrentPred = CurrentBB->getSinglePredecessor();
913   }
914
915   return false;
916 }
917
918 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
919 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
920 /// important optimization that encourages jump threading, and needs to be run
921 /// interlaced with other jump threading tasks.
922 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
923   // Don't hack volatile/atomic loads.
924   if (!LI->isSimple()) return false;
925
926   // If the load is defined in a block with exactly one predecessor, it can't be
927   // partially redundant.
928   BasicBlock *LoadBB = LI->getParent();
929   if (LoadBB->getSinglePredecessor())
930     return false;
931
932   // If the load is defined in an EH pad, it can't be partially redundant,
933   // because the edges between the invoke and the EH pad cannot have other
934   // instructions between them.
935   if (LoadBB->isEHPad())
936     return false;
937
938   Value *LoadedPtr = LI->getOperand(0);
939
940   // If the loaded operand is defined in the LoadBB, it can't be available.
941   // TODO: Could do simple PHI translation, that would be fun :)
942   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
943     if (PtrOp->getParent() == LoadBB)
944       return false;
945
946   // Scan a few instructions up from the load, to see if it is obviously live at
947   // the entry to its block.
948   BasicBlock::iterator BBIt(LI);
949
950   if (Value *AvailableVal =
951         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, DefMaxInstsToScan)) {
952     // If the value of the load is locally available within the block, just use
953     // it.  This frequently occurs for reg2mem'd allocas.
954     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
955
956     // If the returned value is the load itself, replace with an undef. This can
957     // only happen in dead loops.
958     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
959     if (AvailableVal->getType() != LI->getType())
960       AvailableVal =
961           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
962     LI->replaceAllUsesWith(AvailableVal);
963     LI->eraseFromParent();
964     return true;
965   }
966
967   // Otherwise, if we scanned the whole block and got to the top of the block,
968   // we know the block is locally transparent to the load.  If not, something
969   // might clobber its value.
970   if (BBIt != LoadBB->begin())
971     return false;
972
973   // If all of the loads and stores that feed the value have the same AA tags,
974   // then we can propagate them onto any newly inserted loads.
975   AAMDNodes AATags;
976   LI->getAAMetadata(AATags);
977
978   SmallPtrSet<BasicBlock*, 8> PredsScanned;
979   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
980   AvailablePredsTy AvailablePreds;
981   BasicBlock *OneUnavailablePred = nullptr;
982
983   // If we got here, the loaded value is transparent through to the start of the
984   // block.  Check to see if it is available in any of the predecessor blocks.
985   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
986        PI != PE; ++PI) {
987     BasicBlock *PredBB = *PI;
988
989     // If we already scanned this predecessor, skip it.
990     if (!PredsScanned.insert(PredBB).second)
991       continue;
992
993     // Scan the predecessor to see if the value is available in the pred.
994     BBIt = PredBB->end();
995     AAMDNodes ThisAATags;
996     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt,
997                                                     DefMaxInstsToScan,
998                                                     nullptr, &ThisAATags);
999     if (!PredAvailable) {
1000       OneUnavailablePred = PredBB;
1001       continue;
1002     }
1003
1004     // If AA tags disagree or are not present, forget about them.
1005     if (AATags != ThisAATags) AATags = AAMDNodes();
1006
1007     // If so, this load is partially redundant.  Remember this info so that we
1008     // can create a PHI node.
1009     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1010   }
1011
1012   // If the loaded value isn't available in any predecessor, it isn't partially
1013   // redundant.
1014   if (AvailablePreds.empty()) return false;
1015
1016   // Okay, the loaded value is available in at least one (and maybe all!)
1017   // predecessors.  If the value is unavailable in more than one unique
1018   // predecessor, we want to insert a merge block for those common predecessors.
1019   // This ensures that we only have to insert one reload, thus not increasing
1020   // code size.
1021   BasicBlock *UnavailablePred = nullptr;
1022
1023   // If there is exactly one predecessor where the value is unavailable, the
1024   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1025   // unconditional branch, we know that it isn't a critical edge.
1026   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1027       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1028     UnavailablePred = OneUnavailablePred;
1029   } else if (PredsScanned.size() != AvailablePreds.size()) {
1030     // Otherwise, we had multiple unavailable predecessors or we had a critical
1031     // edge from the one.
1032     SmallVector<BasicBlock*, 8> PredsToSplit;
1033     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1034
1035     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
1036       AvailablePredSet.insert(AvailablePreds[i].first);
1037
1038     // Add all the unavailable predecessors to the PredsToSplit list.
1039     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
1040          PI != PE; ++PI) {
1041       BasicBlock *P = *PI;
1042       // If the predecessor is an indirect goto, we can't split the edge.
1043       if (isa<IndirectBrInst>(P->getTerminator()))
1044         return false;
1045
1046       if (!AvailablePredSet.count(P))
1047         PredsToSplit.push_back(P);
1048     }
1049
1050     // Split them out to their own block.
1051     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1052   }
1053
1054   // If the value isn't available in all predecessors, then there will be
1055   // exactly one where it isn't available.  Insert a load on that edge and add
1056   // it to the AvailablePreds list.
1057   if (UnavailablePred) {
1058     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1059            "Can't handle critical edge here!");
1060     LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1061                                  LI->getAlignment(),
1062                                  UnavailablePred->getTerminator());
1063     NewVal->setDebugLoc(LI->getDebugLoc());
1064     if (AATags)
1065       NewVal->setAAMetadata(AATags);
1066
1067     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1068   }
1069
1070   // Now we know that each predecessor of this block has a value in
1071   // AvailablePreds, sort them for efficient access as we're walking the preds.
1072   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1073
1074   // Create a PHI node at the start of the block for the PRE'd load value.
1075   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1076   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1077                                 &LoadBB->front());
1078   PN->takeName(LI);
1079   PN->setDebugLoc(LI->getDebugLoc());
1080
1081   // Insert new entries into the PHI for each predecessor.  A single block may
1082   // have multiple entries here.
1083   for (pred_iterator PI = PB; PI != PE; ++PI) {
1084     BasicBlock *P = *PI;
1085     AvailablePredsTy::iterator I =
1086       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1087                        std::make_pair(P, (Value*)nullptr));
1088
1089     assert(I != AvailablePreds.end() && I->first == P &&
1090            "Didn't find entry for predecessor!");
1091
1092     // If we have an available predecessor but it requires casting, insert the
1093     // cast in the predecessor and use the cast. Note that we have to update the
1094     // AvailablePreds vector as we go so that all of the PHI entries for this
1095     // predecessor use the same bitcast.
1096     Value *&PredV = I->second;
1097     if (PredV->getType() != LI->getType())
1098       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1099                                                P->getTerminator());
1100
1101     PN->addIncoming(PredV, I->first);
1102   }
1103
1104   //cerr << "PRE: " << *LI << *PN << "\n";
1105
1106   LI->replaceAllUsesWith(PN);
1107   LI->eraseFromParent();
1108
1109   return true;
1110 }
1111
1112 /// FindMostPopularDest - The specified list contains multiple possible
1113 /// threadable destinations.  Pick the one that occurs the most frequently in
1114 /// the list.
1115 static BasicBlock *
1116 FindMostPopularDest(BasicBlock *BB,
1117                     const SmallVectorImpl<std::pair<BasicBlock*,
1118                                   BasicBlock*> > &PredToDestList) {
1119   assert(!PredToDestList.empty());
1120
1121   // Determine popularity.  If there are multiple possible destinations, we
1122   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1123   // blocks with known and real destinations to threading undef.  We'll handle
1124   // them later if interesting.
1125   DenseMap<BasicBlock*, unsigned> DestPopularity;
1126   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1127     if (PredToDestList[i].second)
1128       DestPopularity[PredToDestList[i].second]++;
1129
1130   // Find the most popular dest.
1131   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1132   BasicBlock *MostPopularDest = DPI->first;
1133   unsigned Popularity = DPI->second;
1134   SmallVector<BasicBlock*, 4> SamePopularity;
1135
1136   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1137     // If the popularity of this entry isn't higher than the popularity we've
1138     // seen so far, ignore it.
1139     if (DPI->second < Popularity)
1140       ; // ignore.
1141     else if (DPI->second == Popularity) {
1142       // If it is the same as what we've seen so far, keep track of it.
1143       SamePopularity.push_back(DPI->first);
1144     } else {
1145       // If it is more popular, remember it.
1146       SamePopularity.clear();
1147       MostPopularDest = DPI->first;
1148       Popularity = DPI->second;
1149     }
1150   }
1151
1152   // Okay, now we know the most popular destination.  If there is more than one
1153   // destination, we need to determine one.  This is arbitrary, but we need
1154   // to make a deterministic decision.  Pick the first one that appears in the
1155   // successor list.
1156   if (!SamePopularity.empty()) {
1157     SamePopularity.push_back(MostPopularDest);
1158     TerminatorInst *TI = BB->getTerminator();
1159     for (unsigned i = 0; ; ++i) {
1160       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1161
1162       if (std::find(SamePopularity.begin(), SamePopularity.end(),
1163                     TI->getSuccessor(i)) == SamePopularity.end())
1164         continue;
1165
1166       MostPopularDest = TI->getSuccessor(i);
1167       break;
1168     }
1169   }
1170
1171   // Okay, we have finally picked the most popular destination.
1172   return MostPopularDest;
1173 }
1174
1175 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1176                                            ConstantPreference Preference,
1177                                            Instruction *CxtI) {
1178   // If threading this would thread across a loop header, don't even try to
1179   // thread the edge.
1180   if (LoopHeaders.count(BB))
1181     return false;
1182
1183   PredValueInfoTy PredValues;
1184   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1185     return false;
1186
1187   assert(!PredValues.empty() &&
1188          "ComputeValueKnownInPredecessors returned true with no values");
1189
1190   DEBUG(dbgs() << "IN BB: " << *BB;
1191         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1192           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1193             << *PredValues[i].first
1194             << " for pred '" << PredValues[i].second->getName() << "'.\n";
1195         });
1196
1197   // Decide what we want to thread through.  Convert our list of known values to
1198   // a list of known destinations for each pred.  This also discards duplicate
1199   // predecessors and keeps track of the undefined inputs (which are represented
1200   // as a null dest in the PredToDestList).
1201   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1202   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1203
1204   BasicBlock *OnlyDest = nullptr;
1205   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1206
1207   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1208     BasicBlock *Pred = PredValues[i].second;
1209     if (!SeenPreds.insert(Pred).second)
1210       continue;  // Duplicate predecessor entry.
1211
1212     // If the predecessor ends with an indirect goto, we can't change its
1213     // destination.
1214     if (isa<IndirectBrInst>(Pred->getTerminator()))
1215       continue;
1216
1217     Constant *Val = PredValues[i].first;
1218
1219     BasicBlock *DestBB;
1220     if (isa<UndefValue>(Val))
1221       DestBB = nullptr;
1222     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1223       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1224     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1225       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1226     } else {
1227       assert(isa<IndirectBrInst>(BB->getTerminator())
1228               && "Unexpected terminator");
1229       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1230     }
1231
1232     // If we have exactly one destination, remember it for efficiency below.
1233     if (PredToDestList.empty())
1234       OnlyDest = DestBB;
1235     else if (OnlyDest != DestBB)
1236       OnlyDest = MultipleDestSentinel;
1237
1238     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1239   }
1240
1241   // If all edges were unthreadable, we fail.
1242   if (PredToDestList.empty())
1243     return false;
1244
1245   // Determine which is the most common successor.  If we have many inputs and
1246   // this block is a switch, we want to start by threading the batch that goes
1247   // to the most popular destination first.  If we only know about one
1248   // threadable destination (the common case) we can avoid this.
1249   BasicBlock *MostPopularDest = OnlyDest;
1250
1251   if (MostPopularDest == MultipleDestSentinel)
1252     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1253
1254   // Now that we know what the most popular destination is, factor all
1255   // predecessors that will jump to it into a single predecessor.
1256   SmallVector<BasicBlock*, 16> PredsToFactor;
1257   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1258     if (PredToDestList[i].second == MostPopularDest) {
1259       BasicBlock *Pred = PredToDestList[i].first;
1260
1261       // This predecessor may be a switch or something else that has multiple
1262       // edges to the block.  Factor each of these edges by listing them
1263       // according to # occurrences in PredsToFactor.
1264       TerminatorInst *PredTI = Pred->getTerminator();
1265       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1266         if (PredTI->getSuccessor(i) == BB)
1267           PredsToFactor.push_back(Pred);
1268     }
1269
1270   // If the threadable edges are branching on an undefined value, we get to pick
1271   // the destination that these predecessors should get to.
1272   if (!MostPopularDest)
1273     MostPopularDest = BB->getTerminator()->
1274                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1275
1276   // Ok, try to thread it!
1277   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1278 }
1279
1280 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1281 /// a PHI node in the current block.  See if there are any simplifications we
1282 /// can do based on inputs to the phi node.
1283 ///
1284 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1285   BasicBlock *BB = PN->getParent();
1286
1287   // TODO: We could make use of this to do it once for blocks with common PHI
1288   // values.
1289   SmallVector<BasicBlock*, 1> PredBBs;
1290   PredBBs.resize(1);
1291
1292   // If any of the predecessor blocks end in an unconditional branch, we can
1293   // *duplicate* the conditional branch into that block in order to further
1294   // encourage jump threading and to eliminate cases where we have branch on a
1295   // phi of an icmp (branch on icmp is much better).
1296   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1297     BasicBlock *PredBB = PN->getIncomingBlock(i);
1298     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1299       if (PredBr->isUnconditional()) {
1300         PredBBs[0] = PredBB;
1301         // Try to duplicate BB into PredBB.
1302         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1303           return true;
1304       }
1305   }
1306
1307   return false;
1308 }
1309
1310 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1311 /// a xor instruction in the current block.  See if there are any
1312 /// simplifications we can do based on inputs to the xor.
1313 ///
1314 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1315   BasicBlock *BB = BO->getParent();
1316
1317   // If either the LHS or RHS of the xor is a constant, don't do this
1318   // optimization.
1319   if (isa<ConstantInt>(BO->getOperand(0)) ||
1320       isa<ConstantInt>(BO->getOperand(1)))
1321     return false;
1322
1323   // If the first instruction in BB isn't a phi, we won't be able to infer
1324   // anything special about any particular predecessor.
1325   if (!isa<PHINode>(BB->front()))
1326     return false;
1327
1328   // If we have a xor as the branch input to this block, and we know that the
1329   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1330   // the condition into the predecessor and fix that value to true, saving some
1331   // logical ops on that path and encouraging other paths to simplify.
1332   //
1333   // This copies something like this:
1334   //
1335   //  BB:
1336   //    %X = phi i1 [1],  [%X']
1337   //    %Y = icmp eq i32 %A, %B
1338   //    %Z = xor i1 %X, %Y
1339   //    br i1 %Z, ...
1340   //
1341   // Into:
1342   //  BB':
1343   //    %Y = icmp ne i32 %A, %B
1344   //    br i1 %Y, ...
1345
1346   PredValueInfoTy XorOpValues;
1347   bool isLHS = true;
1348   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1349                                        WantInteger, BO)) {
1350     assert(XorOpValues.empty());
1351     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1352                                          WantInteger, BO))
1353       return false;
1354     isLHS = false;
1355   }
1356
1357   assert(!XorOpValues.empty() &&
1358          "ComputeValueKnownInPredecessors returned true with no values");
1359
1360   // Scan the information to see which is most popular: true or false.  The
1361   // predecessors can be of the set true, false, or undef.
1362   unsigned NumTrue = 0, NumFalse = 0;
1363   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1364     if (isa<UndefValue>(XorOpValues[i].first))
1365       // Ignore undefs for the count.
1366       continue;
1367     if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1368       ++NumFalse;
1369     else
1370       ++NumTrue;
1371   }
1372
1373   // Determine which value to split on, true, false, or undef if neither.
1374   ConstantInt *SplitVal = nullptr;
1375   if (NumTrue > NumFalse)
1376     SplitVal = ConstantInt::getTrue(BB->getContext());
1377   else if (NumTrue != 0 || NumFalse != 0)
1378     SplitVal = ConstantInt::getFalse(BB->getContext());
1379
1380   // Collect all of the blocks that this can be folded into so that we can
1381   // factor this once and clone it once.
1382   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1383   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1384     if (XorOpValues[i].first != SplitVal &&
1385         !isa<UndefValue>(XorOpValues[i].first))
1386       continue;
1387
1388     BlocksToFoldInto.push_back(XorOpValues[i].second);
1389   }
1390
1391   // If we inferred a value for all of the predecessors, then duplication won't
1392   // help us.  However, we can just replace the LHS or RHS with the constant.
1393   if (BlocksToFoldInto.size() ==
1394       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1395     if (!SplitVal) {
1396       // If all preds provide undef, just nuke the xor, because it is undef too.
1397       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1398       BO->eraseFromParent();
1399     } else if (SplitVal->isZero()) {
1400       // If all preds provide 0, replace the xor with the other input.
1401       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1402       BO->eraseFromParent();
1403     } else {
1404       // If all preds provide 1, set the computed value to 1.
1405       BO->setOperand(!isLHS, SplitVal);
1406     }
1407
1408     return true;
1409   }
1410
1411   // Try to duplicate BB into PredBB.
1412   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1413 }
1414
1415
1416 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1417 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1418 /// NewPred using the entries from OldPred (suitably mapped).
1419 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1420                                             BasicBlock *OldPred,
1421                                             BasicBlock *NewPred,
1422                                      DenseMap<Instruction*, Value*> &ValueMap) {
1423   for (BasicBlock::iterator PNI = PHIBB->begin();
1424        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1425     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1426     // DestBlock.
1427     Value *IV = PN->getIncomingValueForBlock(OldPred);
1428
1429     // Remap the value if necessary.
1430     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1431       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1432       if (I != ValueMap.end())
1433         IV = I->second;
1434     }
1435
1436     PN->addIncoming(IV, NewPred);
1437   }
1438 }
1439
1440 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1441 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1442 /// across BB.  Transform the IR to reflect this change.
1443 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1444                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1445                                BasicBlock *SuccBB) {
1446   // If threading to the same block as we come from, we would infinite loop.
1447   if (SuccBB == BB) {
1448     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1449           << "' - would thread to self!\n");
1450     return false;
1451   }
1452
1453   // If threading this would thread across a loop header, don't thread the edge.
1454   // See the comments above FindLoopHeaders for justifications and caveats.
1455   if (LoopHeaders.count(BB)) {
1456     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1457           << "' to dest BB '" << SuccBB->getName()
1458           << "' - it might create an irreducible loop!\n");
1459     return false;
1460   }
1461
1462   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1463   if (JumpThreadCost > BBDupThreshold) {
1464     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1465           << "' - Cost is too high: " << JumpThreadCost << "\n");
1466     return false;
1467   }
1468
1469   // And finally, do it!  Start by factoring the predecessors if needed.
1470   BasicBlock *PredBB;
1471   if (PredBBs.size() == 1)
1472     PredBB = PredBBs[0];
1473   else {
1474     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1475           << " common predecessors.\n");
1476     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1477   }
1478
1479   // And finally, do it!
1480   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1481         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1482         << ", across block:\n    "
1483         << *BB << "\n");
1484
1485   LVI->threadEdge(PredBB, BB, SuccBB);
1486
1487   // We are going to have to map operands from the original BB block to the new
1488   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1489   // account for entry from PredBB.
1490   DenseMap<Instruction*, Value*> ValueMapping;
1491
1492   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1493                                          BB->getName()+".thread",
1494                                          BB->getParent(), BB);
1495   NewBB->moveAfter(PredBB);
1496
1497   // Set the block frequency of NewBB.
1498   if (HasProfileData) {
1499     auto NewBBFreq =
1500         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1501     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1502   }
1503
1504   BasicBlock::iterator BI = BB->begin();
1505   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1506     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1507
1508   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1509   // mapping and using it to remap operands in the cloned instructions.
1510   for (; !isa<TerminatorInst>(BI); ++BI) {
1511     Instruction *New = BI->clone();
1512     New->setName(BI->getName());
1513     NewBB->getInstList().push_back(New);
1514     ValueMapping[&*BI] = New;
1515
1516     // Remap operands to patch up intra-block references.
1517     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1518       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1519         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1520         if (I != ValueMapping.end())
1521           New->setOperand(i, I->second);
1522       }
1523   }
1524
1525   // We didn't copy the terminator from BB over to NewBB, because there is now
1526   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1527   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1528   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1529
1530   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1531   // PHI nodes for NewBB now.
1532   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1533
1534   // If there were values defined in BB that are used outside the block, then we
1535   // now have to update all uses of the value to use either the original value,
1536   // the cloned value, or some PHI derived value.  This can require arbitrary
1537   // PHI insertion, of which we are prepared to do, clean these up now.
1538   SSAUpdater SSAUpdate;
1539   SmallVector<Use*, 16> UsesToRename;
1540   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1541     // Scan all uses of this instruction to see if it is used outside of its
1542     // block, and if so, record them in UsesToRename.
1543     for (Use &U : I->uses()) {
1544       Instruction *User = cast<Instruction>(U.getUser());
1545       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1546         if (UserPN->getIncomingBlock(U) == BB)
1547           continue;
1548       } else if (User->getParent() == BB)
1549         continue;
1550
1551       UsesToRename.push_back(&U);
1552     }
1553
1554     // If there are no uses outside the block, we're done with this instruction.
1555     if (UsesToRename.empty())
1556       continue;
1557
1558     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1559
1560     // We found a use of I outside of BB.  Rename all uses of I that are outside
1561     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1562     // with the two values we know.
1563     SSAUpdate.Initialize(I->getType(), I->getName());
1564     SSAUpdate.AddAvailableValue(BB, &*I);
1565     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&*I]);
1566
1567     while (!UsesToRename.empty())
1568       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1569     DEBUG(dbgs() << "\n");
1570   }
1571
1572
1573   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1574   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1575   // us to simplify any PHI nodes in BB.
1576   TerminatorInst *PredTerm = PredBB->getTerminator();
1577   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1578     if (PredTerm->getSuccessor(i) == BB) {
1579       BB->removePredecessor(PredBB, true);
1580       PredTerm->setSuccessor(i, NewBB);
1581     }
1582
1583   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1584   // over the new instructions and zap any that are constants or dead.  This
1585   // frequently happens because of phi translation.
1586   SimplifyInstructionsInBlock(NewBB, TLI);
1587
1588   // Update the edge weight from BB to SuccBB, which should be less than before.
1589   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1590
1591   // Threaded an edge!
1592   ++NumThreads;
1593   return true;
1594 }
1595
1596 /// Create a new basic block that will be the predecessor of BB and successor of
1597 /// all blocks in Preds. When profile data is availble, update the frequency of
1598 /// this new block.
1599 BasicBlock *JumpThreading::SplitBlockPreds(BasicBlock *BB,
1600                                            ArrayRef<BasicBlock *> Preds,
1601                                            const char *Suffix) {
1602   // Collect the frequencies of all predecessors of BB, which will be used to
1603   // update the edge weight on BB->SuccBB.
1604   BlockFrequency PredBBFreq(0);
1605   if (HasProfileData)
1606     for (auto Pred : Preds)
1607       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1608
1609   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1610
1611   // Set the block frequency of the newly created PredBB, which is the sum of
1612   // frequencies of Preds.
1613   if (HasProfileData)
1614     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1615   return PredBB;
1616 }
1617
1618 /// Update the block frequency of BB and branch weight and the metadata on the
1619 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1620 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1621 void JumpThreading::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1622                                                  BasicBlock *BB,
1623                                                  BasicBlock *NewBB,
1624                                                  BasicBlock *SuccBB) {
1625   if (!HasProfileData)
1626     return;
1627
1628   assert(BFI && BPI && "BFI & BPI should have been created here");
1629
1630   // As the edge from PredBB to BB is deleted, we have to update the block
1631   // frequency of BB.
1632   auto BBOrigFreq = BFI->getBlockFreq(BB);
1633   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1634   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1635   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1636   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1637
1638   // Collect updated outgoing edges' frequencies from BB and use them to update
1639   // edge probabilities.
1640   SmallVector<uint64_t, 4> BBSuccFreq;
1641   for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
1642     auto SuccFreq = (*I == SuccBB)
1643                         ? BB2SuccBBFreq - NewBBFreq
1644                         : BBOrigFreq * BPI->getEdgeProbability(BB, *I);
1645     BBSuccFreq.push_back(SuccFreq.getFrequency());
1646   }
1647
1648   uint64_t MaxBBSuccFreq =
1649       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1650
1651   SmallVector<BranchProbability, 4> BBSuccProbs;
1652   if (MaxBBSuccFreq == 0)
1653     BBSuccProbs.assign(BBSuccFreq.size(),
1654                        {1, static_cast<unsigned>(BBSuccFreq.size())});
1655   else {
1656     for (uint64_t Freq : BBSuccFreq)
1657       BBSuccProbs.push_back(
1658           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1659     // Normalize edge probabilities so that they sum up to one.
1660     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1661                                               BBSuccProbs.end());
1662   }
1663
1664   // Update edge probabilities in BPI.
1665   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1666     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1667
1668   if (BBSuccProbs.size() >= 2) {
1669     SmallVector<uint32_t, 4> Weights;
1670     for (auto Prob : BBSuccProbs)
1671       Weights.push_back(Prob.getNumerator());
1672
1673     auto TI = BB->getTerminator();
1674     TI->setMetadata(
1675         LLVMContext::MD_prof,
1676         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1677   }
1678 }
1679
1680 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1681 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1682 /// If we can duplicate the contents of BB up into PredBB do so now, this
1683 /// improves the odds that the branch will be on an analyzable instruction like
1684 /// a compare.
1685 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1686                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
1687   assert(!PredBBs.empty() && "Can't handle an empty set");
1688
1689   // If BB is a loop header, then duplicating this block outside the loop would
1690   // cause us to transform this into an irreducible loop, don't do this.
1691   // See the comments above FindLoopHeaders for justifications and caveats.
1692   if (LoopHeaders.count(BB)) {
1693     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1694           << "' into predecessor block '" << PredBBs[0]->getName()
1695           << "' - it might create an irreducible loop!\n");
1696     return false;
1697   }
1698
1699   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1700   if (DuplicationCost > BBDupThreshold) {
1701     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1702           << "' - Cost is too high: " << DuplicationCost << "\n");
1703     return false;
1704   }
1705
1706   // And finally, do it!  Start by factoring the predecessors if needed.
1707   BasicBlock *PredBB;
1708   if (PredBBs.size() == 1)
1709     PredBB = PredBBs[0];
1710   else {
1711     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1712           << " common predecessors.\n");
1713     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1714   }
1715
1716   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1717   // of PredBB.
1718   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1719         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1720         << DuplicationCost << " block is:" << *BB << "\n");
1721
1722   // Unless PredBB ends with an unconditional branch, split the edge so that we
1723   // can just clone the bits from BB into the end of the new PredBB.
1724   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1725
1726   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1727     PredBB = SplitEdge(PredBB, BB);
1728     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1729   }
1730
1731   // We are going to have to map operands from the original BB block into the
1732   // PredBB block.  Evaluate PHI nodes in BB.
1733   DenseMap<Instruction*, Value*> ValueMapping;
1734
1735   BasicBlock::iterator BI = BB->begin();
1736   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1737     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1738   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1739   // mapping and using it to remap operands in the cloned instructions.
1740   for (; BI != BB->end(); ++BI) {
1741     Instruction *New = BI->clone();
1742
1743     // Remap operands to patch up intra-block references.
1744     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1745       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1746         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1747         if (I != ValueMapping.end())
1748           New->setOperand(i, I->second);
1749       }
1750
1751     // If this instruction can be simplified after the operands are updated,
1752     // just use the simplified value instead.  This frequently happens due to
1753     // phi translation.
1754     if (Value *IV =
1755             SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1756       delete New;
1757       ValueMapping[&*BI] = IV;
1758     } else {
1759       // Otherwise, insert the new instruction into the block.
1760       New->setName(BI->getName());
1761       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1762       ValueMapping[&*BI] = New;
1763     }
1764   }
1765
1766   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1767   // add entries to the PHI nodes for branch from PredBB now.
1768   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1769   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1770                                   ValueMapping);
1771   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1772                                   ValueMapping);
1773
1774   // If there were values defined in BB that are used outside the block, then we
1775   // now have to update all uses of the value to use either the original value,
1776   // the cloned value, or some PHI derived value.  This can require arbitrary
1777   // PHI insertion, of which we are prepared to do, clean these up now.
1778   SSAUpdater SSAUpdate;
1779   SmallVector<Use*, 16> UsesToRename;
1780   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1781     // Scan all uses of this instruction to see if it is used outside of its
1782     // block, and if so, record them in UsesToRename.
1783     for (Use &U : I->uses()) {
1784       Instruction *User = cast<Instruction>(U.getUser());
1785       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1786         if (UserPN->getIncomingBlock(U) == BB)
1787           continue;
1788       } else if (User->getParent() == BB)
1789         continue;
1790
1791       UsesToRename.push_back(&U);
1792     }
1793
1794     // If there are no uses outside the block, we're done with this instruction.
1795     if (UsesToRename.empty())
1796       continue;
1797
1798     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1799
1800     // We found a use of I outside of BB.  Rename all uses of I that are outside
1801     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1802     // with the two values we know.
1803     SSAUpdate.Initialize(I->getType(), I->getName());
1804     SSAUpdate.AddAvailableValue(BB, &*I);
1805     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&*I]);
1806
1807     while (!UsesToRename.empty())
1808       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1809     DEBUG(dbgs() << "\n");
1810   }
1811
1812   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1813   // that we nuked.
1814   BB->removePredecessor(PredBB, true);
1815
1816   // Remove the unconditional branch at the end of the PredBB block.
1817   OldPredBranch->eraseFromParent();
1818
1819   ++NumDupes;
1820   return true;
1821 }
1822
1823 /// TryToUnfoldSelect - Look for blocks of the form
1824 /// bb1:
1825 ///   %a = select
1826 ///   br bb
1827 ///
1828 /// bb2:
1829 ///   %p = phi [%a, %bb] ...
1830 ///   %c = icmp %p
1831 ///   br i1 %c
1832 ///
1833 /// And expand the select into a branch structure if one of its arms allows %c
1834 /// to be folded. This later enables threading from bb1 over bb2.
1835 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1836   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1837   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1838   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1839
1840   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1841       CondLHS->getParent() != BB)
1842     return false;
1843
1844   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1845     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1846     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1847
1848     // Look if one of the incoming values is a select in the corresponding
1849     // predecessor.
1850     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1851       continue;
1852
1853     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1854     if (!PredTerm || !PredTerm->isUnconditional())
1855       continue;
1856
1857     // Now check if one of the select values would allow us to constant fold the
1858     // terminator in BB. We don't do the transform if both sides fold, those
1859     // cases will be threaded in any case.
1860     LazyValueInfo::Tristate LHSFolds =
1861         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1862                                 CondRHS, Pred, BB, CondCmp);
1863     LazyValueInfo::Tristate RHSFolds =
1864         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1865                                 CondRHS, Pred, BB, CondCmp);
1866     if ((LHSFolds != LazyValueInfo::Unknown ||
1867          RHSFolds != LazyValueInfo::Unknown) &&
1868         LHSFolds != RHSFolds) {
1869       // Expand the select.
1870       //
1871       // Pred --
1872       //  |    v
1873       //  |  NewBB
1874       //  |    |
1875       //  |-----
1876       //  v
1877       // BB
1878       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1879                                              BB->getParent(), BB);
1880       // Move the unconditional branch to NewBB.
1881       PredTerm->removeFromParent();
1882       NewBB->getInstList().insert(NewBB->end(), PredTerm);
1883       // Create a conditional branch and update PHI nodes.
1884       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1885       CondLHS->setIncomingValue(I, SI->getFalseValue());
1886       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1887       // The select is now dead.
1888       SI->eraseFromParent();
1889
1890       // Update any other PHI nodes in BB.
1891       for (BasicBlock::iterator BI = BB->begin();
1892            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1893         if (Phi != CondLHS)
1894           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1895       return true;
1896     }
1897   }
1898   return false;
1899 }