Make MemoryBuiltins aware of TargetLibraryInfo.
[oota-llvm.git] / lib / Transforms / InstCombine / InstructionCombining.cpp
1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions.  This pass does not modify the CFG.  This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 //    %Y = add i32 %X, 1
16 //    %Z = add i32 %Y, 1
17 // into:
18 //    %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 //    1. If a binary operator has a constant operand, it is moved to the RHS
25 //    2. Bitwise operators with constant operands are always grouped so that
26 //       shifts are performed first, then or's, then and's, then xor's.
27 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 //    4. All cmp instructions on boolean values are replaced with logical ops
29 //    5. add X, X is represented as (X*2) => (X << 1)
30 //    6. Multiplies with a power-of-two constant argument are transformed into
31 //       shifts.
32 //   ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35
36 #define DEBUG_TYPE "instcombine"
37 #include "llvm/Transforms/Scalar.h"
38 #include "InstCombine.h"
39 #include "llvm/IntrinsicInst.h"
40 #include "llvm/Analysis/ConstantFolding.h"
41 #include "llvm/Analysis/InstructionSimplify.h"
42 #include "llvm/Analysis/MemoryBuiltins.h"
43 #include "llvm/Target/TargetData.h"
44 #include "llvm/Target/TargetLibraryInfo.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/Support/CFG.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/GetElementPtrTypeIterator.h"
49 #include "llvm/Support/PatternMatch.h"
50 #include "llvm/Support/ValueHandle.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/Statistic.h"
53 #include "llvm/ADT/StringSwitch.h"
54 #include "llvm-c/Initialization.h"
55 #include <algorithm>
56 #include <climits>
57 using namespace llvm;
58 using namespace llvm::PatternMatch;
59
60 STATISTIC(NumCombined , "Number of insts combined");
61 STATISTIC(NumConstProp, "Number of constant folds");
62 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
63 STATISTIC(NumSunkInst , "Number of instructions sunk");
64 STATISTIC(NumExpand,    "Number of expansions");
65 STATISTIC(NumFactor   , "Number of factorizations");
66 STATISTIC(NumReassoc  , "Number of reassociations");
67
68 // Initialization Routines
69 void llvm::initializeInstCombine(PassRegistry &Registry) {
70   initializeInstCombinerPass(Registry);
71 }
72
73 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
74   initializeInstCombine(*unwrap(R));
75 }
76
77 char InstCombiner::ID = 0;
78 INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
79                 "Combine redundant instructions", false, false)
80 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
81 INITIALIZE_PASS_END(InstCombiner, "instcombine",
82                 "Combine redundant instructions", false, false)
83
84 void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
85   AU.setPreservesCFG();
86   AU.addRequired<TargetLibraryInfo>();
87 }
88
89
90 Value *InstCombiner::EmitGEPOffset(User *GEP) {
91   return llvm::EmitGEPOffset(Builder, *getTargetData(), GEP);
92 }
93
94 /// ShouldChangeType - Return true if it is desirable to convert a computation
95 /// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
96 /// type for example, or from a smaller to a larger illegal type.
97 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
98   assert(From->isIntegerTy() && To->isIntegerTy());
99
100   // If we don't have TD, we don't know if the source/dest are legal.
101   if (!TD) return false;
102
103   unsigned FromWidth = From->getPrimitiveSizeInBits();
104   unsigned ToWidth = To->getPrimitiveSizeInBits();
105   bool FromLegal = TD->isLegalInteger(FromWidth);
106   bool ToLegal = TD->isLegalInteger(ToWidth);
107
108   // If this is a legal integer from type, and the result would be an illegal
109   // type, don't do the transformation.
110   if (FromLegal && !ToLegal)
111     return false;
112
113   // Otherwise, if both are illegal, do not increase the size of the result. We
114   // do allow things like i160 -> i64, but not i64 -> i160.
115   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
116     return false;
117
118   return true;
119 }
120
121 // Return true, if No Signed Wrap should be maintained for I.
122 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
123 // where both B and C should be ConstantInts, results in a constant that does
124 // not overflow. This function only handles the Add and Sub opcodes. For
125 // all other opcodes, the function conservatively returns false.
126 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
127   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
128   if (!OBO || !OBO->hasNoSignedWrap()) {
129     return false;
130   }
131
132   // We reason about Add and Sub Only.
133   Instruction::BinaryOps Opcode = I.getOpcode();
134   if (Opcode != Instruction::Add &&
135       Opcode != Instruction::Sub) {
136     return false;
137   }
138
139   ConstantInt *CB = dyn_cast<ConstantInt>(B);
140   ConstantInt *CC = dyn_cast<ConstantInt>(C);
141
142   if (!CB || !CC) {
143     return false;
144   }
145
146   const APInt &BVal = CB->getValue();
147   const APInt &CVal = CC->getValue();
148   bool Overflow = false;
149
150   if (Opcode == Instruction::Add) {
151     BVal.sadd_ov(CVal, Overflow);
152   } else {
153     BVal.ssub_ov(CVal, Overflow);
154   }
155
156   return !Overflow;
157 }
158
159 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
160 /// operators which are associative or commutative:
161 //
162 //  Commutative operators:
163 //
164 //  1. Order operands such that they are listed from right (least complex) to
165 //     left (most complex).  This puts constants before unary operators before
166 //     binary operators.
167 //
168 //  Associative operators:
169 //
170 //  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
171 //  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
172 //
173 //  Associative and commutative operators:
174 //
175 //  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
176 //  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
177 //  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
178 //     if C1 and C2 are constants.
179 //
180 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
181   Instruction::BinaryOps Opcode = I.getOpcode();
182   bool Changed = false;
183
184   do {
185     // Order operands such that they are listed from right (least complex) to
186     // left (most complex).  This puts constants before unary operators before
187     // binary operators.
188     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
189         getComplexity(I.getOperand(1)))
190       Changed = !I.swapOperands();
191
192     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
193     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
194
195     if (I.isAssociative()) {
196       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
197       if (Op0 && Op0->getOpcode() == Opcode) {
198         Value *A = Op0->getOperand(0);
199         Value *B = Op0->getOperand(1);
200         Value *C = I.getOperand(1);
201
202         // Does "B op C" simplify?
203         if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
204           // It simplifies to V.  Form "A op V".
205           I.setOperand(0, A);
206           I.setOperand(1, V);
207           // Conservatively clear the optional flags, since they may not be
208           // preserved by the reassociation.
209           if (MaintainNoSignedWrap(I, B, C) &&
210               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
211             // Note: this is only valid because SimplifyBinOp doesn't look at
212             // the operands to Op0.
213             I.clearSubclassOptionalData();
214             I.setHasNoSignedWrap(true);
215           } else {
216             I.clearSubclassOptionalData();
217           }
218
219           Changed = true;
220           ++NumReassoc;
221           continue;
222         }
223       }
224
225       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
226       if (Op1 && Op1->getOpcode() == Opcode) {
227         Value *A = I.getOperand(0);
228         Value *B = Op1->getOperand(0);
229         Value *C = Op1->getOperand(1);
230
231         // Does "A op B" simplify?
232         if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
233           // It simplifies to V.  Form "V op C".
234           I.setOperand(0, V);
235           I.setOperand(1, C);
236           // Conservatively clear the optional flags, since they may not be
237           // preserved by the reassociation.
238           I.clearSubclassOptionalData();
239           Changed = true;
240           ++NumReassoc;
241           continue;
242         }
243       }
244     }
245
246     if (I.isAssociative() && I.isCommutative()) {
247       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
248       if (Op0 && Op0->getOpcode() == Opcode) {
249         Value *A = Op0->getOperand(0);
250         Value *B = Op0->getOperand(1);
251         Value *C = I.getOperand(1);
252
253         // Does "C op A" simplify?
254         if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
255           // It simplifies to V.  Form "V op B".
256           I.setOperand(0, V);
257           I.setOperand(1, B);
258           // Conservatively clear the optional flags, since they may not be
259           // preserved by the reassociation.
260           I.clearSubclassOptionalData();
261           Changed = true;
262           ++NumReassoc;
263           continue;
264         }
265       }
266
267       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
268       if (Op1 && Op1->getOpcode() == Opcode) {
269         Value *A = I.getOperand(0);
270         Value *B = Op1->getOperand(0);
271         Value *C = Op1->getOperand(1);
272
273         // Does "C op A" simplify?
274         if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
275           // It simplifies to V.  Form "B op V".
276           I.setOperand(0, B);
277           I.setOperand(1, V);
278           // Conservatively clear the optional flags, since they may not be
279           // preserved by the reassociation.
280           I.clearSubclassOptionalData();
281           Changed = true;
282           ++NumReassoc;
283           continue;
284         }
285       }
286
287       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
288       // if C1 and C2 are constants.
289       if (Op0 && Op1 &&
290           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
291           isa<Constant>(Op0->getOperand(1)) &&
292           isa<Constant>(Op1->getOperand(1)) &&
293           Op0->hasOneUse() && Op1->hasOneUse()) {
294         Value *A = Op0->getOperand(0);
295         Constant *C1 = cast<Constant>(Op0->getOperand(1));
296         Value *B = Op1->getOperand(0);
297         Constant *C2 = cast<Constant>(Op1->getOperand(1));
298
299         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
300         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
301         InsertNewInstWith(New, I);
302         New->takeName(Op1);
303         I.setOperand(0, New);
304         I.setOperand(1, Folded);
305         // Conservatively clear the optional flags, since they may not be
306         // preserved by the reassociation.
307         I.clearSubclassOptionalData();
308
309         Changed = true;
310         continue;
311       }
312     }
313
314     // No further simplifications.
315     return Changed;
316   } while (1);
317 }
318
319 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
320 /// "(X LOp Y) ROp (X LOp Z)".
321 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
322                                      Instruction::BinaryOps ROp) {
323   switch (LOp) {
324   default:
325     return false;
326
327   case Instruction::And:
328     // And distributes over Or and Xor.
329     switch (ROp) {
330     default:
331       return false;
332     case Instruction::Or:
333     case Instruction::Xor:
334       return true;
335     }
336
337   case Instruction::Mul:
338     // Multiplication distributes over addition and subtraction.
339     switch (ROp) {
340     default:
341       return false;
342     case Instruction::Add:
343     case Instruction::Sub:
344       return true;
345     }
346
347   case Instruction::Or:
348     // Or distributes over And.
349     switch (ROp) {
350     default:
351       return false;
352     case Instruction::And:
353       return true;
354     }
355   }
356 }
357
358 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
359 /// "(X ROp Z) LOp (Y ROp Z)".
360 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
361                                      Instruction::BinaryOps ROp) {
362   if (Instruction::isCommutative(ROp))
363     return LeftDistributesOverRight(ROp, LOp);
364   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
365   // but this requires knowing that the addition does not overflow and other
366   // such subtleties.
367   return false;
368 }
369
370 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
371 /// which some other binary operation distributes over either by factorizing
372 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
373 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
374 /// a win).  Returns the simplified value, or null if it didn't simplify.
375 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
376   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
377   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
378   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
379   Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
380
381   // Factorization.
382   if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
383     // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
384     // a common term.
385     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
386     Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
387     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
388
389     // Does "X op' Y" always equal "Y op' X"?
390     bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
391
392     // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
393     if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
394       // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
395       // commutative case, "(A op' B) op (C op' A)"?
396       if (A == C || (InnerCommutative && A == D)) {
397         if (A != C)
398           std::swap(C, D);
399         // Consider forming "A op' (B op D)".
400         // If "B op D" simplifies then it can be formed with no cost.
401         Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
402         // If "B op D" doesn't simplify then only go on if both of the existing
403         // operations "A op' B" and "C op' D" will be zapped as no longer used.
404         if (!V && Op0->hasOneUse() && Op1->hasOneUse())
405           V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
406         if (V) {
407           ++NumFactor;
408           V = Builder->CreateBinOp(InnerOpcode, A, V);
409           V->takeName(&I);
410           return V;
411         }
412       }
413
414     // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
415     if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
416       // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
417       // commutative case, "(A op' B) op (B op' D)"?
418       if (B == D || (InnerCommutative && B == C)) {
419         if (B != D)
420           std::swap(C, D);
421         // Consider forming "(A op C) op' B".
422         // If "A op C" simplifies then it can be formed with no cost.
423         Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
424         // If "A op C" doesn't simplify then only go on if both of the existing
425         // operations "A op' B" and "C op' D" will be zapped as no longer used.
426         if (!V && Op0->hasOneUse() && Op1->hasOneUse())
427           V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
428         if (V) {
429           ++NumFactor;
430           V = Builder->CreateBinOp(InnerOpcode, V, B);
431           V->takeName(&I);
432           return V;
433         }
434       }
435   }
436
437   // Expansion.
438   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
439     // The instruction has the form "(A op' B) op C".  See if expanding it out
440     // to "(A op C) op' (B op C)" results in simplifications.
441     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
442     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
443
444     // Do "A op C" and "B op C" both simplify?
445     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
446       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
447         // They do! Return "L op' R".
448         ++NumExpand;
449         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
450         if ((L == A && R == B) ||
451             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
452           return Op0;
453         // Otherwise return "L op' R" if it simplifies.
454         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
455           return V;
456         // Otherwise, create a new instruction.
457         C = Builder->CreateBinOp(InnerOpcode, L, R);
458         C->takeName(&I);
459         return C;
460       }
461   }
462
463   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
464     // The instruction has the form "A op (B op' C)".  See if expanding it out
465     // to "(A op B) op' (A op C)" results in simplifications.
466     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
467     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
468
469     // Do "A op B" and "A op C" both simplify?
470     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
471       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
472         // They do! Return "L op' R".
473         ++NumExpand;
474         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
475         if ((L == B && R == C) ||
476             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
477           return Op1;
478         // Otherwise return "L op' R" if it simplifies.
479         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
480           return V;
481         // Otherwise, create a new instruction.
482         A = Builder->CreateBinOp(InnerOpcode, L, R);
483         A->takeName(&I);
484         return A;
485       }
486   }
487
488   return 0;
489 }
490
491 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
492 // if the LHS is a constant zero (which is the 'negate' form).
493 //
494 Value *InstCombiner::dyn_castNegVal(Value *V) const {
495   if (BinaryOperator::isNeg(V))
496     return BinaryOperator::getNegArgument(V);
497
498   // Constants can be considered to be negated values if they can be folded.
499   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
500     return ConstantExpr::getNeg(C);
501
502   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
503     if (C->getType()->getElementType()->isIntegerTy())
504       return ConstantExpr::getNeg(C);
505
506   return 0;
507 }
508
509 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
510 // instruction if the LHS is a constant negative zero (which is the 'negate'
511 // form).
512 //
513 Value *InstCombiner::dyn_castFNegVal(Value *V) const {
514   if (BinaryOperator::isFNeg(V))
515     return BinaryOperator::getFNegArgument(V);
516
517   // Constants can be considered to be negated values if they can be folded.
518   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
519     return ConstantExpr::getFNeg(C);
520
521   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
522     if (C->getType()->getElementType()->isFloatingPointTy())
523       return ConstantExpr::getFNeg(C);
524
525   return 0;
526 }
527
528 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
529                                              InstCombiner *IC) {
530   if (CastInst *CI = dyn_cast<CastInst>(&I)) {
531     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
532   }
533
534   // Figure out if the constant is the left or the right argument.
535   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
536   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
537
538   if (Constant *SOC = dyn_cast<Constant>(SO)) {
539     if (ConstIsRHS)
540       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
541     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
542   }
543
544   Value *Op0 = SO, *Op1 = ConstOperand;
545   if (!ConstIsRHS)
546     std::swap(Op0, Op1);
547
548   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
549     return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
550                                     SO->getName()+".op");
551   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
552     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
553                                    SO->getName()+".cmp");
554   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
555     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
556                                    SO->getName()+".cmp");
557   llvm_unreachable("Unknown binary instruction type!");
558 }
559
560 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
561 // constant as the other operand, try to fold the binary operator into the
562 // select arguments.  This also works for Cast instructions, which obviously do
563 // not have a second operand.
564 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
565   // Don't modify shared select instructions
566   if (!SI->hasOneUse()) return 0;
567   Value *TV = SI->getOperand(1);
568   Value *FV = SI->getOperand(2);
569
570   if (isa<Constant>(TV) || isa<Constant>(FV)) {
571     // Bool selects with constant operands can be folded to logical ops.
572     if (SI->getType()->isIntegerTy(1)) return 0;
573
574     // If it's a bitcast involving vectors, make sure it has the same number of
575     // elements on both sides.
576     if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
577       VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
578       VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
579
580       // Verify that either both or neither are vectors.
581       if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
582       // If vectors, verify that they have the same number of elements.
583       if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
584         return 0;
585     }
586
587     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
588     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
589
590     return SelectInst::Create(SI->getCondition(),
591                               SelectTrueVal, SelectFalseVal);
592   }
593   return 0;
594 }
595
596
597 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
598 /// has a PHI node as operand #0, see if we can fold the instruction into the
599 /// PHI (which is only possible if all operands to the PHI are constants).
600 ///
601 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
602   PHINode *PN = cast<PHINode>(I.getOperand(0));
603   unsigned NumPHIValues = PN->getNumIncomingValues();
604   if (NumPHIValues == 0)
605     return 0;
606
607   // We normally only transform phis with a single use.  However, if a PHI has
608   // multiple uses and they are all the same operation, we can fold *all* of the
609   // uses into the PHI.
610   if (!PN->hasOneUse()) {
611     // Walk the use list for the instruction, comparing them to I.
612     for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
613          UI != E; ++UI) {
614       Instruction *User = cast<Instruction>(*UI);
615       if (User != &I && !I.isIdenticalTo(User))
616         return 0;
617     }
618     // Otherwise, we can replace *all* users with the new PHI we form.
619   }
620
621   // Check to see if all of the operands of the PHI are simple constants
622   // (constantint/constantfp/undef).  If there is one non-constant value,
623   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
624   // bail out.  We don't do arbitrary constant expressions here because moving
625   // their computation can be expensive without a cost model.
626   BasicBlock *NonConstBB = 0;
627   for (unsigned i = 0; i != NumPHIValues; ++i) {
628     Value *InVal = PN->getIncomingValue(i);
629     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
630       continue;
631
632     if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
633     if (NonConstBB) return 0;  // More than one non-const value.
634
635     NonConstBB = PN->getIncomingBlock(i);
636
637     // If the InVal is an invoke at the end of the pred block, then we can't
638     // insert a computation after it without breaking the edge.
639     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
640       if (II->getParent() == NonConstBB)
641         return 0;
642
643     // If the incoming non-constant value is in I's block, we will remove one
644     // instruction, but insert another equivalent one, leading to infinite
645     // instcombine.
646     if (NonConstBB == I.getParent())
647       return 0;
648   }
649
650   // If there is exactly one non-constant value, we can insert a copy of the
651   // operation in that block.  However, if this is a critical edge, we would be
652   // inserting the computation one some other paths (e.g. inside a loop).  Only
653   // do this if the pred block is unconditionally branching into the phi block.
654   if (NonConstBB != 0) {
655     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
656     if (!BI || !BI->isUnconditional()) return 0;
657   }
658
659   // Okay, we can do the transformation: create the new PHI node.
660   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
661   InsertNewInstBefore(NewPN, *PN);
662   NewPN->takeName(PN);
663
664   // If we are going to have to insert a new computation, do so right before the
665   // predecessors terminator.
666   if (NonConstBB)
667     Builder->SetInsertPoint(NonConstBB->getTerminator());
668
669   // Next, add all of the operands to the PHI.
670   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
671     // We only currently try to fold the condition of a select when it is a phi,
672     // not the true/false values.
673     Value *TrueV = SI->getTrueValue();
674     Value *FalseV = SI->getFalseValue();
675     BasicBlock *PhiTransBB = PN->getParent();
676     for (unsigned i = 0; i != NumPHIValues; ++i) {
677       BasicBlock *ThisBB = PN->getIncomingBlock(i);
678       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
679       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
680       Value *InV = 0;
681       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
682         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
683       else
684         InV = Builder->CreateSelect(PN->getIncomingValue(i),
685                                     TrueVInPred, FalseVInPred, "phitmp");
686       NewPN->addIncoming(InV, ThisBB);
687     }
688   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
689     Constant *C = cast<Constant>(I.getOperand(1));
690     for (unsigned i = 0; i != NumPHIValues; ++i) {
691       Value *InV = 0;
692       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
693         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
694       else if (isa<ICmpInst>(CI))
695         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
696                                   C, "phitmp");
697       else
698         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
699                                   C, "phitmp");
700       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
701     }
702   } else if (I.getNumOperands() == 2) {
703     Constant *C = cast<Constant>(I.getOperand(1));
704     for (unsigned i = 0; i != NumPHIValues; ++i) {
705       Value *InV = 0;
706       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
707         InV = ConstantExpr::get(I.getOpcode(), InC, C);
708       else
709         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
710                                    PN->getIncomingValue(i), C, "phitmp");
711       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
712     }
713   } else {
714     CastInst *CI = cast<CastInst>(&I);
715     Type *RetTy = CI->getType();
716     for (unsigned i = 0; i != NumPHIValues; ++i) {
717       Value *InV;
718       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
719         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
720       else
721         InV = Builder->CreateCast(CI->getOpcode(),
722                                 PN->getIncomingValue(i), I.getType(), "phitmp");
723       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
724     }
725   }
726
727   for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
728        UI != E; ) {
729     Instruction *User = cast<Instruction>(*UI++);
730     if (User == &I) continue;
731     ReplaceInstUsesWith(*User, NewPN);
732     EraseInstFromFunction(*User);
733   }
734   return ReplaceInstUsesWith(I, NewPN);
735 }
736
737 /// FindElementAtOffset - Given a type and a constant offset, determine whether
738 /// or not there is a sequence of GEP indices into the type that will land us at
739 /// the specified offset.  If so, fill them into NewIndices and return the
740 /// resultant element type, otherwise return null.
741 Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
742                                           SmallVectorImpl<Value*> &NewIndices) {
743   if (!TD) return 0;
744   if (!Ty->isSized()) return 0;
745
746   // Start with the index over the outer type.  Note that the type size
747   // might be zero (even if the offset isn't zero) if the indexed type
748   // is something like [0 x {int, int}]
749   Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
750   int64_t FirstIdx = 0;
751   if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
752     FirstIdx = Offset/TySize;
753     Offset -= FirstIdx*TySize;
754
755     // Handle hosts where % returns negative instead of values [0..TySize).
756     if (Offset < 0) {
757       --FirstIdx;
758       Offset += TySize;
759       assert(Offset >= 0);
760     }
761     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
762   }
763
764   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
765
766   // Index into the types.  If we fail, set OrigBase to null.
767   while (Offset) {
768     // Indexing into tail padding between struct/array elements.
769     if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
770       return 0;
771
772     if (StructType *STy = dyn_cast<StructType>(Ty)) {
773       const StructLayout *SL = TD->getStructLayout(STy);
774       assert(Offset < (int64_t)SL->getSizeInBytes() &&
775              "Offset must stay within the indexed type");
776
777       unsigned Elt = SL->getElementContainingOffset(Offset);
778       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
779                                             Elt));
780
781       Offset -= SL->getElementOffset(Elt);
782       Ty = STy->getElementType(Elt);
783     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
784       uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
785       assert(EltSize && "Cannot index into a zero-sized array");
786       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
787       Offset %= EltSize;
788       Ty = AT->getElementType();
789     } else {
790       // Otherwise, we can't index into the middle of this atomic type, bail.
791       return 0;
792     }
793   }
794
795   return Ty;
796 }
797
798 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
799   // If this GEP has only 0 indices, it is the same pointer as
800   // Src. If Src is not a trivial GEP too, don't combine
801   // the indices.
802   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
803       !Src.hasOneUse())
804     return false;
805   return true;
806 }
807
808 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
809   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
810
811   if (Value *V = SimplifyGEPInst(Ops, TD))
812     return ReplaceInstUsesWith(GEP, V);
813
814   Value *PtrOp = GEP.getOperand(0);
815
816   // Eliminate unneeded casts for indices, and replace indices which displace
817   // by multiples of a zero size type with zero.
818   if (TD) {
819     bool MadeChange = false;
820     Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
821
822     gep_type_iterator GTI = gep_type_begin(GEP);
823     for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
824          I != E; ++I, ++GTI) {
825       // Skip indices into struct types.
826       SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
827       if (!SeqTy) continue;
828
829       // If the element type has zero size then any index over it is equivalent
830       // to an index of zero, so replace it with zero if it is not zero already.
831       if (SeqTy->getElementType()->isSized() &&
832           TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
833         if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
834           *I = Constant::getNullValue(IntPtrTy);
835           MadeChange = true;
836         }
837
838       Type *IndexTy = (*I)->getType();
839       if (IndexTy != IntPtrTy && !IndexTy->isVectorTy()) {
840         // If we are using a wider index than needed for this platform, shrink
841         // it to what we need.  If narrower, sign-extend it to what we need.
842         // This explicit cast can make subsequent optimizations more obvious.
843         *I = Builder->CreateIntCast(*I, IntPtrTy, true);
844         MadeChange = true;
845       }
846     }
847     if (MadeChange) return &GEP;
848   }
849
850   // Combine Indices - If the source pointer to this getelementptr instruction
851   // is a getelementptr instruction, combine the indices of the two
852   // getelementptr instructions into a single instruction.
853   //
854   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
855     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
856       return 0;
857
858     // Note that if our source is a gep chain itself that we wait for that
859     // chain to be resolved before we perform this transformation.  This
860     // avoids us creating a TON of code in some cases.
861     if (GEPOperator *SrcGEP =
862           dyn_cast<GEPOperator>(Src->getOperand(0)))
863       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
864         return 0;   // Wait until our source is folded to completion.
865
866     SmallVector<Value*, 8> Indices;
867
868     // Find out whether the last index in the source GEP is a sequential idx.
869     bool EndsWithSequential = false;
870     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
871          I != E; ++I)
872       EndsWithSequential = !(*I)->isStructTy();
873
874     // Can we combine the two pointer arithmetics offsets?
875     if (EndsWithSequential) {
876       // Replace: gep (gep %P, long B), long A, ...
877       // With:    T = long A+B; gep %P, T, ...
878       //
879       Value *Sum;
880       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
881       Value *GO1 = GEP.getOperand(1);
882       if (SO1 == Constant::getNullValue(SO1->getType())) {
883         Sum = GO1;
884       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
885         Sum = SO1;
886       } else {
887         // If they aren't the same type, then the input hasn't been processed
888         // by the loop above yet (which canonicalizes sequential index types to
889         // intptr_t).  Just avoid transforming this until the input has been
890         // normalized.
891         if (SO1->getType() != GO1->getType())
892           return 0;
893         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
894       }
895
896       // Update the GEP in place if possible.
897       if (Src->getNumOperands() == 2) {
898         GEP.setOperand(0, Src->getOperand(0));
899         GEP.setOperand(1, Sum);
900         return &GEP;
901       }
902       Indices.append(Src->op_begin()+1, Src->op_end()-1);
903       Indices.push_back(Sum);
904       Indices.append(GEP.op_begin()+2, GEP.op_end());
905     } else if (isa<Constant>(*GEP.idx_begin()) &&
906                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
907                Src->getNumOperands() != 1) {
908       // Otherwise we can do the fold if the first index of the GEP is a zero
909       Indices.append(Src->op_begin()+1, Src->op_end());
910       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
911     }
912
913     if (!Indices.empty())
914       return (GEP.isInBounds() && Src->isInBounds()) ?
915         GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
916                                           GEP.getName()) :
917         GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
918   }
919
920   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
921   Value *StrippedPtr = PtrOp->stripPointerCasts();
922   PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
923
924   // We do not handle pointer-vector geps here.
925   if (!StrippedPtrTy)
926     return 0;
927
928   if (StrippedPtr != PtrOp &&
929     StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
930
931     bool HasZeroPointerIndex = false;
932     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
933       HasZeroPointerIndex = C->isZero();
934
935     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
936     // into     : GEP [10 x i8]* X, i32 0, ...
937     //
938     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
939     //           into     : GEP i8* X, ...
940     //
941     // This occurs when the program declares an array extern like "int X[];"
942     if (HasZeroPointerIndex) {
943       PointerType *CPTy = cast<PointerType>(PtrOp->getType());
944       if (ArrayType *CATy =
945           dyn_cast<ArrayType>(CPTy->getElementType())) {
946         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
947         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
948           // -> GEP i8* X, ...
949           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
950           GetElementPtrInst *Res =
951             GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
952           Res->setIsInBounds(GEP.isInBounds());
953           return Res;
954         }
955
956         if (ArrayType *XATy =
957               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
958           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
959           if (CATy->getElementType() == XATy->getElementType()) {
960             // -> GEP [10 x i8]* X, i32 0, ...
961             // At this point, we know that the cast source type is a pointer
962             // to an array of the same type as the destination pointer
963             // array.  Because the array type is never stepped over (there
964             // is a leading zero) we can fold the cast into this GEP.
965             GEP.setOperand(0, StrippedPtr);
966             return &GEP;
967           }
968         }
969       }
970     } else if (GEP.getNumOperands() == 2) {
971       // Transform things like:
972       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
973       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
974       Type *SrcElTy = StrippedPtrTy->getElementType();
975       Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
976       if (TD && SrcElTy->isArrayTy() &&
977           TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
978           TD->getTypeAllocSize(ResElTy)) {
979         Value *Idx[2];
980         Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
981         Idx[1] = GEP.getOperand(1);
982         Value *NewGEP = GEP.isInBounds() ?
983           Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
984           Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
985         // V and GEP are both pointer types --> BitCast
986         return new BitCastInst(NewGEP, GEP.getType());
987       }
988
989       // Transform things like:
990       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
991       //   (where tmp = 8*tmp2) into:
992       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
993
994       if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
995         uint64_t ArrayEltSize =
996             TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
997
998         // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
999         // allow either a mul, shift, or constant here.
1000         Value *NewIdx = 0;
1001         ConstantInt *Scale = 0;
1002         if (ArrayEltSize == 1) {
1003           NewIdx = GEP.getOperand(1);
1004           Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
1005         } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
1006           NewIdx = ConstantInt::get(CI->getType(), 1);
1007           Scale = CI;
1008         } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
1009           if (Inst->getOpcode() == Instruction::Shl &&
1010               isa<ConstantInt>(Inst->getOperand(1))) {
1011             ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
1012             uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
1013             Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
1014                                      1ULL << ShAmtVal);
1015             NewIdx = Inst->getOperand(0);
1016           } else if (Inst->getOpcode() == Instruction::Mul &&
1017                      isa<ConstantInt>(Inst->getOperand(1))) {
1018             Scale = cast<ConstantInt>(Inst->getOperand(1));
1019             NewIdx = Inst->getOperand(0);
1020           }
1021         }
1022
1023         // If the index will be to exactly the right offset with the scale taken
1024         // out, perform the transformation. Note, we don't know whether Scale is
1025         // signed or not. We'll use unsigned version of division/modulo
1026         // operation after making sure Scale doesn't have the sign bit set.
1027         if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
1028             Scale->getZExtValue() % ArrayEltSize == 0) {
1029           Scale = ConstantInt::get(Scale->getType(),
1030                                    Scale->getZExtValue() / ArrayEltSize);
1031           if (Scale->getZExtValue() != 1) {
1032             Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
1033                                                        false /*ZExt*/);
1034             NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
1035           }
1036
1037           // Insert the new GEP instruction.
1038           Value *Idx[2];
1039           Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1040           Idx[1] = NewIdx;
1041           Value *NewGEP = GEP.isInBounds() ?
1042             Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
1043             Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1044           // The NewGEP must be pointer typed, so must the old one -> BitCast
1045           return new BitCastInst(NewGEP, GEP.getType());
1046         }
1047       }
1048     }
1049   }
1050
1051   /// See if we can simplify:
1052   ///   X = bitcast A* to B*
1053   ///   Y = gep X, <...constant indices...>
1054   /// into a gep of the original struct.  This is important for SROA and alias
1055   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1056   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1057     if (TD &&
1058         !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
1059         StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1060
1061       // Determine how much the GEP moves the pointer.
1062       SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end());
1063       int64_t Offset = TD->getIndexedOffset(GEP.getPointerOperandType(), Ops);
1064
1065       // If this GEP instruction doesn't move the pointer, just replace the GEP
1066       // with a bitcast of the real input to the dest type.
1067       if (Offset == 0) {
1068         // If the bitcast is of an allocation, and the allocation will be
1069         // converted to match the type of the cast, don't touch this.
1070         if (isa<AllocaInst>(BCI->getOperand(0)) ||
1071             isAllocationFn(BCI->getOperand(0), TLI)) {
1072           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1073           if (Instruction *I = visitBitCast(*BCI)) {
1074             if (I != BCI) {
1075               I->takeName(BCI);
1076               BCI->getParent()->getInstList().insert(BCI, I);
1077               ReplaceInstUsesWith(*BCI, I);
1078             }
1079             return &GEP;
1080           }
1081         }
1082         return new BitCastInst(BCI->getOperand(0), GEP.getType());
1083       }
1084
1085       // Otherwise, if the offset is non-zero, we need to find out if there is a
1086       // field at Offset in 'A's type.  If so, we can pull the cast through the
1087       // GEP.
1088       SmallVector<Value*, 8> NewIndices;
1089       Type *InTy =
1090         cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1091       if (FindElementAtOffset(InTy, Offset, NewIndices)) {
1092         Value *NGEP = GEP.isInBounds() ?
1093           Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1094           Builder->CreateGEP(BCI->getOperand(0), NewIndices);
1095
1096         if (NGEP->getType() == GEP.getType())
1097           return ReplaceInstUsesWith(GEP, NGEP);
1098         NGEP->takeName(&GEP);
1099         return new BitCastInst(NGEP, GEP.getType());
1100       }
1101     }
1102   }
1103
1104   return 0;
1105 }
1106
1107
1108
1109 static bool
1110 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1111                      const TargetLibraryInfo *TLI) {
1112   SmallVector<Instruction*, 4> Worklist;
1113   Worklist.push_back(AI);
1114
1115   do {
1116     Instruction *PI = Worklist.pop_back_val();
1117     for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1118          ++UI) {
1119       Instruction *I = cast<Instruction>(*UI);
1120       switch (I->getOpcode()) {
1121       default:
1122         // Give up the moment we see something we can't handle.
1123         return false;
1124
1125       case Instruction::BitCast:
1126       case Instruction::GetElementPtr:
1127         Users.push_back(I);
1128         Worklist.push_back(I);
1129         continue;
1130
1131       case Instruction::ICmp: {
1132         ICmpInst *ICI = cast<ICmpInst>(I);
1133         // We can fold eq/ne comparisons with null to false/true, respectively.
1134         if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1135           return false;
1136         Users.push_back(I);
1137         continue;
1138       }
1139
1140       case Instruction::Call:
1141         // Ignore no-op and store intrinsics.
1142         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1143           switch (II->getIntrinsicID()) {
1144           default:
1145             return false;
1146
1147           case Intrinsic::memmove:
1148           case Intrinsic::memcpy:
1149           case Intrinsic::memset: {
1150             MemIntrinsic *MI = cast<MemIntrinsic>(II);
1151             if (MI->isVolatile() || MI->getRawDest() != PI)
1152               return false;
1153           }
1154           // fall through
1155           case Intrinsic::dbg_declare:
1156           case Intrinsic::dbg_value:
1157           case Intrinsic::invariant_start:
1158           case Intrinsic::invariant_end:
1159           case Intrinsic::lifetime_start:
1160           case Intrinsic::lifetime_end:
1161           case Intrinsic::objectsize:
1162             Users.push_back(I);
1163             continue;
1164           }
1165         }
1166
1167         if (isFreeCall(I, TLI)) {
1168           Users.push_back(I);
1169           continue;
1170         }
1171         return false;
1172
1173       case Instruction::Store: {
1174         StoreInst *SI = cast<StoreInst>(I);
1175         if (SI->isVolatile() || SI->getPointerOperand() != PI)
1176           return false;
1177         Users.push_back(I);
1178         continue;
1179       }
1180       }
1181       llvm_unreachable("missing a return?");
1182     }
1183   } while (!Worklist.empty());
1184   return true;
1185 }
1186
1187 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1188   // If we have a malloc call which is only used in any amount of comparisons
1189   // to null and free calls, delete the calls and replace the comparisons with
1190   // true or false as appropriate.
1191   SmallVector<WeakVH, 64> Users;
1192   if (isAllocSiteRemovable(&MI, Users, TLI)) {
1193     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1194       Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1195       if (!I) continue;
1196
1197       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1198         ReplaceInstUsesWith(*C,
1199                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
1200                                              C->isFalseWhenEqual()));
1201       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1202         ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1203       } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1204         if (II->getIntrinsicID() == Intrinsic::objectsize) {
1205           ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1206           uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1207           ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1208         }
1209       }
1210       EraseInstFromFunction(*I);
1211     }
1212
1213     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1214       // Replace invoke with a NOP intrinsic to maintain the original CFG
1215       Module *M = II->getParent()->getParent()->getParent();
1216       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1217       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1218                          ArrayRef<Value *>(), "", II->getParent());
1219     }
1220     return EraseInstFromFunction(MI);
1221   }
1222   return 0;
1223 }
1224
1225
1226
1227 Instruction *InstCombiner::visitFree(CallInst &FI) {
1228   Value *Op = FI.getArgOperand(0);
1229
1230   // free undef -> unreachable.
1231   if (isa<UndefValue>(Op)) {
1232     // Insert a new store to null because we cannot modify the CFG here.
1233     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1234                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1235     return EraseInstFromFunction(FI);
1236   }
1237
1238   // If we have 'free null' delete the instruction.  This can happen in stl code
1239   // when lots of inlining happens.
1240   if (isa<ConstantPointerNull>(Op))
1241     return EraseInstFromFunction(FI);
1242
1243   return 0;
1244 }
1245
1246
1247
1248 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1249   // Change br (not X), label True, label False to: br X, label False, True
1250   Value *X = 0;
1251   BasicBlock *TrueDest;
1252   BasicBlock *FalseDest;
1253   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1254       !isa<Constant>(X)) {
1255     // Swap Destinations and condition...
1256     BI.setCondition(X);
1257     BI.swapSuccessors();
1258     return &BI;
1259   }
1260
1261   // Cannonicalize fcmp_one -> fcmp_oeq
1262   FCmpInst::Predicate FPred; Value *Y;
1263   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1264                              TrueDest, FalseDest)) &&
1265       BI.getCondition()->hasOneUse())
1266     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1267         FPred == FCmpInst::FCMP_OGE) {
1268       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1269       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1270
1271       // Swap Destinations and condition.
1272       BI.swapSuccessors();
1273       Worklist.Add(Cond);
1274       return &BI;
1275     }
1276
1277   // Cannonicalize icmp_ne -> icmp_eq
1278   ICmpInst::Predicate IPred;
1279   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1280                       TrueDest, FalseDest)) &&
1281       BI.getCondition()->hasOneUse())
1282     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1283         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1284         IPred == ICmpInst::ICMP_SGE) {
1285       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1286       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1287       // Swap Destinations and condition.
1288       BI.swapSuccessors();
1289       Worklist.Add(Cond);
1290       return &BI;
1291     }
1292
1293   return 0;
1294 }
1295
1296 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1297   Value *Cond = SI.getCondition();
1298   if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1299     if (I->getOpcode() == Instruction::Add)
1300       if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1301         // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1302         // Skip the first item since that's the default case.
1303         for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1304              i != e; ++i) {
1305           ConstantInt* CaseVal = i.getCaseValue();
1306           Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1307                                                       AddRHS);
1308           assert(isa<ConstantInt>(NewCaseVal) &&
1309                  "Result of expression should be constant");
1310           i.setValue(cast<ConstantInt>(NewCaseVal));
1311         }
1312         SI.setCondition(I->getOperand(0));
1313         Worklist.Add(I);
1314         return &SI;
1315       }
1316   }
1317   return 0;
1318 }
1319
1320 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1321   Value *Agg = EV.getAggregateOperand();
1322
1323   if (!EV.hasIndices())
1324     return ReplaceInstUsesWith(EV, Agg);
1325
1326   if (Constant *C = dyn_cast<Constant>(Agg)) {
1327     if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1328       if (EV.getNumIndices() == 0)
1329         return ReplaceInstUsesWith(EV, C2);
1330       // Extract the remaining indices out of the constant indexed by the
1331       // first index
1332       return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
1333     }
1334     return 0; // Can't handle other constants
1335   }
1336
1337   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1338     // We're extracting from an insertvalue instruction, compare the indices
1339     const unsigned *exti, *exte, *insi, *inse;
1340     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1341          exte = EV.idx_end(), inse = IV->idx_end();
1342          exti != exte && insi != inse;
1343          ++exti, ++insi) {
1344       if (*insi != *exti)
1345         // The insert and extract both reference distinctly different elements.
1346         // This means the extract is not influenced by the insert, and we can
1347         // replace the aggregate operand of the extract with the aggregate
1348         // operand of the insert. i.e., replace
1349         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1350         // %E = extractvalue { i32, { i32 } } %I, 0
1351         // with
1352         // %E = extractvalue { i32, { i32 } } %A, 0
1353         return ExtractValueInst::Create(IV->getAggregateOperand(),
1354                                         EV.getIndices());
1355     }
1356     if (exti == exte && insi == inse)
1357       // Both iterators are at the end: Index lists are identical. Replace
1358       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1359       // %C = extractvalue { i32, { i32 } } %B, 1, 0
1360       // with "i32 42"
1361       return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1362     if (exti == exte) {
1363       // The extract list is a prefix of the insert list. i.e. replace
1364       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1365       // %E = extractvalue { i32, { i32 } } %I, 1
1366       // with
1367       // %X = extractvalue { i32, { i32 } } %A, 1
1368       // %E = insertvalue { i32 } %X, i32 42, 0
1369       // by switching the order of the insert and extract (though the
1370       // insertvalue should be left in, since it may have other uses).
1371       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1372                                                  EV.getIndices());
1373       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1374                                      makeArrayRef(insi, inse));
1375     }
1376     if (insi == inse)
1377       // The insert list is a prefix of the extract list
1378       // We can simply remove the common indices from the extract and make it
1379       // operate on the inserted value instead of the insertvalue result.
1380       // i.e., replace
1381       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1382       // %E = extractvalue { i32, { i32 } } %I, 1, 0
1383       // with
1384       // %E extractvalue { i32 } { i32 42 }, 0
1385       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1386                                       makeArrayRef(exti, exte));
1387   }
1388   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1389     // We're extracting from an intrinsic, see if we're the only user, which
1390     // allows us to simplify multiple result intrinsics to simpler things that
1391     // just get one value.
1392     if (II->hasOneUse()) {
1393       // Check if we're grabbing the overflow bit or the result of a 'with
1394       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1395       // and replace it with a traditional binary instruction.
1396       switch (II->getIntrinsicID()) {
1397       case Intrinsic::uadd_with_overflow:
1398       case Intrinsic::sadd_with_overflow:
1399         if (*EV.idx_begin() == 0) {  // Normal result.
1400           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1401           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1402           EraseInstFromFunction(*II);
1403           return BinaryOperator::CreateAdd(LHS, RHS);
1404         }
1405
1406         // If the normal result of the add is dead, and the RHS is a constant,
1407         // we can transform this into a range comparison.
1408         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1409         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1410           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1411             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1412                                 ConstantExpr::getNot(CI));
1413         break;
1414       case Intrinsic::usub_with_overflow:
1415       case Intrinsic::ssub_with_overflow:
1416         if (*EV.idx_begin() == 0) {  // Normal result.
1417           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1418           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1419           EraseInstFromFunction(*II);
1420           return BinaryOperator::CreateSub(LHS, RHS);
1421         }
1422         break;
1423       case Intrinsic::umul_with_overflow:
1424       case Intrinsic::smul_with_overflow:
1425         if (*EV.idx_begin() == 0) {  // Normal result.
1426           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1427           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1428           EraseInstFromFunction(*II);
1429           return BinaryOperator::CreateMul(LHS, RHS);
1430         }
1431         break;
1432       default:
1433         break;
1434       }
1435     }
1436   }
1437   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1438     // If the (non-volatile) load only has one use, we can rewrite this to a
1439     // load from a GEP. This reduces the size of the load.
1440     // FIXME: If a load is used only by extractvalue instructions then this
1441     //        could be done regardless of having multiple uses.
1442     if (L->isSimple() && L->hasOneUse()) {
1443       // extractvalue has integer indices, getelementptr has Value*s. Convert.
1444       SmallVector<Value*, 4> Indices;
1445       // Prefix an i32 0 since we need the first element.
1446       Indices.push_back(Builder->getInt32(0));
1447       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1448             I != E; ++I)
1449         Indices.push_back(Builder->getInt32(*I));
1450
1451       // We need to insert these at the location of the old load, not at that of
1452       // the extractvalue.
1453       Builder->SetInsertPoint(L->getParent(), L);
1454       Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1455       // Returning the load directly will cause the main loop to insert it in
1456       // the wrong spot, so use ReplaceInstUsesWith().
1457       return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1458     }
1459   // We could simplify extracts from other values. Note that nested extracts may
1460   // already be simplified implicitly by the above: extract (extract (insert) )
1461   // will be translated into extract ( insert ( extract ) ) first and then just
1462   // the value inserted, if appropriate. Similarly for extracts from single-use
1463   // loads: extract (extract (load)) will be translated to extract (load (gep))
1464   // and if again single-use then via load (gep (gep)) to load (gep).
1465   // However, double extracts from e.g. function arguments or return values
1466   // aren't handled yet.
1467   return 0;
1468 }
1469
1470 enum Personality_Type {
1471   Unknown_Personality,
1472   GNU_Ada_Personality,
1473   GNU_CXX_Personality,
1474   GNU_ObjC_Personality
1475 };
1476
1477 /// RecognizePersonality - See if the given exception handling personality
1478 /// function is one that we understand.  If so, return a description of it;
1479 /// otherwise return Unknown_Personality.
1480 static Personality_Type RecognizePersonality(Value *Pers) {
1481   Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1482   if (!F)
1483     return Unknown_Personality;
1484   return StringSwitch<Personality_Type>(F->getName())
1485     .Case("__gnat_eh_personality", GNU_Ada_Personality)
1486     .Case("__gxx_personality_v0",  GNU_CXX_Personality)
1487     .Case("__objc_personality_v0", GNU_ObjC_Personality)
1488     .Default(Unknown_Personality);
1489 }
1490
1491 /// isCatchAll - Return 'true' if the given typeinfo will match anything.
1492 static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1493   switch (Personality) {
1494   case Unknown_Personality:
1495     return false;
1496   case GNU_Ada_Personality:
1497     // While __gnat_all_others_value will match any Ada exception, it doesn't
1498     // match foreign exceptions (or didn't, before gcc-4.7).
1499     return false;
1500   case GNU_CXX_Personality:
1501   case GNU_ObjC_Personality:
1502     return TypeInfo->isNullValue();
1503   }
1504   llvm_unreachable("Unknown personality!");
1505 }
1506
1507 static bool shorter_filter(const Value *LHS, const Value *RHS) {
1508   return
1509     cast<ArrayType>(LHS->getType())->getNumElements()
1510   <
1511     cast<ArrayType>(RHS->getType())->getNumElements();
1512 }
1513
1514 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1515   // The logic here should be correct for any real-world personality function.
1516   // However if that turns out not to be true, the offending logic can always
1517   // be conditioned on the personality function, like the catch-all logic is.
1518   Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1519
1520   // Simplify the list of clauses, eg by removing repeated catch clauses
1521   // (these are often created by inlining).
1522   bool MakeNewInstruction = false; // If true, recreate using the following:
1523   SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1524   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
1525
1526   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1527   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1528     bool isLastClause = i + 1 == e;
1529     if (LI.isCatch(i)) {
1530       // A catch clause.
1531       Value *CatchClause = LI.getClause(i);
1532       Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1533
1534       // If we already saw this clause, there is no point in having a second
1535       // copy of it.
1536       if (AlreadyCaught.insert(TypeInfo)) {
1537         // This catch clause was not already seen.
1538         NewClauses.push_back(CatchClause);
1539       } else {
1540         // Repeated catch clause - drop the redundant copy.
1541         MakeNewInstruction = true;
1542       }
1543
1544       // If this is a catch-all then there is no point in keeping any following
1545       // clauses or marking the landingpad as having a cleanup.
1546       if (isCatchAll(Personality, TypeInfo)) {
1547         if (!isLastClause)
1548           MakeNewInstruction = true;
1549         CleanupFlag = false;
1550         break;
1551       }
1552     } else {
1553       // A filter clause.  If any of the filter elements were already caught
1554       // then they can be dropped from the filter.  It is tempting to try to
1555       // exploit the filter further by saying that any typeinfo that does not
1556       // occur in the filter can't be caught later (and thus can be dropped).
1557       // However this would be wrong, since typeinfos can match without being
1558       // equal (for example if one represents a C++ class, and the other some
1559       // class derived from it).
1560       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1561       Value *FilterClause = LI.getClause(i);
1562       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1563       unsigned NumTypeInfos = FilterType->getNumElements();
1564
1565       // An empty filter catches everything, so there is no point in keeping any
1566       // following clauses or marking the landingpad as having a cleanup.  By
1567       // dealing with this case here the following code is made a bit simpler.
1568       if (!NumTypeInfos) {
1569         NewClauses.push_back(FilterClause);
1570         if (!isLastClause)
1571           MakeNewInstruction = true;
1572         CleanupFlag = false;
1573         break;
1574       }
1575
1576       bool MakeNewFilter = false; // If true, make a new filter.
1577       SmallVector<Constant *, 16> NewFilterElts; // New elements.
1578       if (isa<ConstantAggregateZero>(FilterClause)) {
1579         // Not an empty filter - it contains at least one null typeinfo.
1580         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1581         Constant *TypeInfo =
1582           Constant::getNullValue(FilterType->getElementType());
1583         // If this typeinfo is a catch-all then the filter can never match.
1584         if (isCatchAll(Personality, TypeInfo)) {
1585           // Throw the filter away.
1586           MakeNewInstruction = true;
1587           continue;
1588         }
1589
1590         // There is no point in having multiple copies of this typeinfo, so
1591         // discard all but the first copy if there is more than one.
1592         NewFilterElts.push_back(TypeInfo);
1593         if (NumTypeInfos > 1)
1594           MakeNewFilter = true;
1595       } else {
1596         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1597         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1598         NewFilterElts.reserve(NumTypeInfos);
1599
1600         // Remove any filter elements that were already caught or that already
1601         // occurred in the filter.  While there, see if any of the elements are
1602         // catch-alls.  If so, the filter can be discarded.
1603         bool SawCatchAll = false;
1604         for (unsigned j = 0; j != NumTypeInfos; ++j) {
1605           Value *Elt = Filter->getOperand(j);
1606           Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1607           if (isCatchAll(Personality, TypeInfo)) {
1608             // This element is a catch-all.  Bail out, noting this fact.
1609             SawCatchAll = true;
1610             break;
1611           }
1612           if (AlreadyCaught.count(TypeInfo))
1613             // Already caught by an earlier clause, so having it in the filter
1614             // is pointless.
1615             continue;
1616           // There is no point in having multiple copies of the same typeinfo in
1617           // a filter, so only add it if we didn't already.
1618           if (SeenInFilter.insert(TypeInfo))
1619             NewFilterElts.push_back(cast<Constant>(Elt));
1620         }
1621         // A filter containing a catch-all cannot match anything by definition.
1622         if (SawCatchAll) {
1623           // Throw the filter away.
1624           MakeNewInstruction = true;
1625           continue;
1626         }
1627
1628         // If we dropped something from the filter, make a new one.
1629         if (NewFilterElts.size() < NumTypeInfos)
1630           MakeNewFilter = true;
1631       }
1632       if (MakeNewFilter) {
1633         FilterType = ArrayType::get(FilterType->getElementType(),
1634                                     NewFilterElts.size());
1635         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1636         MakeNewInstruction = true;
1637       }
1638
1639       NewClauses.push_back(FilterClause);
1640
1641       // If the new filter is empty then it will catch everything so there is
1642       // no point in keeping any following clauses or marking the landingpad
1643       // as having a cleanup.  The case of the original filter being empty was
1644       // already handled above.
1645       if (MakeNewFilter && !NewFilterElts.size()) {
1646         assert(MakeNewInstruction && "New filter but not a new instruction!");
1647         CleanupFlag = false;
1648         break;
1649       }
1650     }
1651   }
1652
1653   // If several filters occur in a row then reorder them so that the shortest
1654   // filters come first (those with the smallest number of elements).  This is
1655   // advantageous because shorter filters are more likely to match, speeding up
1656   // unwinding, but mostly because it increases the effectiveness of the other
1657   // filter optimizations below.
1658   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
1659     unsigned j;
1660     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
1661     for (j = i; j != e; ++j)
1662       if (!isa<ArrayType>(NewClauses[j]->getType()))
1663         break;
1664
1665     // Check whether the filters are already sorted by length.  We need to know
1666     // if sorting them is actually going to do anything so that we only make a
1667     // new landingpad instruction if it does.
1668     for (unsigned k = i; k + 1 < j; ++k)
1669       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
1670         // Not sorted, so sort the filters now.  Doing an unstable sort would be
1671         // correct too but reordering filters pointlessly might confuse users.
1672         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
1673                          shorter_filter);
1674         MakeNewInstruction = true;
1675         break;
1676       }
1677
1678     // Look for the next batch of filters.
1679     i = j + 1;
1680   }
1681
1682   // If typeinfos matched if and only if equal, then the elements of a filter L
1683   // that occurs later than a filter F could be replaced by the intersection of
1684   // the elements of F and L.  In reality two typeinfos can match without being
1685   // equal (for example if one represents a C++ class, and the other some class
1686   // derived from it) so it would be wrong to perform this transform in general.
1687   // However the transform is correct and useful if F is a subset of L.  In that
1688   // case L can be replaced by F, and thus removed altogether since repeating a
1689   // filter is pointless.  So here we look at all pairs of filters F and L where
1690   // L follows F in the list of clauses, and remove L if every element of F is
1691   // an element of L.  This can occur when inlining C++ functions with exception
1692   // specifications.
1693   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
1694     // Examine each filter in turn.
1695     Value *Filter = NewClauses[i];
1696     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
1697     if (!FTy)
1698       // Not a filter - skip it.
1699       continue;
1700     unsigned FElts = FTy->getNumElements();
1701     // Examine each filter following this one.  Doing this backwards means that
1702     // we don't have to worry about filters disappearing under us when removed.
1703     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
1704       Value *LFilter = NewClauses[j];
1705       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
1706       if (!LTy)
1707         // Not a filter - skip it.
1708         continue;
1709       // If Filter is a subset of LFilter, i.e. every element of Filter is also
1710       // an element of LFilter, then discard LFilter.
1711       SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
1712       // If Filter is empty then it is a subset of LFilter.
1713       if (!FElts) {
1714         // Discard LFilter.
1715         NewClauses.erase(J);
1716         MakeNewInstruction = true;
1717         // Move on to the next filter.
1718         continue;
1719       }
1720       unsigned LElts = LTy->getNumElements();
1721       // If Filter is longer than LFilter then it cannot be a subset of it.
1722       if (FElts > LElts)
1723         // Move on to the next filter.
1724         continue;
1725       // At this point we know that LFilter has at least one element.
1726       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
1727         // Filter is a subset of LFilter iff Filter contains only zeros (as we
1728         // already know that Filter is not longer than LFilter).
1729         if (isa<ConstantAggregateZero>(Filter)) {
1730           assert(FElts <= LElts && "Should have handled this case earlier!");
1731           // Discard LFilter.
1732           NewClauses.erase(J);
1733           MakeNewInstruction = true;
1734         }
1735         // Move on to the next filter.
1736         continue;
1737       }
1738       ConstantArray *LArray = cast<ConstantArray>(LFilter);
1739       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
1740         // Since Filter is non-empty and contains only zeros, it is a subset of
1741         // LFilter iff LFilter contains a zero.
1742         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
1743         for (unsigned l = 0; l != LElts; ++l)
1744           if (LArray->getOperand(l)->isNullValue()) {
1745             // LFilter contains a zero - discard it.
1746             NewClauses.erase(J);
1747             MakeNewInstruction = true;
1748             break;
1749           }
1750         // Move on to the next filter.
1751         continue;
1752       }
1753       // At this point we know that both filters are ConstantArrays.  Loop over
1754       // operands to see whether every element of Filter is also an element of
1755       // LFilter.  Since filters tend to be short this is probably faster than
1756       // using a method that scales nicely.
1757       ConstantArray *FArray = cast<ConstantArray>(Filter);
1758       bool AllFound = true;
1759       for (unsigned f = 0; f != FElts; ++f) {
1760         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
1761         AllFound = false;
1762         for (unsigned l = 0; l != LElts; ++l) {
1763           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
1764           if (LTypeInfo == FTypeInfo) {
1765             AllFound = true;
1766             break;
1767           }
1768         }
1769         if (!AllFound)
1770           break;
1771       }
1772       if (AllFound) {
1773         // Discard LFilter.
1774         NewClauses.erase(J);
1775         MakeNewInstruction = true;
1776       }
1777       // Move on to the next filter.
1778     }
1779   }
1780
1781   // If we changed any of the clauses, replace the old landingpad instruction
1782   // with a new one.
1783   if (MakeNewInstruction) {
1784     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
1785                                                  LI.getPersonalityFn(),
1786                                                  NewClauses.size());
1787     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
1788       NLI->addClause(NewClauses[i]);
1789     // A landing pad with no clauses must have the cleanup flag set.  It is
1790     // theoretically possible, though highly unlikely, that we eliminated all
1791     // clauses.  If so, force the cleanup flag to true.
1792     if (NewClauses.empty())
1793       CleanupFlag = true;
1794     NLI->setCleanup(CleanupFlag);
1795     return NLI;
1796   }
1797
1798   // Even if none of the clauses changed, we may nonetheless have understood
1799   // that the cleanup flag is pointless.  Clear it if so.
1800   if (LI.isCleanup() != CleanupFlag) {
1801     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
1802     LI.setCleanup(CleanupFlag);
1803     return &LI;
1804   }
1805
1806   return 0;
1807 }
1808
1809
1810
1811
1812 /// TryToSinkInstruction - Try to move the specified instruction from its
1813 /// current block into the beginning of DestBlock, which can only happen if it's
1814 /// safe to move the instruction past all of the instructions between it and the
1815 /// end of its block.
1816 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1817   assert(I->hasOneUse() && "Invariants didn't hold!");
1818
1819   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1820   if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
1821       isa<TerminatorInst>(I))
1822     return false;
1823
1824   // Do not sink alloca instructions out of the entry block.
1825   if (isa<AllocaInst>(I) && I->getParent() ==
1826         &DestBlock->getParent()->getEntryBlock())
1827     return false;
1828
1829   // We can only sink load instructions if there is nothing between the load and
1830   // the end of block that could change the value.
1831   if (I->mayReadFromMemory()) {
1832     for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
1833          Scan != E; ++Scan)
1834       if (Scan->mayWriteToMemory())
1835         return false;
1836   }
1837
1838   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
1839   I->moveBefore(InsertPos);
1840   ++NumSunkInst;
1841   return true;
1842 }
1843
1844
1845 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1846 /// all reachable code to the worklist.
1847 ///
1848 /// This has a couple of tricks to make the code faster and more powerful.  In
1849 /// particular, we constant fold and DCE instructions as we go, to avoid adding
1850 /// them to the worklist (this significantly speeds up instcombine on code where
1851 /// many instructions are dead or constant).  Additionally, if we find a branch
1852 /// whose condition is a known constant, we only visit the reachable successors.
1853 ///
1854 static bool AddReachableCodeToWorklist(BasicBlock *BB,
1855                                        SmallPtrSet<BasicBlock*, 64> &Visited,
1856                                        InstCombiner &IC,
1857                                        const TargetData *TD,
1858                                        const TargetLibraryInfo *TLI) {
1859   bool MadeIRChange = false;
1860   SmallVector<BasicBlock*, 256> Worklist;
1861   Worklist.push_back(BB);
1862
1863   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
1864   DenseMap<ConstantExpr*, Constant*> FoldedConstants;
1865
1866   do {
1867     BB = Worklist.pop_back_val();
1868
1869     // We have now visited this block!  If we've already been here, ignore it.
1870     if (!Visited.insert(BB)) continue;
1871
1872     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1873       Instruction *Inst = BBI++;
1874
1875       // DCE instruction if trivially dead.
1876       if (isInstructionTriviallyDead(Inst, TLI)) {
1877         ++NumDeadInst;
1878         DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
1879         Inst->eraseFromParent();
1880         continue;
1881       }
1882
1883       // ConstantProp instruction if trivially constant.
1884       if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
1885         if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
1886           DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1887                        << *Inst << '\n');
1888           Inst->replaceAllUsesWith(C);
1889           ++NumConstProp;
1890           Inst->eraseFromParent();
1891           continue;
1892         }
1893
1894       if (TD) {
1895         // See if we can constant fold its operands.
1896         for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1897              i != e; ++i) {
1898           ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1899           if (CE == 0) continue;
1900
1901           Constant*& FoldRes = FoldedConstants[CE];
1902           if (!FoldRes)
1903             FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
1904           if (!FoldRes)
1905             FoldRes = CE;
1906
1907           if (FoldRes != CE) {
1908             *i = FoldRes;
1909             MadeIRChange = true;
1910           }
1911         }
1912       }
1913
1914       InstrsForInstCombineWorklist.push_back(Inst);
1915     }
1916
1917     // Recursively visit successors.  If this is a branch or switch on a
1918     // constant, only visit the reachable successor.
1919     TerminatorInst *TI = BB->getTerminator();
1920     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1921       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1922         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
1923         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
1924         Worklist.push_back(ReachableBB);
1925         continue;
1926       }
1927     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1928       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1929         // See if this is an explicit destination.
1930         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
1931              i != e; ++i)
1932           if (i.getCaseValue() == Cond) {
1933             BasicBlock *ReachableBB = i.getCaseSuccessor();
1934             Worklist.push_back(ReachableBB);
1935             continue;
1936           }
1937
1938         // Otherwise it is the default destination.
1939         Worklist.push_back(SI->getDefaultDest());
1940         continue;
1941       }
1942     }
1943
1944     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1945       Worklist.push_back(TI->getSuccessor(i));
1946   } while (!Worklist.empty());
1947
1948   // Once we've found all of the instructions to add to instcombine's worklist,
1949   // add them in reverse order.  This way instcombine will visit from the top
1950   // of the function down.  This jives well with the way that it adds all uses
1951   // of instructions to the worklist after doing a transformation, thus avoiding
1952   // some N^2 behavior in pathological cases.
1953   IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1954                               InstrsForInstCombineWorklist.size());
1955
1956   return MadeIRChange;
1957 }
1958
1959 bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
1960   MadeIRChange = false;
1961
1962   DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1963                << F.getName() << "\n");
1964
1965   {
1966     // Do a depth-first traversal of the function, populate the worklist with
1967     // the reachable instructions.  Ignore blocks that are not reachable.  Keep
1968     // track of which blocks we visit.
1969     SmallPtrSet<BasicBlock*, 64> Visited;
1970     MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
1971                                                TLI);
1972
1973     // Do a quick scan over the function.  If we find any blocks that are
1974     // unreachable, remove any instructions inside of them.  This prevents
1975     // the instcombine code from having to deal with some bad special cases.
1976     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1977       if (Visited.count(BB)) continue;
1978
1979       // Delete the instructions backwards, as it has a reduced likelihood of
1980       // having to update as many def-use and use-def chains.
1981       Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1982       while (EndInst != BB->begin()) {
1983         // Delete the next to last instruction.
1984         BasicBlock::iterator I = EndInst;
1985         Instruction *Inst = --I;
1986         if (!Inst->use_empty())
1987           Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1988         if (isa<LandingPadInst>(Inst)) {
1989           EndInst = Inst;
1990           continue;
1991         }
1992         if (!isa<DbgInfoIntrinsic>(Inst)) {
1993           ++NumDeadInst;
1994           MadeIRChange = true;
1995         }
1996         Inst->eraseFromParent();
1997       }
1998     }
1999   }
2000
2001   while (!Worklist.isEmpty()) {
2002     Instruction *I = Worklist.RemoveOne();
2003     if (I == 0) continue;  // skip null values.
2004
2005     // Check to see if we can DCE the instruction.
2006     if (isInstructionTriviallyDead(I, TLI)) {
2007       DEBUG(errs() << "IC: DCE: " << *I << '\n');
2008       EraseInstFromFunction(*I);
2009       ++NumDeadInst;
2010       MadeIRChange = true;
2011       continue;
2012     }
2013
2014     // Instruction isn't dead, see if we can constant propagate it.
2015     if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2016       if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
2017         DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2018
2019         // Add operands to the worklist.
2020         ReplaceInstUsesWith(*I, C);
2021         ++NumConstProp;
2022         EraseInstFromFunction(*I);
2023         MadeIRChange = true;
2024         continue;
2025       }
2026
2027     // See if we can trivially sink this instruction to a successor basic block.
2028     if (I->hasOneUse()) {
2029       BasicBlock *BB = I->getParent();
2030       Instruction *UserInst = cast<Instruction>(I->use_back());
2031       BasicBlock *UserParent;
2032
2033       // Get the block the use occurs in.
2034       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2035         UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2036       else
2037         UserParent = UserInst->getParent();
2038
2039       if (UserParent != BB) {
2040         bool UserIsSuccessor = false;
2041         // See if the user is one of our successors.
2042         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2043           if (*SI == UserParent) {
2044             UserIsSuccessor = true;
2045             break;
2046           }
2047
2048         // If the user is one of our immediate successors, and if that successor
2049         // only has us as a predecessors (we'd have to split the critical edge
2050         // otherwise), we can keep going.
2051         if (UserIsSuccessor && UserParent->getSinglePredecessor())
2052           // Okay, the CFG is simple enough, try to sink this instruction.
2053           MadeIRChange |= TryToSinkInstruction(I, UserParent);
2054       }
2055     }
2056
2057     // Now that we have an instruction, try combining it to simplify it.
2058     Builder->SetInsertPoint(I->getParent(), I);
2059     Builder->SetCurrentDebugLocation(I->getDebugLoc());
2060
2061 #ifndef NDEBUG
2062     std::string OrigI;
2063 #endif
2064     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2065     DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
2066
2067     if (Instruction *Result = visit(*I)) {
2068       ++NumCombined;
2069       // Should we replace the old instruction with a new one?
2070       if (Result != I) {
2071         DEBUG(errs() << "IC: Old = " << *I << '\n'
2072                      << "    New = " << *Result << '\n');
2073
2074         if (!I->getDebugLoc().isUnknown())
2075           Result->setDebugLoc(I->getDebugLoc());
2076         // Everything uses the new instruction now.
2077         I->replaceAllUsesWith(Result);
2078
2079         // Move the name to the new instruction first.
2080         Result->takeName(I);
2081
2082         // Push the new instruction and any users onto the worklist.
2083         Worklist.Add(Result);
2084         Worklist.AddUsersToWorkList(*Result);
2085
2086         // Insert the new instruction into the basic block...
2087         BasicBlock *InstParent = I->getParent();
2088         BasicBlock::iterator InsertPos = I;
2089
2090         // If we replace a PHI with something that isn't a PHI, fix up the
2091         // insertion point.
2092         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2093           InsertPos = InstParent->getFirstInsertionPt();
2094
2095         InstParent->getInstList().insert(InsertPos, Result);
2096
2097         EraseInstFromFunction(*I);
2098       } else {
2099 #ifndef NDEBUG
2100         DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
2101                      << "    New = " << *I << '\n');
2102 #endif
2103
2104         // If the instruction was modified, it's possible that it is now dead.
2105         // if so, remove it.
2106         if (isInstructionTriviallyDead(I, TLI)) {
2107           EraseInstFromFunction(*I);
2108         } else {
2109           Worklist.Add(I);
2110           Worklist.AddUsersToWorkList(*I);
2111         }
2112       }
2113       MadeIRChange = true;
2114     }
2115   }
2116
2117   Worklist.Zap();
2118   return MadeIRChange;
2119 }
2120
2121
2122 bool InstCombiner::runOnFunction(Function &F) {
2123   TD = getAnalysisIfAvailable<TargetData>();
2124   TLI = &getAnalysis<TargetLibraryInfo>();
2125
2126   /// Builder - This is an IRBuilder that automatically inserts new
2127   /// instructions into the worklist when they are created.
2128   IRBuilder<true, TargetFolder, InstCombineIRInserter>
2129     TheBuilder(F.getContext(), TargetFolder(TD),
2130                InstCombineIRInserter(Worklist));
2131   Builder = &TheBuilder;
2132
2133   bool EverMadeChange = false;
2134
2135   // Lower dbg.declare intrinsics otherwise their value may be clobbered
2136   // by instcombiner.
2137   EverMadeChange = LowerDbgDeclare(F);
2138
2139   // Iterate while there is work to do.
2140   unsigned Iteration = 0;
2141   while (DoOneIteration(F, Iteration++))
2142     EverMadeChange = true;
2143
2144   Builder = 0;
2145   return EverMadeChange;
2146 }
2147
2148 FunctionPass *llvm::createInstructionCombiningPass() {
2149   return new InstCombiner();
2150 }