DataLayout is mandatory, update the API to reflect it with references.
[oota-llvm.git] / lib / Transforms / Scalar / BDCE.cpp
1 //===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Bit-Tracking Dead Code Elimination pass. Some
11 // instructions (shifts, some ands, ors, etc.) kill some of their input bits.
12 // We track these dead bits and remove instructions that compute only these
13 // dead bits.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37
38 using namespace llvm;
39
40 #define DEBUG_TYPE "bdce"
41
42 STATISTIC(NumRemoved, "Number of instructions removed (unused)");
43 STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)");
44
45 namespace {
46 struct BDCE : public FunctionPass {
47   static char ID; // Pass identification, replacement for typeid
48   BDCE() : FunctionPass(ID) {
49     initializeBDCEPass(*PassRegistry::getPassRegistry());
50   }
51
52   bool runOnFunction(Function& F) override;
53
54   void getAnalysisUsage(AnalysisUsage& AU) const override {
55     AU.setPreservesCFG();
56     AU.addRequired<AssumptionCacheTracker>();
57     AU.addRequired<DominatorTreeWrapperPass>();
58   }
59
60   void determineLiveOperandBits(const Instruction *UserI,
61                                 const Instruction *I, unsigned OperandNo,
62                                 const APInt &AOut, APInt &AB,
63                                 APInt &KnownZero, APInt &KnownOne,
64                                 APInt &KnownZero2, APInt &KnownOne2);
65
66   AssumptionCache *AC;
67   DominatorTree *DT;
68 };
69 }
70
71 char BDCE::ID = 0;
72 INITIALIZE_PASS_BEGIN(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
73                       false, false)
74 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
75 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
76 INITIALIZE_PASS_END(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
77                     false, false)
78
79 static bool isAlwaysLive(Instruction *I) {
80   return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
81          isa<LandingPadInst>(I) || I->mayHaveSideEffects();
82 }
83
84 void BDCE::determineLiveOperandBits(const Instruction *UserI,
85                                     const Instruction *I, unsigned OperandNo,
86                                     const APInt &AOut, APInt &AB,
87                                     APInt &KnownZero, APInt &KnownOne,
88                                     APInt &KnownZero2, APInt &KnownOne2) {
89   unsigned BitWidth = AB.getBitWidth();
90
91   // We're called once per operand, but for some instructions, we need to
92   // compute known bits of both operands in order to determine the live bits of
93   // either (when both operands are instructions themselves). We don't,
94   // however, want to do this twice, so we cache the result in APInts that live
95   // in the caller. For the two-relevant-operands case, both operand values are
96   // provided here.
97   auto ComputeKnownBits =
98       [&](unsigned BitWidth, const Value *V1, const Value *V2) {
99         const DataLayout &DL = I->getModule()->getDataLayout();
100         KnownZero = APInt(BitWidth, 0);
101         KnownOne = APInt(BitWidth, 0);
102         computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
103                          AC, UserI, DT);
104
105         if (V2) {
106           KnownZero2 = APInt(BitWidth, 0);
107           KnownOne2 = APInt(BitWidth, 0);
108           computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
109                            0, AC, UserI, DT);
110         }
111       };
112
113   switch (UserI->getOpcode()) {
114   default: break;
115   case Instruction::Call:
116   case Instruction::Invoke:
117     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
118       switch (II->getIntrinsicID()) {
119       default: break;
120       case Intrinsic::bswap:
121         // The alive bits of the input are the swapped alive bits of
122         // the output.
123         AB = AOut.byteSwap();
124         break;
125       case Intrinsic::ctlz:
126         if (OperandNo == 0) {
127           // We need some output bits, so we need all bits of the
128           // input to the left of, and including, the leftmost bit
129           // known to be one.
130           ComputeKnownBits(BitWidth, I, nullptr);
131           AB = APInt::getHighBitsSet(BitWidth,
132                  std::min(BitWidth, KnownOne.countLeadingZeros()+1));
133         }
134         break;
135       case Intrinsic::cttz:
136         if (OperandNo == 0) {
137           // We need some output bits, so we need all bits of the
138           // input to the right of, and including, the rightmost bit
139           // known to be one.
140           ComputeKnownBits(BitWidth, I, nullptr);
141           AB = APInt::getLowBitsSet(BitWidth,
142                  std::min(BitWidth, KnownOne.countTrailingZeros()+1));
143         }
144         break;
145       }
146     break;
147   case Instruction::Add:
148   case Instruction::Sub:
149     // Find the highest live output bit. We don't need any more input
150     // bits than that (adds, and thus subtracts, ripple only to the
151     // left).
152     AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
153     break;
154   case Instruction::Shl:
155     if (OperandNo == 0)
156       if (ConstantInt *CI =
157             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
158         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
159         AB = AOut.lshr(ShiftAmt);
160
161         // If the shift is nuw/nsw, then the high bits are not dead
162         // (because we've promised that they *must* be zero).
163         const ShlOperator *S = cast<ShlOperator>(UserI);
164         if (S->hasNoSignedWrap())
165           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
166         else if (S->hasNoUnsignedWrap())
167           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
168       }
169     break;
170   case Instruction::LShr:
171     if (OperandNo == 0)
172       if (ConstantInt *CI =
173             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
174         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
175         AB = AOut.shl(ShiftAmt);
176
177         // If the shift is exact, then the low bits are not dead
178         // (they must be zero).
179         if (cast<LShrOperator>(UserI)->isExact())
180           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
181       }
182     break;
183   case Instruction::AShr:
184     if (OperandNo == 0)
185       if (ConstantInt *CI =
186             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
187         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
188         AB = AOut.shl(ShiftAmt);
189         // Because the high input bit is replicated into the
190         // high-order bits of the result, if we need any of those
191         // bits, then we must keep the highest input bit.
192         if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
193             .getBoolValue())
194           AB.setBit(BitWidth-1);
195
196         // If the shift is exact, then the low bits are not dead
197         // (they must be zero).
198         if (cast<AShrOperator>(UserI)->isExact())
199           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
200       }
201     break;
202   case Instruction::And:
203     AB = AOut;
204
205     // For bits that are known zero, the corresponding bits in the
206     // other operand are dead (unless they're both zero, in which
207     // case they can't both be dead, so just mark the LHS bits as
208     // dead).
209     if (OperandNo == 0) {
210       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
211       AB &= ~KnownZero2;
212     } else {
213       if (!isa<Instruction>(UserI->getOperand(0)))
214         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
215       AB &= ~(KnownZero & ~KnownZero2);
216     }
217     break;
218   case Instruction::Or:
219     AB = AOut;
220
221     // For bits that are known one, the corresponding bits in the
222     // other operand are dead (unless they're both one, in which
223     // case they can't both be dead, so just mark the LHS bits as
224     // dead).
225     if (OperandNo == 0) {
226       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
227       AB &= ~KnownOne2;
228     } else {
229       if (!isa<Instruction>(UserI->getOperand(0)))
230         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
231       AB &= ~(KnownOne & ~KnownOne2);
232     }
233     break;
234   case Instruction::Xor:
235   case Instruction::PHI:
236     AB = AOut;
237     break;
238   case Instruction::Trunc:
239     AB = AOut.zext(BitWidth);
240     break;
241   case Instruction::ZExt:
242     AB = AOut.trunc(BitWidth);
243     break;
244   case Instruction::SExt:
245     AB = AOut.trunc(BitWidth);
246     // Because the high input bit is replicated into the
247     // high-order bits of the result, if we need any of those
248     // bits, then we must keep the highest input bit.
249     if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
250                                       AOut.getBitWidth() - BitWidth))
251         .getBoolValue())
252       AB.setBit(BitWidth-1);
253     break;
254   case Instruction::Select:
255     if (OperandNo != 0)
256       AB = AOut;
257     break;
258   }
259 }
260
261 bool BDCE::runOnFunction(Function& F) {
262   if (skipOptnoneFunction(F))
263     return false;
264
265   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
266   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
267
268   DenseMap<Instruction *, APInt> AliveBits;
269   SmallVector<Instruction*, 128> Worklist;
270
271   // The set of visited instructions (non-integer-typed only).
272   SmallPtrSet<Instruction*, 128> Visited;
273
274   // Collect the set of "root" instructions that are known live.
275   for (Instruction &I : inst_range(F)) {
276     if (!isAlwaysLive(&I))
277       continue;
278
279     DEBUG(dbgs() << "BDCE: Root: " << I << "\n");
280     // For integer-valued instructions, set up an initial empty set of alive
281     // bits and add the instruction to the work list. For other instructions
282     // add their operands to the work list (for integer values operands, mark
283     // all bits as live).
284     if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
285       if (!AliveBits.count(&I)) {
286         AliveBits[&I] = APInt(IT->getBitWidth(), 0);
287         Worklist.push_back(&I);
288       }
289
290       continue;
291     }
292
293     // Non-integer-typed instructions...
294     for (Use &OI : I.operands()) {
295       if (Instruction *J = dyn_cast<Instruction>(OI)) {
296         if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
297           AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
298         Worklist.push_back(J);
299       }
300     }
301     // To save memory, we don't add I to the Visited set here. Instead, we
302     // check isAlwaysLive on every instruction when searching for dead
303     // instructions later (we need to check isAlwaysLive for the
304     // integer-typed instructions anyway).
305   }
306
307   // Propagate liveness backwards to operands.
308   while (!Worklist.empty()) {
309     Instruction *UserI = Worklist.pop_back_val();
310
311     DEBUG(dbgs() << "BDCE: Visiting: " << *UserI);
312     APInt AOut;
313     if (UserI->getType()->isIntegerTy()) {
314       AOut = AliveBits[UserI];
315       DEBUG(dbgs() << " Alive Out: " << AOut);
316     }
317     DEBUG(dbgs() << "\n");
318
319     if (!UserI->getType()->isIntegerTy())
320       Visited.insert(UserI);
321
322     APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
323     // Compute the set of alive bits for each operand. These are anded into the
324     // existing set, if any, and if that changes the set of alive bits, the
325     // operand is added to the work-list.
326     for (Use &OI : UserI->operands()) {
327       if (Instruction *I = dyn_cast<Instruction>(OI)) {
328         if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
329           unsigned BitWidth = IT->getBitWidth();
330           APInt AB = APInt::getAllOnesValue(BitWidth);
331           if (UserI->getType()->isIntegerTy() && !AOut &&
332               !isAlwaysLive(UserI)) {
333             AB = APInt(BitWidth, 0);
334           } else {
335             // If all bits of the output are dead, then all bits of the input 
336             // Bits of each operand that are used to compute alive bits of the
337             // output are alive, all others are dead.
338             determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
339                                      KnownZero, KnownOne,
340                                      KnownZero2, KnownOne2);
341           }
342
343           // If we've added to the set of alive bits (or the operand has not
344           // been previously visited), then re-queue the operand to be visited
345           // again.
346           APInt ABPrev(BitWidth, 0);
347           auto ABI = AliveBits.find(I);
348           if (ABI != AliveBits.end())
349             ABPrev = ABI->second;
350
351           APInt ABNew = AB | ABPrev;
352           if (ABNew != ABPrev || ABI == AliveBits.end()) {
353             AliveBits[I] = std::move(ABNew);
354             Worklist.push_back(I);
355           }
356         } else if (!Visited.count(I)) {
357           Worklist.push_back(I);
358         }
359       }
360     }
361   }
362
363   bool Changed = false;
364   // The inverse of the live set is the dead set.  These are those instructions
365   // which have no side effects and do not influence the control flow or return
366   // value of the function, and may therefore be deleted safely.
367   // NOTE: We reuse the Worklist vector here for memory efficiency.
368   for (Instruction &I : inst_range(F)) {
369     // For live instructions that have all dead bits, first make them dead by
370     // replacing all uses with something else. Then, if they don't need to
371     // remain live (because they have side effects, etc.) we can remove them.
372     if (I.getType()->isIntegerTy()) {
373       auto ABI = AliveBits.find(&I);
374       if (ABI != AliveBits.end()) {
375         if (ABI->second.getBoolValue())
376           continue;
377
378         DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
379         // FIXME: In theory we could substitute undef here instead of zero.
380         // This should be reconsidered once we settle on the semantics of
381         // undef, poison, etc.
382         Value *Zero = ConstantInt::get(I.getType(), 0);
383         ++NumSimplified;
384         I.replaceAllUsesWith(Zero);
385         Changed = true;
386       }
387     } else if (Visited.count(&I)) {
388       continue;
389     }
390
391     if (isAlwaysLive(&I))
392       continue;
393
394     Worklist.push_back(&I);
395     I.dropAllReferences();
396     Changed = true;
397   }
398
399   for (Instruction *&I : Worklist) {
400     ++NumRemoved;
401     I->eraseFromParent();
402   }
403
404   return Changed;
405 }
406
407 FunctionPass *llvm::createBitTrackingDCEPass() {
408   return new BDCE();
409 }
410