776704d1efa9bf67e973a4ee99847f7cd9943d58
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineSelect.cpp
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 #define DEBUG_TYPE "instcombine"
23
24 static SelectPatternFlavor
25 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
26   switch (SPF) {
27   default:
28     llvm_unreachable("unhandled!");
29
30   case SPF_SMIN:
31     return SPF_SMAX;
32   case SPF_UMIN:
33     return SPF_UMAX;
34   case SPF_SMAX:
35     return SPF_SMIN;
36   case SPF_UMAX:
37     return SPF_UMIN;
38   }
39 }
40
41 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
42                                                    bool Ordered=false) {
43   switch (SPF) {
44   default:
45     llvm_unreachable("unhandled!");
46
47   case SPF_SMIN:
48     return ICmpInst::ICMP_SLT;
49   case SPF_UMIN:
50     return ICmpInst::ICMP_ULT;
51   case SPF_SMAX:
52     return ICmpInst::ICMP_SGT;
53   case SPF_UMAX:
54     return ICmpInst::ICMP_UGT;
55   case SPF_FMINNUM:
56     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
57   case SPF_FMAXNUM:
58     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
59   }
60 }
61
62 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder,
63                                           SelectPatternFlavor SPF, Value *A,
64                                           Value *B) {
65   CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
66   assert(CmpInst::isIntPredicate(Pred));
67   return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B);
68 }
69
70 /// We want to turn code that looks like this:
71 ///   %C = or %A, %B
72 ///   %D = select %cond, %C, %A
73 /// into:
74 ///   %C = select %cond, %B, 0
75 ///   %D = or %A, %C
76 ///
77 /// Assuming that the specified instruction is an operand to the select, return
78 /// a bitmask indicating which operands of this instruction are foldable if they
79 /// equal the other incoming value of the select.
80 ///
81 static unsigned GetSelectFoldableOperands(Instruction *I) {
82   switch (I->getOpcode()) {
83   case Instruction::Add:
84   case Instruction::Mul:
85   case Instruction::And:
86   case Instruction::Or:
87   case Instruction::Xor:
88     return 3;              // Can fold through either operand.
89   case Instruction::Sub:   // Can only fold on the amount subtracted.
90   case Instruction::Shl:   // Can only fold on the shift amount.
91   case Instruction::LShr:
92   case Instruction::AShr:
93     return 1;
94   default:
95     return 0;              // Cannot fold
96   }
97 }
98
99 /// For the same transformation as the previous function, return the identity
100 /// constant that goes into the select.
101 static Constant *GetSelectFoldableConstant(Instruction *I) {
102   switch (I->getOpcode()) {
103   default: llvm_unreachable("This cannot happen!");
104   case Instruction::Add:
105   case Instruction::Sub:
106   case Instruction::Or:
107   case Instruction::Xor:
108   case Instruction::Shl:
109   case Instruction::LShr:
110   case Instruction::AShr:
111     return Constant::getNullValue(I->getType());
112   case Instruction::And:
113     return Constant::getAllOnesValue(I->getType());
114   case Instruction::Mul:
115     return ConstantInt::get(I->getType(), 1);
116   }
117 }
118
119 /// Here we have (select c, TI, FI), and we know that TI and FI
120 /// have the same opcode and only one use each.  Try to simplify this.
121 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
122                                           Instruction *FI) {
123   if (TI->getNumOperands() == 1) {
124     // If this is a non-volatile load or a cast from the same type,
125     // merge.
126     if (TI->isCast()) {
127       Type *FIOpndTy = FI->getOperand(0)->getType();
128       if (TI->getOperand(0)->getType() != FIOpndTy)
129         return nullptr;
130       // The select condition may be a vector. We may only change the operand
131       // type if the vector width remains the same (and matches the condition).
132       Type *CondTy = SI.getCondition()->getType();
133       if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() ||
134           CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()))
135         return nullptr;
136     } else {
137       return nullptr;  // unknown unary op.
138     }
139
140     // Fold this by inserting a select from the input values.
141     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
142                                          FI->getOperand(0), SI.getName()+".v");
143     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
144                             TI->getType());
145   }
146
147   // Only handle binary operators here.
148   if (!isa<BinaryOperator>(TI))
149     return nullptr;
150
151   // Figure out if the operations have any operands in common.
152   Value *MatchOp, *OtherOpT, *OtherOpF;
153   bool MatchIsOpZero;
154   if (TI->getOperand(0) == FI->getOperand(0)) {
155     MatchOp  = TI->getOperand(0);
156     OtherOpT = TI->getOperand(1);
157     OtherOpF = FI->getOperand(1);
158     MatchIsOpZero = true;
159   } else if (TI->getOperand(1) == FI->getOperand(1)) {
160     MatchOp  = TI->getOperand(1);
161     OtherOpT = TI->getOperand(0);
162     OtherOpF = FI->getOperand(0);
163     MatchIsOpZero = false;
164   } else if (!TI->isCommutative()) {
165     return nullptr;
166   } else if (TI->getOperand(0) == FI->getOperand(1)) {
167     MatchOp  = TI->getOperand(0);
168     OtherOpT = TI->getOperand(1);
169     OtherOpF = FI->getOperand(0);
170     MatchIsOpZero = true;
171   } else if (TI->getOperand(1) == FI->getOperand(0)) {
172     MatchOp  = TI->getOperand(1);
173     OtherOpT = TI->getOperand(0);
174     OtherOpF = FI->getOperand(1);
175     MatchIsOpZero = true;
176   } else {
177     return nullptr;
178   }
179
180   // If we reach here, they do have operations in common.
181   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
182                                        OtherOpF, SI.getName()+".v");
183
184   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
185     if (MatchIsOpZero)
186       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
187     else
188       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
189   }
190   llvm_unreachable("Shouldn't get here");
191 }
192
193 static bool isSelect01(Constant *C1, Constant *C2) {
194   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
195   if (!C1I)
196     return false;
197   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
198   if (!C2I)
199     return false;
200   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
201     return false;
202   return C1I->isOne() || C1I->isAllOnesValue() ||
203          C2I->isOne() || C2I->isAllOnesValue();
204 }
205
206 /// Try to fold the select into one of the operands to allow further
207 /// optimization.
208 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
209                                             Value *FalseVal) {
210   // See the comment above GetSelectFoldableOperands for a description of the
211   // transformation we are doing here.
212   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
213     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
214         !isa<Constant>(FalseVal)) {
215       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
216         unsigned OpToFold = 0;
217         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
218           OpToFold = 1;
219         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
220           OpToFold = 2;
221         }
222
223         if (OpToFold) {
224           Constant *C = GetSelectFoldableConstant(TVI);
225           Value *OOp = TVI->getOperand(2-OpToFold);
226           // Avoid creating select between 2 constants unless it's selecting
227           // between 0, 1 and -1.
228           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
229             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
230             NewSel->takeName(TVI);
231             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
232             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
233                                                         FalseVal, NewSel);
234             if (isa<PossiblyExactOperator>(BO))
235               BO->setIsExact(TVI_BO->isExact());
236             if (isa<OverflowingBinaryOperator>(BO)) {
237               BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
238               BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
239             }
240             return BO;
241           }
242         }
243       }
244     }
245   }
246
247   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
248     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
249         !isa<Constant>(TrueVal)) {
250       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
251         unsigned OpToFold = 0;
252         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
253           OpToFold = 1;
254         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
255           OpToFold = 2;
256         }
257
258         if (OpToFold) {
259           Constant *C = GetSelectFoldableConstant(FVI);
260           Value *OOp = FVI->getOperand(2-OpToFold);
261           // Avoid creating select between 2 constants unless it's selecting
262           // between 0, 1 and -1.
263           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
264             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
265             NewSel->takeName(FVI);
266             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
267             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
268                                                         TrueVal, NewSel);
269             if (isa<PossiblyExactOperator>(BO))
270               BO->setIsExact(FVI_BO->isExact());
271             if (isa<OverflowingBinaryOperator>(BO)) {
272               BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
273               BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
274             }
275             return BO;
276           }
277         }
278       }
279     }
280   }
281
282   return nullptr;
283 }
284
285 /// We want to turn:
286 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
287 /// into:
288 ///   (or (shl (and X, C1), C3), y)
289 /// iff:
290 ///   C1 and C2 are both powers of 2
291 /// where:
292 ///   C3 = Log(C2) - Log(C1)
293 ///
294 /// This transform handles cases where:
295 /// 1. The icmp predicate is inverted
296 /// 2. The select operands are reversed
297 /// 3. The magnitude of C2 and C1 are flipped
298 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
299                                   Value *FalseVal,
300                                   InstCombiner::BuilderTy *Builder) {
301   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
302   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
303     return nullptr;
304
305   Value *CmpLHS = IC->getOperand(0);
306   Value *CmpRHS = IC->getOperand(1);
307
308   if (!match(CmpRHS, m_Zero()))
309     return nullptr;
310
311   Value *X;
312   const APInt *C1;
313   if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
314     return nullptr;
315
316   const APInt *C2;
317   bool OrOnTrueVal = false;
318   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
319   if (!OrOnFalseVal)
320     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
321
322   if (!OrOnFalseVal && !OrOnTrueVal)
323     return nullptr;
324
325   Value *V = CmpLHS;
326   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
327
328   unsigned C1Log = C1->logBase2();
329   unsigned C2Log = C2->logBase2();
330   if (C2Log > C1Log) {
331     V = Builder->CreateZExtOrTrunc(V, Y->getType());
332     V = Builder->CreateShl(V, C2Log - C1Log);
333   } else if (C1Log > C2Log) {
334     V = Builder->CreateLShr(V, C1Log - C2Log);
335     V = Builder->CreateZExtOrTrunc(V, Y->getType());
336   } else
337     V = Builder->CreateZExtOrTrunc(V, Y->getType());
338
339   ICmpInst::Predicate Pred = IC->getPredicate();
340   if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
341       (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
342     V = Builder->CreateXor(V, *C2);
343
344   return Builder->CreateOr(V, Y);
345 }
346
347 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
348 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
349 ///
350 /// For example, we can fold the following code sequence:
351 /// \code
352 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
353 ///   %1 = icmp ne i32 %x, 0
354 ///   %2 = select i1 %1, i32 %0, i32 32
355 /// \code
356 /// 
357 /// into:
358 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
359 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
360                                   InstCombiner::BuilderTy *Builder) {
361   ICmpInst::Predicate Pred = ICI->getPredicate();
362   Value *CmpLHS = ICI->getOperand(0);
363   Value *CmpRHS = ICI->getOperand(1);
364
365   // Check if the condition value compares a value for equality against zero.
366   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
367     return nullptr;
368
369   Value *Count = FalseVal;
370   Value *ValueOnZero = TrueVal;
371   if (Pred == ICmpInst::ICMP_NE)
372     std::swap(Count, ValueOnZero);
373
374   // Skip zero extend/truncate.
375   Value *V = nullptr;
376   if (match(Count, m_ZExt(m_Value(V))) ||
377       match(Count, m_Trunc(m_Value(V))))
378     Count = V;
379
380   // Check if the value propagated on zero is a constant number equal to the
381   // sizeof in bits of 'Count'.
382   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
383   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
384     return nullptr;
385
386   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
387   // input to the cttz/ctlz is used as LHS for the compare instruction.
388   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
389       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
390     IntrinsicInst *II = cast<IntrinsicInst>(Count);
391     IRBuilder<> Builder(II);
392     // Explicitly clear the 'undef_on_zero' flag.
393     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
394     Type *Ty = NewI->getArgOperand(1)->getType();
395     NewI->setArgOperand(1, Constant::getNullValue(Ty));
396     Builder.Insert(NewI);
397     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
398   }
399
400   return nullptr;
401 }
402
403 /// Visit a SelectInst that has an ICmpInst as its first operand.
404 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
405                                                    ICmpInst *ICI) {
406   bool Changed = false;
407   ICmpInst::Predicate Pred = ICI->getPredicate();
408   Value *CmpLHS = ICI->getOperand(0);
409   Value *CmpRHS = ICI->getOperand(1);
410   Value *TrueVal = SI.getTrueValue();
411   Value *FalseVal = SI.getFalseValue();
412
413   // Check cases where the comparison is with a constant that
414   // can be adjusted to fit the min/max idiom. We may move or edit ICI
415   // here, so make sure the select is the only user.
416   if (ICI->hasOneUse())
417     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
418       switch (Pred) {
419       default: break;
420       case ICmpInst::ICMP_ULT:
421       case ICmpInst::ICMP_SLT:
422       case ICmpInst::ICMP_UGT:
423       case ICmpInst::ICMP_SGT: {
424         // These transformations only work for selects over integers.
425         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
426         if (!SelectTy)
427           break;
428
429         Constant *AdjustedRHS;
430         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
431           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
432         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
433           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
434
435         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
436         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
437         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
438             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
439           ; // Nothing to do here. Values match without any sign/zero extension.
440
441         // Types do not match. Instead of calculating this with mixed types
442         // promote all to the larger type. This enables scalar evolution to
443         // analyze this expression.
444         else if (CmpRHS->getType()->getScalarSizeInBits()
445                  < SelectTy->getBitWidth()) {
446           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
447
448           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
449           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
450           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
451           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
452           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
453                 sextRHS == FalseVal) {
454             CmpLHS = TrueVal;
455             AdjustedRHS = sextRHS;
456           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
457                      sextRHS == TrueVal) {
458             CmpLHS = FalseVal;
459             AdjustedRHS = sextRHS;
460           } else if (ICI->isUnsigned()) {
461             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
462             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
463             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
464             // zext + signed compare cannot be changed:
465             //    0xff <s 0x00, but 0x00ff >s 0x0000
466             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
467                 zextRHS == FalseVal) {
468               CmpLHS = TrueVal;
469               AdjustedRHS = zextRHS;
470             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
471                        zextRHS == TrueVal) {
472               CmpLHS = FalseVal;
473               AdjustedRHS = zextRHS;
474             } else
475               break;
476           } else
477             break;
478         } else
479           break;
480
481         Pred = ICmpInst::getSwappedPredicate(Pred);
482         CmpRHS = AdjustedRHS;
483         std::swap(FalseVal, TrueVal);
484         ICI->setPredicate(Pred);
485         ICI->setOperand(0, CmpLHS);
486         ICI->setOperand(1, CmpRHS);
487         SI.setOperand(1, TrueVal);
488         SI.setOperand(2, FalseVal);
489
490         // Move ICI instruction right before the select instruction. Otherwise
491         // the sext/zext value may be defined after the ICI instruction uses it.
492         ICI->moveBefore(&SI);
493
494         Changed = true;
495         break;
496       }
497       }
498     }
499
500   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
501   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
502   // FIXME: Type and constness constraints could be lifted, but we have to
503   //        watch code size carefully. We should consider xor instead of
504   //        sub/add when we decide to do that.
505   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
506     if (TrueVal->getType() == Ty) {
507       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
508         ConstantInt *C1 = nullptr, *C2 = nullptr;
509         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
510           C1 = dyn_cast<ConstantInt>(TrueVal);
511           C2 = dyn_cast<ConstantInt>(FalseVal);
512         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
513           C1 = dyn_cast<ConstantInt>(FalseVal);
514           C2 = dyn_cast<ConstantInt>(TrueVal);
515         }
516         if (C1 && C2) {
517           // This shift results in either -1 or 0.
518           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
519
520           // Check if we can express the operation with a single or.
521           if (C2->isAllOnesValue())
522             return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
523
524           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
525           return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
526         }
527       }
528     }
529   }
530
531   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
532
533   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
534     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
535       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
536       SI.setOperand(1, CmpRHS);
537       Changed = true;
538     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
539       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
540       SI.setOperand(2, CmpRHS);
541       Changed = true;
542     }
543   }
544
545   {
546     unsigned BitWidth = DL.getTypeSizeInBits(TrueVal->getType());
547     APInt MinSignedValue = APInt::getSignBit(BitWidth);
548     Value *X;
549     const APInt *Y, *C;
550     bool TrueWhenUnset;
551     bool IsBitTest = false;
552     if (ICmpInst::isEquality(Pred) &&
553         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
554         match(CmpRHS, m_Zero())) {
555       IsBitTest = true;
556       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
557     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
558       X = CmpLHS;
559       Y = &MinSignedValue;
560       IsBitTest = true;
561       TrueWhenUnset = false;
562     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
563       X = CmpLHS;
564       Y = &MinSignedValue;
565       IsBitTest = true;
566       TrueWhenUnset = true;
567     }
568     if (IsBitTest) {
569       Value *V = nullptr;
570       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
571       if (TrueWhenUnset && TrueVal == X &&
572           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
573         V = Builder->CreateAnd(X, ~(*Y));
574       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
575       else if (!TrueWhenUnset && FalseVal == X &&
576                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
577         V = Builder->CreateAnd(X, ~(*Y));
578       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
579       else if (TrueWhenUnset && FalseVal == X &&
580                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
581         V = Builder->CreateOr(X, *Y);
582       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
583       else if (!TrueWhenUnset && TrueVal == X &&
584                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
585         V = Builder->CreateOr(X, *Y);
586
587       if (V)
588         return ReplaceInstUsesWith(SI, V);
589     }
590   }
591
592   if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
593     return ReplaceInstUsesWith(SI, V);
594
595   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
596     return ReplaceInstUsesWith(SI, V);
597
598   return Changed ? &SI : nullptr;
599 }
600
601
602 /// SI is a select whose condition is a PHI node (but the two may be in
603 /// different blocks). See if the true/false values (V) are live in all of the
604 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
605 ///
606 ///   X = phi [ C1, BB1], [C2, BB2]
607 ///   Y = add
608 ///   Z = select X, Y, 0
609 ///
610 /// because Y is not live in BB1/BB2.
611 ///
612 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
613                                                    const SelectInst &SI) {
614   // If the value is a non-instruction value like a constant or argument, it
615   // can always be mapped.
616   const Instruction *I = dyn_cast<Instruction>(V);
617   if (!I) return true;
618
619   // If V is a PHI node defined in the same block as the condition PHI, we can
620   // map the arguments.
621   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
622
623   if (const PHINode *VP = dyn_cast<PHINode>(I))
624     if (VP->getParent() == CondPHI->getParent())
625       return true;
626
627   // Otherwise, if the PHI and select are defined in the same block and if V is
628   // defined in a different block, then we can transform it.
629   if (SI.getParent() == CondPHI->getParent() &&
630       I->getParent() != CondPHI->getParent())
631     return true;
632
633   // Otherwise we have a 'hard' case and we can't tell without doing more
634   // detailed dominator based analysis, punt.
635   return false;
636 }
637
638 /// We have an SPF (e.g. a min or max) of an SPF of the form:
639 ///   SPF2(SPF1(A, B), C)
640 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
641                                         SelectPatternFlavor SPF1,
642                                         Value *A, Value *B,
643                                         Instruction &Outer,
644                                         SelectPatternFlavor SPF2, Value *C) {
645   if (C == A || C == B) {
646     // MAX(MAX(A, B), B) -> MAX(A, B)
647     // MIN(MIN(a, b), a) -> MIN(a, b)
648     if (SPF1 == SPF2)
649       return ReplaceInstUsesWith(Outer, Inner);
650
651     // MAX(MIN(a, b), a) -> a
652     // MIN(MAX(a, b), a) -> a
653     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
654         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
655         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
656         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
657       return ReplaceInstUsesWith(Outer, C);
658   }
659
660   if (SPF1 == SPF2) {
661     if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) {
662       if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) {
663         APInt ACB = CB->getValue();
664         APInt ACC = CC->getValue();
665
666         // MIN(MIN(A, 23), 97) -> MIN(A, 23)
667         // MAX(MAX(A, 97), 23) -> MAX(A, 97)
668         if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) ||
669             (SPF1 == SPF_SMIN && ACB.sle(ACC)) ||
670             (SPF1 == SPF_UMAX && ACB.uge(ACC)) ||
671             (SPF1 == SPF_SMAX && ACB.sge(ACC)))
672           return ReplaceInstUsesWith(Outer, Inner);
673
674         // MIN(MIN(A, 97), 23) -> MIN(A, 23)
675         // MAX(MAX(A, 23), 97) -> MAX(A, 97)
676         if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) ||
677             (SPF1 == SPF_SMIN && ACB.sgt(ACC)) ||
678             (SPF1 == SPF_UMAX && ACB.ult(ACC)) ||
679             (SPF1 == SPF_SMAX && ACB.slt(ACC))) {
680           Outer.replaceUsesOfWith(Inner, A);
681           return &Outer;
682         }
683       }
684     }
685   }
686
687   // ABS(ABS(X)) -> ABS(X)
688   // NABS(NABS(X)) -> NABS(X)
689   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
690     return ReplaceInstUsesWith(Outer, Inner);
691   }
692
693   // ABS(NABS(X)) -> ABS(X)
694   // NABS(ABS(X)) -> NABS(X)
695   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
696       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
697     SelectInst *SI = cast<SelectInst>(Inner);
698     Value *NewSI = Builder->CreateSelect(
699         SI->getCondition(), SI->getFalseValue(), SI->getTrueValue());
700     return ReplaceInstUsesWith(Outer, NewSI);
701   }
702
703   auto IsFreeOrProfitableToInvert =
704       [&](Value *V, Value *&NotV, bool &ElidesXor) {
705     if (match(V, m_Not(m_Value(NotV)))) {
706       // If V has at most 2 uses then we can get rid of the xor operation
707       // entirely.
708       ElidesXor |= !V->hasNUsesOrMore(3);
709       return true;
710     }
711
712     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
713       NotV = nullptr;
714       return true;
715     }
716
717     return false;
718   };
719
720   Value *NotA, *NotB, *NotC;
721   bool ElidesXor = false;
722
723   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
724   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
725   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
726   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
727   //
728   // This transform is performance neutral if we can elide at least one xor from
729   // the set of three operands, since we'll be tacking on an xor at the very
730   // end.
731   if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
732       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
733       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
734     if (!NotA)
735       NotA = Builder->CreateNot(A);
736     if (!NotB)
737       NotB = Builder->CreateNot(B);
738     if (!NotC)
739       NotC = Builder->CreateNot(C);
740
741     Value *NewInner = generateMinMaxSelectPattern(
742         Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
743     Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern(
744         Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
745     return ReplaceInstUsesWith(Outer, NewOuter);
746   }
747
748   return nullptr;
749 }
750
751 /// If one of the constants is zero (we know they can't both be) and we have an
752 /// icmp instruction with zero, and we have an 'and' with the non-constant value
753 /// and a power of two we can turn the select into a shift on the result of the
754 /// 'and'.
755 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
756                                 ConstantInt *FalseVal,
757                                 InstCombiner::BuilderTy *Builder) {
758   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
759   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
760     return nullptr;
761
762   if (!match(IC->getOperand(1), m_Zero()))
763     return nullptr;
764
765   ConstantInt *AndRHS;
766   Value *LHS = IC->getOperand(0);
767   if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
768     return nullptr;
769
770   // If both select arms are non-zero see if we have a select of the form
771   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
772   // for 'x ? 2^n : 0' and fix the thing up at the end.
773   ConstantInt *Offset = nullptr;
774   if (!TrueVal->isZero() && !FalseVal->isZero()) {
775     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
776       Offset = FalseVal;
777     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
778       Offset = TrueVal;
779     else
780       return nullptr;
781
782     // Adjust TrueVal and FalseVal to the offset.
783     TrueVal = ConstantInt::get(Builder->getContext(),
784                                TrueVal->getValue() - Offset->getValue());
785     FalseVal = ConstantInt::get(Builder->getContext(),
786                                 FalseVal->getValue() - Offset->getValue());
787   }
788
789   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
790   if (!AndRHS->getValue().isPowerOf2() ||
791       (!TrueVal->getValue().isPowerOf2() &&
792        !FalseVal->getValue().isPowerOf2()))
793     return nullptr;
794
795   // Determine which shift is needed to transform result of the 'and' into the
796   // desired result.
797   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
798   unsigned ValZeros = ValC->getValue().logBase2();
799   unsigned AndZeros = AndRHS->getValue().logBase2();
800
801   // If types don't match we can still convert the select by introducing a zext
802   // or a trunc of the 'and'. The trunc case requires that all of the truncated
803   // bits are zero, we can figure that out by looking at the 'and' mask.
804   if (AndZeros >= ValC->getBitWidth())
805     return nullptr;
806
807   Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
808   if (ValZeros > AndZeros)
809     V = Builder->CreateShl(V, ValZeros - AndZeros);
810   else if (ValZeros < AndZeros)
811     V = Builder->CreateLShr(V, AndZeros - ValZeros);
812
813   // Okay, now we know that everything is set up, we just don't know whether we
814   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
815   bool ShouldNotVal = !TrueVal->isZero();
816   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
817   if (ShouldNotVal)
818     V = Builder->CreateXor(V, ValC);
819
820   // Apply an offset if needed.
821   if (Offset)
822     V = Builder->CreateAdd(V, Offset);
823   return V;
824 }
825
826 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
827   Value *CondVal = SI.getCondition();
828   Value *TrueVal = SI.getTrueValue();
829   Value *FalseVal = SI.getFalseValue();
830
831   if (Value *V =
832           SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, DT, AC))
833     return ReplaceInstUsesWith(SI, V);
834
835   if (SI.getType()->isIntegerTy(1)) {
836     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
837       if (C->getZExtValue()) {
838         // Change: A = select B, true, C --> A = or B, C
839         return BinaryOperator::CreateOr(CondVal, FalseVal);
840       }
841       // Change: A = select B, false, C --> A = and !B, C
842       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
843       return BinaryOperator::CreateAnd(NotCond, FalseVal);
844     }
845     if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
846       if (!C->getZExtValue()) {
847         // Change: A = select B, C, false --> A = and B, C
848         return BinaryOperator::CreateAnd(CondVal, TrueVal);
849       }
850       // Change: A = select B, C, true --> A = or !B, C
851       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
852       return BinaryOperator::CreateOr(NotCond, TrueVal);
853     }
854
855     // select a, b, a  -> a&b
856     // select a, a, b  -> a|b
857     if (CondVal == TrueVal)
858       return BinaryOperator::CreateOr(CondVal, FalseVal);
859     if (CondVal == FalseVal)
860       return BinaryOperator::CreateAnd(CondVal, TrueVal);
861
862     // select a, ~a, b -> (~a)&b
863     // select a, b, ~a -> (~a)|b
864     if (match(TrueVal, m_Not(m_Specific(CondVal))))
865       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
866     if (match(FalseVal, m_Not(m_Specific(CondVal))))
867       return BinaryOperator::CreateOr(TrueVal, FalseVal);
868   }
869
870   // Selecting between two integer constants?
871   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
872     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
873       // select C, 1, 0 -> zext C to int
874       if (FalseValC->isZero() && TrueValC->getValue() == 1)
875         return new ZExtInst(CondVal, SI.getType());
876
877       // select C, -1, 0 -> sext C to int
878       if (FalseValC->isZero() && TrueValC->isAllOnesValue())
879         return new SExtInst(CondVal, SI.getType());
880
881       // select C, 0, 1 -> zext !C to int
882       if (TrueValC->isZero() && FalseValC->getValue() == 1) {
883         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
884         return new ZExtInst(NotCond, SI.getType());
885       }
886
887       // select C, 0, -1 -> sext !C to int
888       if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
889         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
890         return new SExtInst(NotCond, SI.getType());
891       }
892
893       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
894         return ReplaceInstUsesWith(SI, V);
895     }
896
897   // See if we are selecting two values based on a comparison of the two values.
898   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
899     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
900       // Transform (X == Y) ? X : Y  -> Y
901       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
902         // This is not safe in general for floating point:
903         // consider X== -0, Y== +0.
904         // It becomes safe if either operand is a nonzero constant.
905         ConstantFP *CFPt, *CFPf;
906         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
907               !CFPt->getValueAPF().isZero()) ||
908             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
909              !CFPf->getValueAPF().isZero()))
910         return ReplaceInstUsesWith(SI, FalseVal);
911       }
912       // Transform (X une Y) ? X : Y  -> X
913       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
914         // This is not safe in general for floating point:
915         // consider X== -0, Y== +0.
916         // It becomes safe if either operand is a nonzero constant.
917         ConstantFP *CFPt, *CFPf;
918         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
919               !CFPt->getValueAPF().isZero()) ||
920             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
921              !CFPf->getValueAPF().isZero()))
922         return ReplaceInstUsesWith(SI, TrueVal);
923       }
924
925       // Canonicalize to use ordered comparisons by swapping the select
926       // operands.
927       //
928       // e.g.
929       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
930       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
931         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
932         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
933         Builder->SetFastMathFlags(FCI->getFastMathFlags());
934         Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal,
935                                              FCI->getName() + ".inv");
936
937         return SelectInst::Create(NewCond, FalseVal, TrueVal,
938                                   SI.getName() + ".p");
939       }
940
941       // NOTE: if we wanted to, this is where to detect MIN/MAX
942     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
943       // Transform (X == Y) ? Y : X  -> X
944       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
945         // This is not safe in general for floating point:
946         // consider X== -0, Y== +0.
947         // It becomes safe if either operand is a nonzero constant.
948         ConstantFP *CFPt, *CFPf;
949         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
950               !CFPt->getValueAPF().isZero()) ||
951             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
952              !CFPf->getValueAPF().isZero()))
953           return ReplaceInstUsesWith(SI, FalseVal);
954       }
955       // Transform (X une Y) ? Y : X  -> Y
956       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
957         // This is not safe in general for floating point:
958         // consider X== -0, Y== +0.
959         // It becomes safe if either operand is a nonzero constant.
960         ConstantFP *CFPt, *CFPf;
961         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
962               !CFPt->getValueAPF().isZero()) ||
963             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
964              !CFPf->getValueAPF().isZero()))
965           return ReplaceInstUsesWith(SI, TrueVal);
966       }
967
968       // Canonicalize to use ordered comparisons by swapping the select
969       // operands.
970       //
971       // e.g.
972       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
973       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
974         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
975         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
976         Builder->SetFastMathFlags(FCI->getFastMathFlags());
977         Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal,
978                                              FCI->getName() + ".inv");
979
980         return SelectInst::Create(NewCond, FalseVal, TrueVal,
981                                   SI.getName() + ".p");
982       }
983
984       // NOTE: if we wanted to, this is where to detect MIN/MAX
985     }
986     // NOTE: if we wanted to, this is where to detect ABS
987   }
988
989   // See if we are selecting two values based on a comparison of the two values.
990   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
991     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
992       return Result;
993
994   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
995     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
996       if (TI->hasOneUse() && FI->hasOneUse()) {
997         Instruction *AddOp = nullptr, *SubOp = nullptr;
998
999         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1000         if (TI->getOpcode() == FI->getOpcode())
1001           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
1002             return IV;
1003
1004         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
1005         // even legal for FP.
1006         if ((TI->getOpcode() == Instruction::Sub &&
1007              FI->getOpcode() == Instruction::Add) ||
1008             (TI->getOpcode() == Instruction::FSub &&
1009              FI->getOpcode() == Instruction::FAdd)) {
1010           AddOp = FI; SubOp = TI;
1011         } else if ((FI->getOpcode() == Instruction::Sub &&
1012                     TI->getOpcode() == Instruction::Add) ||
1013                    (FI->getOpcode() == Instruction::FSub &&
1014                     TI->getOpcode() == Instruction::FAdd)) {
1015           AddOp = TI; SubOp = FI;
1016         }
1017
1018         if (AddOp) {
1019           Value *OtherAddOp = nullptr;
1020           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1021             OtherAddOp = AddOp->getOperand(1);
1022           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1023             OtherAddOp = AddOp->getOperand(0);
1024           }
1025
1026           if (OtherAddOp) {
1027             // So at this point we know we have (Y -> OtherAddOp):
1028             //        select C, (add X, Y), (sub X, Z)
1029             Value *NegVal;  // Compute -Z
1030             if (SI.getType()->isFPOrFPVectorTy()) {
1031               NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
1032               if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1033                 FastMathFlags Flags = AddOp->getFastMathFlags();
1034                 Flags &= SubOp->getFastMathFlags();
1035                 NegInst->setFastMathFlags(Flags);
1036               }
1037             } else {
1038               NegVal = Builder->CreateNeg(SubOp->getOperand(1));
1039             }
1040
1041             Value *NewTrueOp = OtherAddOp;
1042             Value *NewFalseOp = NegVal;
1043             if (AddOp != TI)
1044               std::swap(NewTrueOp, NewFalseOp);
1045             Value *NewSel =
1046               Builder->CreateSelect(CondVal, NewTrueOp,
1047                                     NewFalseOp, SI.getName() + ".p");
1048
1049             if (SI.getType()->isFPOrFPVectorTy()) {
1050               Instruction *RI =
1051                 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1052
1053               FastMathFlags Flags = AddOp->getFastMathFlags();
1054               Flags &= SubOp->getFastMathFlags();
1055               RI->setFastMathFlags(Flags);
1056               return RI;
1057             } else
1058               return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1059           }
1060         }
1061       }
1062
1063   // See if we can fold the select into one of our operands.
1064   if (SI.getType()->isIntOrIntVectorTy() || SI.getType()->isFPOrFPVectorTy()) {
1065     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
1066       return FoldI;
1067
1068     Value *LHS, *RHS, *LHS2, *RHS2;
1069     Instruction::CastOps CastOp;
1070     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1071     auto SPF = SPR.Flavor;
1072
1073     if (SelectPatternResult::isMinOrMax(SPF)) {
1074       // Canonicalize so that type casts are outside select patterns.
1075       if (LHS->getType()->getPrimitiveSizeInBits() !=
1076           SI.getType()->getPrimitiveSizeInBits()) {
1077         CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
1078
1079         Value *Cmp;
1080         if (CmpInst::isIntPredicate(Pred)) {
1081           Cmp = Builder->CreateICmp(Pred, LHS, RHS);
1082         } else {
1083           IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
1084           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1085           Builder->SetFastMathFlags(FMF);
1086           Cmp = Builder->CreateFCmp(Pred, LHS, RHS);
1087         }
1088
1089         Value *NewSI = Builder->CreateCast(CastOp,
1090                                            Builder->CreateSelect(Cmp, LHS, RHS),
1091                                            SI.getType());
1092         return ReplaceInstUsesWith(SI, NewSI);
1093       }
1094     }
1095
1096     if (SPF) {
1097       // MAX(MAX(a, b), a) -> MAX(a, b)
1098       // MIN(MIN(a, b), a) -> MIN(a, b)
1099       // MAX(MIN(a, b), a) -> a
1100       // MIN(MAX(a, b), a) -> a
1101       // ABS(ABS(a)) -> ABS(a)
1102       // NABS(NABS(a)) -> NABS(a)
1103       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1104         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
1105                                           SI, SPF, RHS))
1106           return R;
1107       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1108         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
1109                                           SI, SPF, LHS))
1110           return R;
1111     }
1112
1113     // MAX(~a, ~b) -> ~MIN(a, b)
1114     if (SPF == SPF_SMAX || SPF == SPF_UMAX) {
1115       if (IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
1116           IsFreeToInvert(RHS, RHS->hasNUses(2))) {
1117
1118         // This transform adds a xor operation and that extra cost needs to be
1119         // justified.  We look for simplifications that will result from
1120         // applying this rule:
1121
1122         bool Profitable =
1123             (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) ||
1124             (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) ||
1125             (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
1126
1127         if (Profitable) {
1128           Value *NewLHS = Builder->CreateNot(LHS);
1129           Value *NewRHS = Builder->CreateNot(RHS);
1130           Value *NewCmp = SPF == SPF_SMAX
1131                               ? Builder->CreateICmpSLT(NewLHS, NewRHS)
1132                               : Builder->CreateICmpULT(NewLHS, NewRHS);
1133           Value *NewSI =
1134               Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS));
1135           return ReplaceInstUsesWith(SI, NewSI);
1136         }
1137       }
1138     }
1139
1140     // TODO.
1141     // ABS(-X) -> ABS(X)
1142   }
1143
1144   // See if we can fold the select into a phi node if the condition is a select.
1145   if (isa<PHINode>(SI.getCondition()))
1146     // The true/false values have to be live in the PHI predecessor's blocks.
1147     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1148         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1149       if (Instruction *NV = FoldOpIntoPhi(SI))
1150         return NV;
1151
1152   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1153     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1154       // select(C, select(C, a, b), c) -> select(C, a, c)
1155       if (TrueSI->getCondition() == CondVal) {
1156         if (SI.getTrueValue() == TrueSI->getTrueValue())
1157           return nullptr;
1158         SI.setOperand(1, TrueSI->getTrueValue());
1159         return &SI;
1160       }
1161       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1162       // We choose this as normal form to enable folding on the And and shortening
1163       // paths for the values (this helps GetUnderlyingObjects() for example).
1164       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1165         Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition());
1166         SI.setOperand(0, And);
1167         SI.setOperand(1, TrueSI->getTrueValue());
1168         return &SI;
1169       }
1170     }
1171   }
1172   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1173     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1174       // select(C, a, select(C, b, c)) -> select(C, a, c)
1175       if (FalseSI->getCondition() == CondVal) {
1176         if (SI.getFalseValue() == FalseSI->getFalseValue())
1177           return nullptr;
1178         SI.setOperand(2, FalseSI->getFalseValue());
1179         return &SI;
1180       }
1181       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1182       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1183         Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition());
1184         SI.setOperand(0, Or);
1185         SI.setOperand(2, FalseSI->getFalseValue());
1186         return &SI;
1187       }
1188     }
1189   }
1190
1191   if (BinaryOperator::isNot(CondVal)) {
1192     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
1193     SI.setOperand(1, FalseVal);
1194     SI.setOperand(2, TrueVal);
1195     return &SI;
1196   }
1197
1198   if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) {
1199     unsigned VWidth = VecTy->getNumElements();
1200     APInt UndefElts(VWidth, 0);
1201     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1202     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
1203       if (V != &SI)
1204         return ReplaceInstUsesWith(SI, V);
1205       return &SI;
1206     }
1207
1208     if (isa<ConstantAggregateZero>(CondVal)) {
1209       return ReplaceInstUsesWith(SI, FalseVal);
1210     }
1211   }
1212
1213   return nullptr;
1214 }