[RS4GC] Use an value handle to help isolate errors quickly
[oota-llvm.git] / lib / Transforms / Scalar / EarlyCSE.cpp
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a simple dominator tree walk that eliminates trivially
11 // redundant instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar/EarlyCSE.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/RecyclingAllocator.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include <deque>
36 using namespace llvm;
37 using namespace llvm::PatternMatch;
38
39 #define DEBUG_TYPE "early-cse"
40
41 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
42 STATISTIC(NumCSE,      "Number of instructions CSE'd");
43 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
44 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
45 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
46
47 //===----------------------------------------------------------------------===//
48 // SimpleValue
49 //===----------------------------------------------------------------------===//
50
51 namespace {
52 /// \brief Struct representing the available values in the scoped hash table.
53 struct SimpleValue {
54   Instruction *Inst;
55
56   SimpleValue(Instruction *I) : Inst(I) {
57     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
58   }
59
60   bool isSentinel() const {
61     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
62            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
63   }
64
65   static bool canHandle(Instruction *Inst) {
66     // This can only handle non-void readnone functions.
67     if (CallInst *CI = dyn_cast<CallInst>(Inst))
68       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
69     return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
70            isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
71            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
72            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
73            isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
74   }
75 };
76 }
77
78 namespace llvm {
79 template <> struct DenseMapInfo<SimpleValue> {
80   static inline SimpleValue getEmptyKey() {
81     return DenseMapInfo<Instruction *>::getEmptyKey();
82   }
83   static inline SimpleValue getTombstoneKey() {
84     return DenseMapInfo<Instruction *>::getTombstoneKey();
85   }
86   static unsigned getHashValue(SimpleValue Val);
87   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
88 };
89 }
90
91 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
92   Instruction *Inst = Val.Inst;
93   // Hash in all of the operands as pointers.
94   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
95     Value *LHS = BinOp->getOperand(0);
96     Value *RHS = BinOp->getOperand(1);
97     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
98       std::swap(LHS, RHS);
99
100     if (isa<OverflowingBinaryOperator>(BinOp)) {
101       // Hash the overflow behavior
102       unsigned Overflow =
103           BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
104           BinOp->hasNoUnsignedWrap() *
105               OverflowingBinaryOperator::NoUnsignedWrap;
106       return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
107     }
108
109     return hash_combine(BinOp->getOpcode(), LHS, RHS);
110   }
111
112   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
113     Value *LHS = CI->getOperand(0);
114     Value *RHS = CI->getOperand(1);
115     CmpInst::Predicate Pred = CI->getPredicate();
116     if (Inst->getOperand(0) > Inst->getOperand(1)) {
117       std::swap(LHS, RHS);
118       Pred = CI->getSwappedPredicate();
119     }
120     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
121   }
122
123   if (CastInst *CI = dyn_cast<CastInst>(Inst))
124     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
125
126   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
127     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
128                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
129
130   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
131     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
132                         IVI->getOperand(1),
133                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
134
135   assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
136           isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
137           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
138           isa<ShuffleVectorInst>(Inst)) &&
139          "Invalid/unknown instruction");
140
141   // Mix in the opcode.
142   return hash_combine(
143       Inst->getOpcode(),
144       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
145 }
146
147 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
148   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
149
150   if (LHS.isSentinel() || RHS.isSentinel())
151     return LHSI == RHSI;
152
153   if (LHSI->getOpcode() != RHSI->getOpcode())
154     return false;
155   if (LHSI->isIdenticalTo(RHSI))
156     return true;
157
158   // If we're not strictly identical, we still might be a commutable instruction
159   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
160     if (!LHSBinOp->isCommutative())
161       return false;
162
163     assert(isa<BinaryOperator>(RHSI) &&
164            "same opcode, but different instruction type?");
165     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
166
167     // Check overflow attributes
168     if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
169       assert(isa<OverflowingBinaryOperator>(RHSBinOp) &&
170              "same opcode, but different operator type?");
171       if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
172           LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
173         return false;
174     }
175
176     // Commuted equality
177     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
178            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
179   }
180   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
181     assert(isa<CmpInst>(RHSI) &&
182            "same opcode, but different instruction type?");
183     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
184     // Commuted equality
185     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
186            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
187            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
188   }
189
190   return false;
191 }
192
193 //===----------------------------------------------------------------------===//
194 // CallValue
195 //===----------------------------------------------------------------------===//
196
197 namespace {
198 /// \brief Struct representing the available call values in the scoped hash
199 /// table.
200 struct CallValue {
201   Instruction *Inst;
202
203   CallValue(Instruction *I) : Inst(I) {
204     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
205   }
206
207   bool isSentinel() const {
208     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
209            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
210   }
211
212   static bool canHandle(Instruction *Inst) {
213     // Don't value number anything that returns void.
214     if (Inst->getType()->isVoidTy())
215       return false;
216
217     CallInst *CI = dyn_cast<CallInst>(Inst);
218     if (!CI || !CI->onlyReadsMemory())
219       return false;
220     return true;
221   }
222 };
223 }
224
225 namespace llvm {
226 template <> struct DenseMapInfo<CallValue> {
227   static inline CallValue getEmptyKey() {
228     return DenseMapInfo<Instruction *>::getEmptyKey();
229   }
230   static inline CallValue getTombstoneKey() {
231     return DenseMapInfo<Instruction *>::getTombstoneKey();
232   }
233   static unsigned getHashValue(CallValue Val);
234   static bool isEqual(CallValue LHS, CallValue RHS);
235 };
236 }
237
238 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
239   Instruction *Inst = Val.Inst;
240   // Hash all of the operands as pointers and mix in the opcode.
241   return hash_combine(
242       Inst->getOpcode(),
243       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
244 }
245
246 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
247   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
248   if (LHS.isSentinel() || RHS.isSentinel())
249     return LHSI == RHSI;
250   return LHSI->isIdenticalTo(RHSI);
251 }
252
253 //===----------------------------------------------------------------------===//
254 // EarlyCSE implementation
255 //===----------------------------------------------------------------------===//
256
257 namespace {
258 /// \brief A simple and fast domtree-based CSE pass.
259 ///
260 /// This pass does a simple depth-first walk over the dominator tree,
261 /// eliminating trivially redundant instructions and using instsimplify to
262 /// canonicalize things as it goes. It is intended to be fast and catch obvious
263 /// cases so that instcombine and other passes are more effective. It is
264 /// expected that a later pass of GVN will catch the interesting/hard cases.
265 class EarlyCSE {
266 public:
267   const TargetLibraryInfo &TLI;
268   const TargetTransformInfo &TTI;
269   DominatorTree &DT;
270   AssumptionCache &AC;
271   typedef RecyclingAllocator<
272       BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
273   typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
274                           AllocatorTy> ScopedHTType;
275
276   /// \brief A scoped hash table of the current values of all of our simple
277   /// scalar expressions.
278   ///
279   /// As we walk down the domtree, we look to see if instructions are in this:
280   /// if so, we replace them with what we find, otherwise we insert them so
281   /// that dominated values can succeed in their lookup.
282   ScopedHTType AvailableValues;
283
284   /// A scoped hash table of the current values of previously encounted memory
285   /// locations.
286   ///
287   /// This allows us to get efficient access to dominating loads or stores when
288   /// we have a fully redundant load.  In addition to the most recent load, we
289   /// keep track of a generation count of the read, which is compared against
290   /// the current generation count.  The current generation count is incremented
291   /// after every possibly writing memory operation, which ensures that we only
292   /// CSE loads with other loads that have no intervening store.  Ordering
293   /// events (such as fences or atomic instructions) increment the generation
294   /// count as well; essentially, we model these as writes to all possible
295   /// locations.  Note that atomic and/or volatile loads and stores can be
296   /// present the table; it is the responsibility of the consumer to inspect
297   /// the atomicity/volatility if needed.
298   struct LoadValue {
299     Value *Data;
300     unsigned Generation;
301     int MatchingId;
302     bool IsAtomic;
303     LoadValue()
304       : Data(nullptr), Generation(0), MatchingId(-1), IsAtomic(false) {}
305     LoadValue(Value *Data, unsigned Generation, unsigned MatchingId,
306               bool IsAtomic)
307       : Data(Data), Generation(Generation), MatchingId(MatchingId),
308         IsAtomic(IsAtomic) {}
309   };
310   typedef RecyclingAllocator<BumpPtrAllocator,
311                              ScopedHashTableVal<Value *, LoadValue>>
312       LoadMapAllocator;
313   typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
314                           LoadMapAllocator> LoadHTType;
315   LoadHTType AvailableLoads;
316
317   /// \brief A scoped hash table of the current values of read-only call
318   /// values.
319   ///
320   /// It uses the same generation count as loads.
321   typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
322   CallHTType AvailableCalls;
323
324   /// \brief This is the current generation of the memory value.
325   unsigned CurrentGeneration;
326
327   /// \brief Set up the EarlyCSE runner for a particular function.
328   EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI,
329            DominatorTree &DT, AssumptionCache &AC)
330       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
331
332   bool run();
333
334 private:
335   // Almost a POD, but needs to call the constructors for the scoped hash
336   // tables so that a new scope gets pushed on. These are RAII so that the
337   // scope gets popped when the NodeScope is destroyed.
338   class NodeScope {
339   public:
340     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
341               CallHTType &AvailableCalls)
342         : Scope(AvailableValues), LoadScope(AvailableLoads),
343           CallScope(AvailableCalls) {}
344
345   private:
346     NodeScope(const NodeScope &) = delete;
347     void operator=(const NodeScope &) = delete;
348
349     ScopedHTType::ScopeTy Scope;
350     LoadHTType::ScopeTy LoadScope;
351     CallHTType::ScopeTy CallScope;
352   };
353
354   // Contains all the needed information to create a stack for doing a depth
355   // first tranversal of the tree. This includes scopes for values, loads, and
356   // calls as well as the generation. There is a child iterator so that the
357   // children do not need to be store spearately.
358   class StackNode {
359   public:
360     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
361               CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n,
362               DomTreeNode::iterator child, DomTreeNode::iterator end)
363         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
364           EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls),
365           Processed(false) {}
366
367     // Accessors.
368     unsigned currentGeneration() { return CurrentGeneration; }
369     unsigned childGeneration() { return ChildGeneration; }
370     void childGeneration(unsigned generation) { ChildGeneration = generation; }
371     DomTreeNode *node() { return Node; }
372     DomTreeNode::iterator childIter() { return ChildIter; }
373     DomTreeNode *nextChild() {
374       DomTreeNode *child = *ChildIter;
375       ++ChildIter;
376       return child;
377     }
378     DomTreeNode::iterator end() { return EndIter; }
379     bool isProcessed() { return Processed; }
380     void process() { Processed = true; }
381
382   private:
383     StackNode(const StackNode &) = delete;
384     void operator=(const StackNode &) = delete;
385
386     // Members.
387     unsigned CurrentGeneration;
388     unsigned ChildGeneration;
389     DomTreeNode *Node;
390     DomTreeNode::iterator ChildIter;
391     DomTreeNode::iterator EndIter;
392     NodeScope Scopes;
393     bool Processed;
394   };
395
396   /// \brief Wrapper class to handle memory instructions, including loads,
397   /// stores and intrinsic loads and stores defined by the target.
398   class ParseMemoryInst {
399   public:
400     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
401       : IsTargetMemInst(false), Inst(Inst) {
402       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
403         if (TTI.getTgtMemIntrinsic(II, Info) && Info.NumMemRefs == 1)
404           IsTargetMemInst = true;
405     }
406     bool isLoad() const {
407       if (IsTargetMemInst) return Info.ReadMem;
408       return isa<LoadInst>(Inst);
409     }
410     bool isStore() const {
411       if (IsTargetMemInst) return Info.WriteMem;
412       return isa<StoreInst>(Inst);
413     }
414     bool isAtomic() const {
415       if (IsTargetMemInst) {
416         assert(Info.IsSimple && "need to refine IsSimple in TTI");
417         return false;
418       }
419       return Inst->isAtomic();
420     }
421     bool isUnordered() const {
422       if (IsTargetMemInst) {
423         assert(Info.IsSimple && "need to refine IsSimple in TTI");
424         return true;
425       }
426       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
427         return LI->isUnordered();
428       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
429         return SI->isUnordered();
430       }
431       // Conservative answer
432       return !Inst->isAtomic();
433     }
434
435     bool isVolatile() const {
436       if (IsTargetMemInst) {
437         assert(Info.IsSimple && "need to refine IsSimple in TTI");
438         return false;
439       }
440       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
441         return LI->isVolatile();
442       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
443         return SI->isVolatile();
444       }
445       // Conservative answer
446       return true;
447     }
448
449     
450     bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
451       return (getPointerOperand() == Inst.getPointerOperand() &&
452               getMatchingId() == Inst.getMatchingId());
453     }
454     bool isValid() const { return getPointerOperand() != nullptr; }
455
456     // For regular (non-intrinsic) loads/stores, this is set to -1. For
457     // intrinsic loads/stores, the id is retrieved from the corresponding
458     // field in the MemIntrinsicInfo structure.  That field contains
459     // non-negative values only.
460     int getMatchingId() const {
461       if (IsTargetMemInst) return Info.MatchingId;
462       return -1;
463     }
464     Value *getPointerOperand() const {
465       if (IsTargetMemInst) return Info.PtrVal;
466       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
467         return LI->getPointerOperand();
468       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
469         return SI->getPointerOperand();
470       }
471       return nullptr;
472     }
473     bool mayReadFromMemory() const {
474       if (IsTargetMemInst) return Info.ReadMem;
475       return Inst->mayReadFromMemory();
476     }
477     bool mayWriteToMemory() const {
478       if (IsTargetMemInst) return Info.WriteMem;
479       return Inst->mayWriteToMemory();
480     }
481
482   private:
483     bool IsTargetMemInst;
484     MemIntrinsicInfo Info;
485     Instruction *Inst;
486   };
487
488   bool processNode(DomTreeNode *Node);
489
490   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
491     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
492       return LI;
493     else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
494       return SI->getValueOperand();
495     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
496     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
497                                                  ExpectedType);
498   }
499 };
500 }
501
502 bool EarlyCSE::processNode(DomTreeNode *Node) {
503   BasicBlock *BB = Node->getBlock();
504
505   // If this block has a single predecessor, then the predecessor is the parent
506   // of the domtree node and all of the live out memory values are still current
507   // in this block.  If this block has multiple predecessors, then they could
508   // have invalidated the live-out memory values of our parent value.  For now,
509   // just be conservative and invalidate memory if this block has multiple
510   // predecessors.
511   if (!BB->getSinglePredecessor())
512     ++CurrentGeneration;
513
514   // If this node has a single predecessor which ends in a conditional branch,
515   // we can infer the value of the branch condition given that we took this
516   // path.  We need the single predeccesor to ensure there's not another path
517   // which reaches this block where the condition might hold a different
518   // value.  Since we're adding this to the scoped hash table (like any other
519   // def), it will have been popped if we encounter a future merge block.
520   if (BasicBlock *Pred = BB->getSinglePredecessor())
521     if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
522       if (BI->isConditional())
523         if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition()))
524           if (SimpleValue::canHandle(CondInst)) {
525             assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
526             auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ?
527               ConstantInt::getTrue(BB->getContext()) :
528               ConstantInt::getFalse(BB->getContext());
529             AvailableValues.insert(CondInst, ConditionalConstant);
530             DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
531                   << CondInst->getName() << "' as " << *ConditionalConstant
532                   << " in " << BB->getName() << "\n");
533             // Replace all dominated uses with the known value
534             replaceDominatedUsesWith(CondInst, ConditionalConstant, DT,
535                                      BasicBlockEdge(Pred, BB));
536           }
537
538   /// LastStore - Keep track of the last non-volatile store that we saw... for
539   /// as long as there in no instruction that reads memory.  If we see a store
540   /// to the same location, we delete the dead store.  This zaps trivial dead
541   /// stores which can occur in bitfield code among other things.
542   Instruction *LastStore = nullptr;
543
544   bool Changed = false;
545   const DataLayout &DL = BB->getModule()->getDataLayout();
546
547   // See if any instructions in the block can be eliminated.  If so, do it.  If
548   // not, add them to AvailableValues.
549   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
550     Instruction *Inst = &*I++;
551
552     // Dead instructions should just be removed.
553     if (isInstructionTriviallyDead(Inst, &TLI)) {
554       DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
555       Inst->eraseFromParent();
556       Changed = true;
557       ++NumSimplify;
558       continue;
559     }
560
561     // Skip assume intrinsics, they don't really have side effects (although
562     // they're marked as such to ensure preservation of control dependencies),
563     // and this pass will not disturb any of the assumption's control
564     // dependencies.
565     if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
566       DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
567       continue;
568     }
569
570     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
571     // its simpler value.
572     if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) {
573       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
574       Inst->replaceAllUsesWith(V);
575       Inst->eraseFromParent();
576       Changed = true;
577       ++NumSimplify;
578       continue;
579     }
580
581     // If this is a simple instruction that we can value number, process it.
582     if (SimpleValue::canHandle(Inst)) {
583       // See if the instruction has an available value.  If so, use it.
584       if (Value *V = AvailableValues.lookup(Inst)) {
585         DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
586         Inst->replaceAllUsesWith(V);
587         Inst->eraseFromParent();
588         Changed = true;
589         ++NumCSE;
590         continue;
591       }
592
593       // Otherwise, just remember that this value is available.
594       AvailableValues.insert(Inst, Inst);
595       continue;
596     }
597
598     ParseMemoryInst MemInst(Inst, TTI);
599     // If this is a non-volatile load, process it.
600     if (MemInst.isValid() && MemInst.isLoad()) {
601       // (conservatively) we can't peak past the ordering implied by this
602       // operation, but we can add this load to our set of available values
603       if (MemInst.isVolatile() || !MemInst.isUnordered()) {
604         LastStore = nullptr;
605         ++CurrentGeneration;
606       }
607
608       // If we have an available version of this load, and if it is the right
609       // generation, replace this instruction.
610       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
611       if (InVal.Data != nullptr && InVal.Generation == CurrentGeneration &&
612           InVal.MatchingId == MemInst.getMatchingId() &&
613           // We don't yet handle removing loads with ordering of any kind.
614           !MemInst.isVolatile() && MemInst.isUnordered() &&
615           // We can't replace an atomic load with one which isn't also atomic.
616           InVal.IsAtomic >= MemInst.isAtomic()) {
617         Value *Op = getOrCreateResult(InVal.Data, Inst->getType());
618         if (Op != nullptr) {
619           DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
620                        << "  to: " << *InVal.Data << '\n');
621           if (!Inst->use_empty())
622             Inst->replaceAllUsesWith(Op);
623           Inst->eraseFromParent();
624           Changed = true;
625           ++NumCSELoad;
626           continue;
627         }
628       }
629
630       // Otherwise, remember that we have this instruction.
631       AvailableLoads.insert(
632           MemInst.getPointerOperand(),
633           LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
634                     MemInst.isAtomic()));
635       LastStore = nullptr;
636       continue;
637     }
638
639     // If this instruction may read from memory, forget LastStore.
640     // Load/store intrinsics will indicate both a read and a write to
641     // memory.  The target may override this (e.g. so that a store intrinsic
642     // does not read  from memory, and thus will be treated the same as a
643     // regular store for commoning purposes).
644     if (Inst->mayReadFromMemory() &&
645         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
646       LastStore = nullptr;
647
648     // If this is a read-only call, process it.
649     if (CallValue::canHandle(Inst)) {
650       // If we have an available version of this call, and if it is the right
651       // generation, replace this instruction.
652       std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst);
653       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
654         DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
655                      << "  to: " << *InVal.first << '\n');
656         if (!Inst->use_empty())
657           Inst->replaceAllUsesWith(InVal.first);
658         Inst->eraseFromParent();
659         Changed = true;
660         ++NumCSECall;
661         continue;
662       }
663
664       // Otherwise, remember that we have this instruction.
665       AvailableCalls.insert(
666           Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
667       continue;
668     }
669
670     // A release fence requires that all stores complete before it, but does
671     // not prevent the reordering of following loads 'before' the fence.  As a
672     // result, we don't need to consider it as writing to memory and don't need
673     // to advance the generation.  We do need to prevent DSE across the fence,
674     // but that's handled above.
675     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
676       if (FI->getOrdering() == Release) {
677         assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
678         continue;
679       }
680
681     // write back DSE - If we write back the same value we just loaded from
682     // the same location and haven't passed any intervening writes or ordering
683     // operations, we can remove the write.  The primary benefit is in allowing
684     // the available load table to remain valid and value forward past where
685     // the store originally was.
686     if (MemInst.isValid() && MemInst.isStore()) {
687       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
688       if (InVal.Data &&
689           InVal.Data == getOrCreateResult(Inst, InVal.Data->getType()) &&
690           InVal.Generation == CurrentGeneration &&
691           InVal.MatchingId == MemInst.getMatchingId() &&
692           // We don't yet handle removing stores with ordering of any kind.
693           !MemInst.isVolatile() && MemInst.isUnordered()) {
694         assert((!LastStore ||
695                 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
696                 MemInst.getPointerOperand()) &&
697                "can't have an intervening store!");
698         DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n');
699         Inst->eraseFromParent();
700         Changed = true;
701         ++NumDSE;
702         // We can avoid incrementing the generation count since we were able
703         // to eliminate this store.
704         continue;
705       }
706     }
707
708     // Okay, this isn't something we can CSE at all.  Check to see if it is
709     // something that could modify memory.  If so, our available memory values
710     // cannot be used so bump the generation count.
711     if (Inst->mayWriteToMemory()) {
712       ++CurrentGeneration;
713
714       if (MemInst.isValid() && MemInst.isStore()) {
715         // We do a trivial form of DSE if there are two stores to the same
716         // location with no intervening loads.  Delete the earlier store.
717         // At the moment, we don't remove ordered stores, but do remove
718         // unordered atomic stores.  There's no special requirement (for
719         // unordered atomics) about removing atomic stores only in favor of
720         // other atomic stores since we we're going to execute the non-atomic
721         // one anyway and the atomic one might never have become visible.
722         if (LastStore) {
723           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
724           assert(LastStoreMemInst.isUnordered() &&
725                  !LastStoreMemInst.isVolatile() &&
726                  "Violated invariant");
727           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
728             DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
729                          << "  due to: " << *Inst << '\n');
730             LastStore->eraseFromParent();
731             Changed = true;
732             ++NumDSE;
733             LastStore = nullptr;
734           }
735           // fallthrough - we can exploit information about this store
736         }
737
738         // Okay, we just invalidated anything we knew about loaded values.  Try
739         // to salvage *something* by remembering that the stored value is a live
740         // version of the pointer.  It is safe to forward from volatile stores
741         // to non-volatile loads, so we don't have to check for volatility of
742         // the store.
743         AvailableLoads.insert(
744             MemInst.getPointerOperand(),
745             LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
746                       MemInst.isAtomic()));
747
748         // Remember that this was the last unordered store we saw for DSE. We
749         // don't yet handle DSE on ordered or volatile stores since we don't
750         // have a good way to model the ordering requirement for following
751         // passes  once the store is removed.  We could insert a fence, but
752         // since fences are slightly stronger than stores in their ordering,
753         // it's not clear this is a profitable transform. Another option would
754         // be to merge the ordering with that of the post dominating store.
755         if (MemInst.isUnordered() && !MemInst.isVolatile())
756           LastStore = Inst;
757         else
758           LastStore = nullptr;
759       }
760     }
761   }
762
763   return Changed;
764 }
765
766 bool EarlyCSE::run() {
767   // Note, deque is being used here because there is significant performance
768   // gains over vector when the container becomes very large due to the
769   // specific access patterns. For more information see the mailing list
770   // discussion on this:
771   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
772   std::deque<StackNode *> nodesToProcess;
773
774   bool Changed = false;
775
776   // Process the root node.
777   nodesToProcess.push_back(new StackNode(
778       AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
779       DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end()));
780
781   // Save the current generation.
782   unsigned LiveOutGeneration = CurrentGeneration;
783
784   // Process the stack.
785   while (!nodesToProcess.empty()) {
786     // Grab the first item off the stack. Set the current generation, remove
787     // the node from the stack, and process it.
788     StackNode *NodeToProcess = nodesToProcess.back();
789
790     // Initialize class members.
791     CurrentGeneration = NodeToProcess->currentGeneration();
792
793     // Check if the node needs to be processed.
794     if (!NodeToProcess->isProcessed()) {
795       // Process the node.
796       Changed |= processNode(NodeToProcess->node());
797       NodeToProcess->childGeneration(CurrentGeneration);
798       NodeToProcess->process();
799     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
800       // Push the next child onto the stack.
801       DomTreeNode *child = NodeToProcess->nextChild();
802       nodesToProcess.push_back(
803           new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
804                         NodeToProcess->childGeneration(), child, child->begin(),
805                         child->end()));
806     } else {
807       // It has been processed, and there are no more children to process,
808       // so delete it and pop it off the stack.
809       delete NodeToProcess;
810       nodesToProcess.pop_back();
811     }
812   } // while (!nodes...)
813
814   // Reset the current generation.
815   CurrentGeneration = LiveOutGeneration;
816
817   return Changed;
818 }
819
820 PreservedAnalyses EarlyCSEPass::run(Function &F,
821                                     AnalysisManager<Function> *AM) {
822   auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
823   auto &TTI = AM->getResult<TargetIRAnalysis>(F);
824   auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
825   auto &AC = AM->getResult<AssumptionAnalysis>(F);
826
827   EarlyCSE CSE(TLI, TTI, DT, AC);
828
829   if (!CSE.run())
830     return PreservedAnalyses::all();
831
832   // CSE preserves the dominator tree because it doesn't mutate the CFG.
833   // FIXME: Bundle this with other CFG-preservation.
834   PreservedAnalyses PA;
835   PA.preserve<DominatorTreeAnalysis>();
836   return PA;
837 }
838
839 namespace {
840 /// \brief A simple and fast domtree-based CSE pass.
841 ///
842 /// This pass does a simple depth-first walk over the dominator tree,
843 /// eliminating trivially redundant instructions and using instsimplify to
844 /// canonicalize things as it goes. It is intended to be fast and catch obvious
845 /// cases so that instcombine and other passes are more effective. It is
846 /// expected that a later pass of GVN will catch the interesting/hard cases.
847 class EarlyCSELegacyPass : public FunctionPass {
848 public:
849   static char ID;
850
851   EarlyCSELegacyPass() : FunctionPass(ID) {
852     initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
853   }
854
855   bool runOnFunction(Function &F) override {
856     if (skipOptnoneFunction(F))
857       return false;
858
859     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
860     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
861     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
862     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
863
864     EarlyCSE CSE(TLI, TTI, DT, AC);
865
866     return CSE.run();
867   }
868
869   void getAnalysisUsage(AnalysisUsage &AU) const override {
870     AU.addRequired<AssumptionCacheTracker>();
871     AU.addRequired<DominatorTreeWrapperPass>();
872     AU.addRequired<TargetLibraryInfoWrapperPass>();
873     AU.addRequired<TargetTransformInfoWrapperPass>();
874     AU.addPreserved<GlobalsAAWrapperPass>();
875     AU.setPreservesCFG();
876   }
877 };
878 }
879
880 char EarlyCSELegacyPass::ID = 0;
881
882 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); }
883
884 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
885                       false)
886 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
887 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
888 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
889 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
890 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)