7ad0efc42fb47c06afddc81f3a928a1723888967
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineMulDivRem.cpp
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11 // srem, urem, frem.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombineInternal.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 #define DEBUG_TYPE "instcombine"
23
24
25 /// The specific integer value is used in a context where it is known to be
26 /// non-zero.  If this allows us to simplify the computation, do so and return
27 /// the new operand, otherwise return null.
28 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
29                                         Instruction &CxtI) {
30   // If V has multiple uses, then we would have to do more analysis to determine
31   // if this is safe.  For example, the use could be in dynamically unreached
32   // code.
33   if (!V->hasOneUse()) return nullptr;
34
35   bool MadeChange = false;
36
37   // ((1 << A) >>u B) --> (1 << (A-B))
38   // Because V cannot be zero, we know that B is less than A.
39   Value *A = nullptr, *B = nullptr, *One = nullptr;
40   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
41       match(One, m_One())) {
42     A = IC.Builder->CreateSub(A, B);
43     return IC.Builder->CreateShl(One, A);
44   }
45
46   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
47   // inexact.  Similarly for <<.
48   if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
49     if (I->isLogicalShift() &&
50         isKnownToBeAPowerOfTwo(I->getOperand(0), IC.getDataLayout(), false, 0,
51                                IC.getAssumptionCache(), &CxtI,
52                                IC.getDominatorTree())) {
53       // We know that this is an exact/nuw shift and that the input is a
54       // non-zero context as well.
55       if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
56         I->setOperand(0, V2);
57         MadeChange = true;
58       }
59
60       if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
61         I->setIsExact();
62         MadeChange = true;
63       }
64
65       if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
66         I->setHasNoUnsignedWrap();
67         MadeChange = true;
68       }
69     }
70
71   // TODO: Lots more we could do here:
72   //    If V is a phi node, we can call this on each of its operands.
73   //    "select cond, X, 0" can simplify to "X".
74
75   return MadeChange ? V : nullptr;
76 }
77
78
79 /// True if the multiply can not be expressed in an int this size.
80 static bool MultiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
81                               bool IsSigned) {
82   bool Overflow;
83   if (IsSigned)
84     Product = C1.smul_ov(C2, Overflow);
85   else
86     Product = C1.umul_ov(C2, Overflow);
87
88   return Overflow;
89 }
90
91 /// \brief True if C2 is a multiple of C1. Quotient contains C2/C1.
92 static bool IsMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
93                        bool IsSigned) {
94   assert(C1.getBitWidth() == C2.getBitWidth() &&
95          "Inconsistent width of constants!");
96
97   // Bail if we will divide by zero.
98   if (C2.isMinValue())
99     return false;
100
101   // Bail if we would divide INT_MIN by -1.
102   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
103     return false;
104
105   APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
106   if (IsSigned)
107     APInt::sdivrem(C1, C2, Quotient, Remainder);
108   else
109     APInt::udivrem(C1, C2, Quotient, Remainder);
110
111   return Remainder.isMinValue();
112 }
113
114 /// \brief A helper routine of InstCombiner::visitMul().
115 ///
116 /// If C is a vector of known powers of 2, then this function returns
117 /// a new vector obtained from C replacing each element with its logBase2.
118 /// Return a null pointer otherwise.
119 static Constant *getLogBase2Vector(ConstantDataVector *CV) {
120   const APInt *IVal;
121   SmallVector<Constant *, 4> Elts;
122
123   for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
124     Constant *Elt = CV->getElementAsConstant(I);
125     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
126       return nullptr;
127     Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
128   }
129
130   return ConstantVector::get(Elts);
131 }
132
133 /// \brief Return true if we can prove that:
134 ///    (mul LHS, RHS)  === (mul nsw LHS, RHS)
135 bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
136                                             Instruction &CxtI) {
137   // Multiplying n * m significant bits yields a result of n + m significant
138   // bits. If the total number of significant bits does not exceed the
139   // result bit width (minus 1), there is no overflow.
140   // This means if we have enough leading sign bits in the operands
141   // we can guarantee that the result does not overflow.
142   // Ref: "Hacker's Delight" by Henry Warren
143   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
144
145   // Note that underestimating the number of sign bits gives a more
146   // conservative answer.
147   unsigned SignBits =
148       ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI);
149
150   // First handle the easy case: if we have enough sign bits there's
151   // definitely no overflow.
152   if (SignBits > BitWidth + 1)
153     return true;
154
155   // There are two ambiguous cases where there can be no overflow:
156   //   SignBits == BitWidth + 1    and
157   //   SignBits == BitWidth
158   // The second case is difficult to check, therefore we only handle the
159   // first case.
160   if (SignBits == BitWidth + 1) {
161     // It overflows only when both arguments are negative and the true
162     // product is exactly the minimum negative number.
163     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
164     // For simplicity we just check if at least one side is not negative.
165     bool LHSNonNegative, LHSNegative;
166     bool RHSNonNegative, RHSNegative;
167     ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, &CxtI);
168     ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, &CxtI);
169     if (LHSNonNegative || RHSNonNegative)
170       return true;
171   }
172   return false;
173 }
174
175 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
176   bool Changed = SimplifyAssociativeOrCommutative(I);
177   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
178
179   if (Value *V = SimplifyVectorOp(I))
180     return ReplaceInstUsesWith(I, V);
181
182   if (Value *V = SimplifyMulInst(Op0, Op1, DL, TLI, DT, AC))
183     return ReplaceInstUsesWith(I, V);
184
185   if (Value *V = SimplifyUsingDistributiveLaws(I))
186     return ReplaceInstUsesWith(I, V);
187
188   // X * -1 == 0 - X
189   if (match(Op1, m_AllOnes())) {
190     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
191     if (I.hasNoSignedWrap())
192       BO->setHasNoSignedWrap();
193     return BO;
194   }
195
196   // Also allow combining multiply instructions on vectors.
197   {
198     Value *NewOp;
199     Constant *C1, *C2;
200     const APInt *IVal;
201     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
202                         m_Constant(C1))) &&
203         match(C1, m_APInt(IVal))) {
204       // ((X << C2)*C1) == (X * (C1 << C2))
205       Constant *Shl = ConstantExpr::getShl(C1, C2);
206       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
207       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
208       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
209         BO->setHasNoUnsignedWrap();
210       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
211           Shl->isNotMinSignedValue())
212         BO->setHasNoSignedWrap();
213       return BO;
214     }
215
216     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
217       Constant *NewCst = nullptr;
218       if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
219         // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
220         NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
221       else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
222         // Replace X*(2^C) with X << C, where C is a vector of known
223         // constant powers of 2.
224         NewCst = getLogBase2Vector(CV);
225
226       if (NewCst) {
227         unsigned Width = NewCst->getType()->getPrimitiveSizeInBits();
228         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
229
230         if (I.hasNoUnsignedWrap())
231           Shl->setHasNoUnsignedWrap();
232         if (I.hasNoSignedWrap()) {
233           uint64_t V;
234           if (match(NewCst, m_ConstantInt(V)) && V != Width - 1)
235             Shl->setHasNoSignedWrap();
236         }
237
238         return Shl;
239       }
240     }
241   }
242
243   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
244     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
245     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
246     // The "* (2**n)" thus becomes a potential shifting opportunity.
247     {
248       const APInt &   Val = CI->getValue();
249       const APInt &PosVal = Val.abs();
250       if (Val.isNegative() && PosVal.isPowerOf2()) {
251         Value *X = nullptr, *Y = nullptr;
252         if (Op0->hasOneUse()) {
253           ConstantInt *C1;
254           Value *Sub = nullptr;
255           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
256             Sub = Builder->CreateSub(X, Y, "suba");
257           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
258             Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
259           if (Sub)
260             return
261               BinaryOperator::CreateMul(Sub,
262                                         ConstantInt::get(Y->getType(), PosVal));
263         }
264       }
265     }
266   }
267
268   // Simplify mul instructions with a constant RHS.
269   if (isa<Constant>(Op1)) {
270     // Try to fold constant mul into select arguments.
271     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
272       if (Instruction *R = FoldOpIntoSelect(I, SI))
273         return R;
274
275     if (isa<PHINode>(Op0))
276       if (Instruction *NV = FoldOpIntoPhi(I))
277         return NV;
278
279     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
280     {
281       Value *X;
282       Constant *C1;
283       if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
284         Value *Mul = Builder->CreateMul(C1, Op1);
285         // Only go forward with the transform if C1*CI simplifies to a tidier
286         // constant.
287         if (!match(Mul, m_Mul(m_Value(), m_Value())))
288           return BinaryOperator::CreateAdd(Builder->CreateMul(X, Op1), Mul);
289       }
290     }
291   }
292
293   if (Value *Op0v = dyn_castNegVal(Op0)) {   // -X * -Y = X*Y
294     if (Value *Op1v = dyn_castNegVal(Op1)) {
295       BinaryOperator *BO = BinaryOperator::CreateMul(Op0v, Op1v);
296       if (I.hasNoSignedWrap() &&
297           match(Op0, m_NSWSub(m_Value(), m_Value())) &&
298           match(Op1, m_NSWSub(m_Value(), m_Value())))
299         BO->setHasNoSignedWrap();
300       return BO;
301     }
302   }
303
304   // (X / Y) *  Y = X - (X % Y)
305   // (X / Y) * -Y = (X % Y) - X
306   {
307     Value *Op1C = Op1;
308     BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
309     if (!BO ||
310         (BO->getOpcode() != Instruction::UDiv &&
311          BO->getOpcode() != Instruction::SDiv)) {
312       Op1C = Op0;
313       BO = dyn_cast<BinaryOperator>(Op1);
314     }
315     Value *Neg = dyn_castNegVal(Op1C);
316     if (BO && BO->hasOneUse() &&
317         (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
318         (BO->getOpcode() == Instruction::UDiv ||
319          BO->getOpcode() == Instruction::SDiv)) {
320       Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
321
322       // If the division is exact, X % Y is zero, so we end up with X or -X.
323       if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
324         if (SDiv->isExact()) {
325           if (Op1BO == Op1C)
326             return ReplaceInstUsesWith(I, Op0BO);
327           return BinaryOperator::CreateNeg(Op0BO);
328         }
329
330       Value *Rem;
331       if (BO->getOpcode() == Instruction::UDiv)
332         Rem = Builder->CreateURem(Op0BO, Op1BO);
333       else
334         Rem = Builder->CreateSRem(Op0BO, Op1BO);
335       Rem->takeName(BO);
336
337       if (Op1BO == Op1C)
338         return BinaryOperator::CreateSub(Op0BO, Rem);
339       return BinaryOperator::CreateSub(Rem, Op0BO);
340     }
341   }
342
343   /// i1 mul -> i1 and.
344   if (I.getType()->getScalarType()->isIntegerTy(1))
345     return BinaryOperator::CreateAnd(Op0, Op1);
346
347   // X*(1 << Y) --> X << Y
348   // (1 << Y)*X --> X << Y
349   {
350     Value *Y;
351     BinaryOperator *BO = nullptr;
352     bool ShlNSW = false;
353     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
354       BO = BinaryOperator::CreateShl(Op1, Y);
355       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
356     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
357       BO = BinaryOperator::CreateShl(Op0, Y);
358       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
359     }
360     if (BO) {
361       if (I.hasNoUnsignedWrap())
362         BO->setHasNoUnsignedWrap();
363       if (I.hasNoSignedWrap() && ShlNSW)
364         BO->setHasNoSignedWrap();
365       return BO;
366     }
367   }
368
369   // If one of the operands of the multiply is a cast from a boolean value, then
370   // we know the bool is either zero or one, so this is a 'masking' multiply.
371   //   X * Y (where Y is 0 or 1) -> X & (0-Y)
372   if (!I.getType()->isVectorTy()) {
373     // -2 is "-1 << 1" so it is all bits set except the low one.
374     APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
375
376     Value *BoolCast = nullptr, *OtherOp = nullptr;
377     if (MaskedValueIsZero(Op0, Negative2, 0, &I))
378       BoolCast = Op0, OtherOp = Op1;
379     else if (MaskedValueIsZero(Op1, Negative2, 0, &I))
380       BoolCast = Op1, OtherOp = Op0;
381
382     if (BoolCast) {
383       Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
384                                     BoolCast);
385       return BinaryOperator::CreateAnd(V, OtherOp);
386     }
387   }
388
389   if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, I)) {
390     Changed = true;
391     I.setHasNoSignedWrap(true);
392   }
393
394   if (!I.hasNoUnsignedWrap() &&
395       computeOverflowForUnsignedMul(Op0, Op1, &I) ==
396           OverflowResult::NeverOverflows) {
397     Changed = true;
398     I.setHasNoUnsignedWrap(true);
399   }
400
401   return Changed ? &I : nullptr;
402 }
403
404 /// Detect pattern log2(Y * 0.5) with corresponding fast math flags.
405 static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
406   if (!Op->hasOneUse())
407     return;
408
409   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
410   if (!II)
411     return;
412   if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
413     return;
414   Log2 = II;
415
416   Value *OpLog2Of = II->getArgOperand(0);
417   if (!OpLog2Of->hasOneUse())
418     return;
419
420   Instruction *I = dyn_cast<Instruction>(OpLog2Of);
421   if (!I)
422     return;
423   if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
424     return;
425
426   if (match(I->getOperand(0), m_SpecificFP(0.5)))
427     Y = I->getOperand(1);
428   else if (match(I->getOperand(1), m_SpecificFP(0.5)))
429     Y = I->getOperand(0);
430 }
431
432 static bool isFiniteNonZeroFp(Constant *C) {
433   if (C->getType()->isVectorTy()) {
434     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
435          ++I) {
436       ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
437       if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
438         return false;
439     }
440     return true;
441   }
442
443   return isa<ConstantFP>(C) &&
444          cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero();
445 }
446
447 static bool isNormalFp(Constant *C) {
448   if (C->getType()->isVectorTy()) {
449     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
450          ++I) {
451       ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
452       if (!CFP || !CFP->getValueAPF().isNormal())
453         return false;
454     }
455     return true;
456   }
457
458   return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal();
459 }
460
461 /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
462 /// true iff the given value is FMul or FDiv with one and only one operand
463 /// being a normal constant (i.e. not Zero/NaN/Infinity).
464 static bool isFMulOrFDivWithConstant(Value *V) {
465   Instruction *I = dyn_cast<Instruction>(V);
466   if (!I || (I->getOpcode() != Instruction::FMul &&
467              I->getOpcode() != Instruction::FDiv))
468     return false;
469
470   Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
471   Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
472
473   if (C0 && C1)
474     return false;
475
476   return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1));
477 }
478
479 /// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
480 /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
481 /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
482 /// This function is to simplify "FMulOrDiv * C" and returns the
483 /// resulting expression. Note that this function could return NULL in
484 /// case the constants cannot be folded into a normal floating-point.
485 ///
486 Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
487                                    Instruction *InsertBefore) {
488   assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
489
490   Value *Opnd0 = FMulOrDiv->getOperand(0);
491   Value *Opnd1 = FMulOrDiv->getOperand(1);
492
493   Constant *C0 = dyn_cast<Constant>(Opnd0);
494   Constant *C1 = dyn_cast<Constant>(Opnd1);
495
496   BinaryOperator *R = nullptr;
497
498   // (X * C0) * C => X * (C0*C)
499   if (FMulOrDiv->getOpcode() == Instruction::FMul) {
500     Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
501     if (isNormalFp(F))
502       R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
503   } else {
504     if (C0) {
505       // (C0 / X) * C => (C0 * C) / X
506       if (FMulOrDiv->hasOneUse()) {
507         // It would otherwise introduce another div.
508         Constant *F = ConstantExpr::getFMul(C0, C);
509         if (isNormalFp(F))
510           R = BinaryOperator::CreateFDiv(F, Opnd1);
511       }
512     } else {
513       // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
514       Constant *F = ConstantExpr::getFDiv(C, C1);
515       if (isNormalFp(F)) {
516         R = BinaryOperator::CreateFMul(Opnd0, F);
517       } else {
518         // (X / C1) * C => X / (C1/C)
519         Constant *F = ConstantExpr::getFDiv(C1, C);
520         if (isNormalFp(F))
521           R = BinaryOperator::CreateFDiv(Opnd0, F);
522       }
523     }
524   }
525
526   if (R) {
527     R->setHasUnsafeAlgebra(true);
528     InsertNewInstWith(R, *InsertBefore);
529   }
530
531   return R;
532 }
533
534 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
535   bool Changed = SimplifyAssociativeOrCommutative(I);
536   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
537
538   if (Value *V = SimplifyVectorOp(I))
539     return ReplaceInstUsesWith(I, V);
540
541   if (isa<Constant>(Op0))
542     std::swap(Op0, Op1);
543
544   if (Value *V =
545           SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
546     return ReplaceInstUsesWith(I, V);
547
548   bool AllowReassociate = I.hasUnsafeAlgebra();
549
550   // Simplify mul instructions with a constant RHS.
551   if (isa<Constant>(Op1)) {
552     // Try to fold constant mul into select arguments.
553     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
554       if (Instruction *R = FoldOpIntoSelect(I, SI))
555         return R;
556
557     if (isa<PHINode>(Op0))
558       if (Instruction *NV = FoldOpIntoPhi(I))
559         return NV;
560
561     // (fmul X, -1.0) --> (fsub -0.0, X)
562     if (match(Op1, m_SpecificFP(-1.0))) {
563       Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType());
564       Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0);
565       RI->copyFastMathFlags(&I);
566       return RI;
567     }
568
569     Constant *C = cast<Constant>(Op1);
570     if (AllowReassociate && isFiniteNonZeroFp(C)) {
571       // Let MDC denote an expression in one of these forms:
572       // X * C, C/X, X/C, where C is a constant.
573       //
574       // Try to simplify "MDC * Constant"
575       if (isFMulOrFDivWithConstant(Op0))
576         if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
577           return ReplaceInstUsesWith(I, V);
578
579       // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
580       Instruction *FAddSub = dyn_cast<Instruction>(Op0);
581       if (FAddSub &&
582           (FAddSub->getOpcode() == Instruction::FAdd ||
583            FAddSub->getOpcode() == Instruction::FSub)) {
584         Value *Opnd0 = FAddSub->getOperand(0);
585         Value *Opnd1 = FAddSub->getOperand(1);
586         Constant *C0 = dyn_cast<Constant>(Opnd0);
587         Constant *C1 = dyn_cast<Constant>(Opnd1);
588         bool Swap = false;
589         if (C0) {
590           std::swap(C0, C1);
591           std::swap(Opnd0, Opnd1);
592           Swap = true;
593         }
594
595         if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) {
596           Value *M1 = ConstantExpr::getFMul(C1, C);
597           Value *M0 = isNormalFp(cast<Constant>(M1)) ?
598                       foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
599                       nullptr;
600           if (M0 && M1) {
601             if (Swap && FAddSub->getOpcode() == Instruction::FSub)
602               std::swap(M0, M1);
603
604             Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
605                                   ? BinaryOperator::CreateFAdd(M0, M1)
606                                   : BinaryOperator::CreateFSub(M0, M1);
607             RI->copyFastMathFlags(&I);
608             return RI;
609           }
610         }
611       }
612     }
613   }
614
615   // sqrt(X) * sqrt(X) -> X
616   if (AllowReassociate && (Op0 == Op1))
617     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0))
618       if (II->getIntrinsicID() == Intrinsic::sqrt)
619         return ReplaceInstUsesWith(I, II->getOperand(0));
620
621   // Under unsafe algebra do:
622   // X * log2(0.5*Y) = X*log2(Y) - X
623   if (AllowReassociate) {
624     Value *OpX = nullptr;
625     Value *OpY = nullptr;
626     IntrinsicInst *Log2;
627     detectLog2OfHalf(Op0, OpY, Log2);
628     if (OpY) {
629       OpX = Op1;
630     } else {
631       detectLog2OfHalf(Op1, OpY, Log2);
632       if (OpY) {
633         OpX = Op0;
634       }
635     }
636     // if pattern detected emit alternate sequence
637     if (OpX && OpY) {
638       BuilderTy::FastMathFlagGuard Guard(*Builder);
639       Builder->SetFastMathFlags(Log2->getFastMathFlags());
640       Log2->setArgOperand(0, OpY);
641       Value *FMulVal = Builder->CreateFMul(OpX, Log2);
642       Value *FSub = Builder->CreateFSub(FMulVal, OpX);
643       FSub->takeName(&I);
644       return ReplaceInstUsesWith(I, FSub);
645     }
646   }
647
648   // Handle symmetric situation in a 2-iteration loop
649   Value *Opnd0 = Op0;
650   Value *Opnd1 = Op1;
651   for (int i = 0; i < 2; i++) {
652     bool IgnoreZeroSign = I.hasNoSignedZeros();
653     if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
654       BuilderTy::FastMathFlagGuard Guard(*Builder);
655       Builder->SetFastMathFlags(I.getFastMathFlags());
656
657       Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
658       Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
659
660       // -X * -Y => X*Y
661       if (N1) {
662         Value *FMul = Builder->CreateFMul(N0, N1);
663         FMul->takeName(&I);
664         return ReplaceInstUsesWith(I, FMul);
665       }
666
667       if (Opnd0->hasOneUse()) {
668         // -X * Y => -(X*Y) (Promote negation as high as possible)
669         Value *T = Builder->CreateFMul(N0, Opnd1);
670         Value *Neg = Builder->CreateFNeg(T);
671         Neg->takeName(&I);
672         return ReplaceInstUsesWith(I, Neg);
673       }
674     }
675
676     // (X*Y) * X => (X*X) * Y where Y != X
677     //  The purpose is two-fold:
678     //   1) to form a power expression (of X).
679     //   2) potentially shorten the critical path: After transformation, the
680     //  latency of the instruction Y is amortized by the expression of X*X,
681     //  and therefore Y is in a "less critical" position compared to what it
682     //  was before the transformation.
683     //
684     if (AllowReassociate) {
685       Value *Opnd0_0, *Opnd0_1;
686       if (Opnd0->hasOneUse() &&
687           match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
688         Value *Y = nullptr;
689         if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
690           Y = Opnd0_1;
691         else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
692           Y = Opnd0_0;
693
694         if (Y) {
695           BuilderTy::FastMathFlagGuard Guard(*Builder);
696           Builder->SetFastMathFlags(I.getFastMathFlags());
697           Value *T = Builder->CreateFMul(Opnd1, Opnd1);
698
699           Value *R = Builder->CreateFMul(T, Y);
700           R->takeName(&I);
701           return ReplaceInstUsesWith(I, R);
702         }
703       }
704     }
705
706     if (!isa<Constant>(Op1))
707       std::swap(Opnd0, Opnd1);
708     else
709       break;
710   }
711
712   return Changed ? &I : nullptr;
713 }
714
715 /// Try to fold a divide or remainder of a select instruction.
716 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
717   SelectInst *SI = cast<SelectInst>(I.getOperand(1));
718
719   // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
720   int NonNullOperand = -1;
721   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
722     if (ST->isNullValue())
723       NonNullOperand = 2;
724   // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
725   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
726     if (ST->isNullValue())
727       NonNullOperand = 1;
728
729   if (NonNullOperand == -1)
730     return false;
731
732   Value *SelectCond = SI->getOperand(0);
733
734   // Change the div/rem to use 'Y' instead of the select.
735   I.setOperand(1, SI->getOperand(NonNullOperand));
736
737   // Okay, we know we replace the operand of the div/rem with 'Y' with no
738   // problem.  However, the select, or the condition of the select may have
739   // multiple uses.  Based on our knowledge that the operand must be non-zero,
740   // propagate the known value for the select into other uses of it, and
741   // propagate a known value of the condition into its other users.
742
743   // If the select and condition only have a single use, don't bother with this,
744   // early exit.
745   if (SI->use_empty() && SelectCond->hasOneUse())
746     return true;
747
748   // Scan the current block backward, looking for other uses of SI.
749   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
750
751   while (BBI != BBFront) {
752     --BBI;
753     // If we found a call to a function, we can't assume it will return, so
754     // information from below it cannot be propagated above it.
755     if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
756       break;
757
758     // Replace uses of the select or its condition with the known values.
759     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
760          I != E; ++I) {
761       if (*I == SI) {
762         *I = SI->getOperand(NonNullOperand);
763         Worklist.Add(&*BBI);
764       } else if (*I == SelectCond) {
765         *I = Builder->getInt1(NonNullOperand == 1);
766         Worklist.Add(&*BBI);
767       }
768     }
769
770     // If we past the instruction, quit looking for it.
771     if (&*BBI == SI)
772       SI = nullptr;
773     if (&*BBI == SelectCond)
774       SelectCond = nullptr;
775
776     // If we ran out of things to eliminate, break out of the loop.
777     if (!SelectCond && !SI)
778       break;
779
780   }
781   return true;
782 }
783
784
785 /// This function implements the transforms common to both integer division
786 /// instructions (udiv and sdiv). It is called by the visitors to those integer
787 /// division instructions.
788 /// @brief Common integer divide transforms
789 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
790   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
791
792   // The RHS is known non-zero.
793   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
794     I.setOperand(1, V);
795     return &I;
796   }
797
798   // Handle cases involving: [su]div X, (select Cond, Y, Z)
799   // This does not apply for fdiv.
800   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
801     return &I;
802
803   if (Instruction *LHS = dyn_cast<Instruction>(Op0)) {
804     const APInt *C2;
805     if (match(Op1, m_APInt(C2))) {
806       Value *X;
807       const APInt *C1;
808       bool IsSigned = I.getOpcode() == Instruction::SDiv;
809
810       // (X / C1) / C2  -> X / (C1*C2)
811       if ((IsSigned && match(LHS, m_SDiv(m_Value(X), m_APInt(C1)))) ||
812           (!IsSigned && match(LHS, m_UDiv(m_Value(X), m_APInt(C1))))) {
813         APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
814         if (!MultiplyOverflows(*C1, *C2, Product, IsSigned))
815           return BinaryOperator::Create(I.getOpcode(), X,
816                                         ConstantInt::get(I.getType(), Product));
817       }
818
819       if ((IsSigned && match(LHS, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
820           (!IsSigned && match(LHS, m_NUWMul(m_Value(X), m_APInt(C1))))) {
821         APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
822
823         // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
824         if (IsMultiple(*C2, *C1, Quotient, IsSigned)) {
825           BinaryOperator *BO = BinaryOperator::Create(
826               I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
827           BO->setIsExact(I.isExact());
828           return BO;
829         }
830
831         // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
832         if (IsMultiple(*C1, *C2, Quotient, IsSigned)) {
833           BinaryOperator *BO = BinaryOperator::Create(
834               Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
835           BO->setHasNoUnsignedWrap(
836               !IsSigned &&
837               cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
838           BO->setHasNoSignedWrap(
839               cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
840           return BO;
841         }
842       }
843
844       if ((IsSigned && match(LHS, m_NSWShl(m_Value(X), m_APInt(C1))) &&
845            *C1 != C1->getBitWidth() - 1) ||
846           (!IsSigned && match(LHS, m_NUWShl(m_Value(X), m_APInt(C1))))) {
847         APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
848         APInt C1Shifted = APInt::getOneBitSet(
849             C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
850
851         // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of C1.
852         if (IsMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
853           BinaryOperator *BO = BinaryOperator::Create(
854               I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
855           BO->setIsExact(I.isExact());
856           return BO;
857         }
858
859         // (X << C1) / C2 -> X * (C2 >> C1) if C1 is a multiple of C2.
860         if (IsMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
861           BinaryOperator *BO = BinaryOperator::Create(
862               Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
863           BO->setHasNoUnsignedWrap(
864               !IsSigned &&
865               cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
866           BO->setHasNoSignedWrap(
867               cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
868           return BO;
869         }
870       }
871
872       if (*C2 != 0) { // avoid X udiv 0
873         if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
874           if (Instruction *R = FoldOpIntoSelect(I, SI))
875             return R;
876         if (isa<PHINode>(Op0))
877           if (Instruction *NV = FoldOpIntoPhi(I))
878             return NV;
879       }
880     }
881   }
882
883   if (ConstantInt *One = dyn_cast<ConstantInt>(Op0)) {
884     if (One->isOne() && !I.getType()->isIntegerTy(1)) {
885       bool isSigned = I.getOpcode() == Instruction::SDiv;
886       if (isSigned) {
887         // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
888         // result is one, if Op1 is -1 then the result is minus one, otherwise
889         // it's zero.
890         Value *Inc = Builder->CreateAdd(Op1, One);
891         Value *Cmp = Builder->CreateICmpULT(
892                          Inc, ConstantInt::get(I.getType(), 3));
893         return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0));
894       } else {
895         // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
896         // result is one, otherwise it's zero.
897         return new ZExtInst(Builder->CreateICmpEQ(Op1, One), I.getType());
898       }
899     }
900   }
901
902   // See if we can fold away this div instruction.
903   if (SimplifyDemandedInstructionBits(I))
904     return &I;
905
906   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
907   Value *X = nullptr, *Z = nullptr;
908   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
909     bool isSigned = I.getOpcode() == Instruction::SDiv;
910     if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
911         (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
912       return BinaryOperator::Create(I.getOpcode(), X, Op1);
913   }
914
915   return nullptr;
916 }
917
918 /// dyn_castZExtVal - Checks if V is a zext or constant that can
919 /// be truncated to Ty without losing bits.
920 static Value *dyn_castZExtVal(Value *V, Type *Ty) {
921   if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
922     if (Z->getSrcTy() == Ty)
923       return Z->getOperand(0);
924   } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
925     if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
926       return ConstantExpr::getTrunc(C, Ty);
927   }
928   return nullptr;
929 }
930
931 namespace {
932 const unsigned MaxDepth = 6;
933 typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
934                                           const BinaryOperator &I,
935                                           InstCombiner &IC);
936
937 /// \brief Used to maintain state for visitUDivOperand().
938 struct UDivFoldAction {
939   FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
940                                 ///< operand.  This can be zero if this action
941                                 ///< joins two actions together.
942
943   Value *OperandToFold;         ///< Which operand to fold.
944   union {
945     Instruction *FoldResult;    ///< The instruction returned when FoldAction is
946                                 ///< invoked.
947
948     size_t SelectLHSIdx;        ///< Stores the LHS action index if this action
949                                 ///< joins two actions together.
950   };
951
952   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
953       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
954   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
955       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
956 };
957 }
958
959 // X udiv 2^C -> X >> C
960 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
961                                     const BinaryOperator &I, InstCombiner &IC) {
962   const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
963   BinaryOperator *LShr = BinaryOperator::CreateLShr(
964       Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
965   if (I.isExact())
966     LShr->setIsExact();
967   return LShr;
968 }
969
970 // X udiv C, where C >= signbit
971 static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
972                                    const BinaryOperator &I, InstCombiner &IC) {
973   Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
974
975   return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
976                             ConstantInt::get(I.getType(), 1));
977 }
978
979 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
980 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
981                                 InstCombiner &IC) {
982   Instruction *ShiftLeft = cast<Instruction>(Op1);
983   if (isa<ZExtInst>(ShiftLeft))
984     ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
985
986   const APInt &CI =
987       cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
988   Value *N = ShiftLeft->getOperand(1);
989   if (CI != 1)
990     N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
991   if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
992     N = IC.Builder->CreateZExt(N, Z->getDestTy());
993   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
994   if (I.isExact())
995     LShr->setIsExact();
996   return LShr;
997 }
998
999 // \brief Recursively visits the possible right hand operands of a udiv
1000 // instruction, seeing through select instructions, to determine if we can
1001 // replace the udiv with something simpler.  If we find that an operand is not
1002 // able to simplify the udiv, we abort the entire transformation.
1003 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
1004                                SmallVectorImpl<UDivFoldAction> &Actions,
1005                                unsigned Depth = 0) {
1006   // Check to see if this is an unsigned division with an exact power of 2,
1007   // if so, convert to a right shift.
1008   if (match(Op1, m_Power2())) {
1009     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
1010     return Actions.size();
1011   }
1012
1013   if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
1014     // X udiv C, where C >= signbit
1015     if (C->getValue().isNegative()) {
1016       Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
1017       return Actions.size();
1018     }
1019
1020   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
1021   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
1022       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
1023     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
1024     return Actions.size();
1025   }
1026
1027   // The remaining tests are all recursive, so bail out if we hit the limit.
1028   if (Depth++ == MaxDepth)
1029     return 0;
1030
1031   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1032     if (size_t LHSIdx =
1033             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
1034       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
1035         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
1036         return Actions.size();
1037       }
1038
1039   return 0;
1040 }
1041
1042 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
1043   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1044
1045   if (Value *V = SimplifyVectorOp(I))
1046     return ReplaceInstUsesWith(I, V);
1047
1048   if (Value *V = SimplifyUDivInst(Op0, Op1, DL, TLI, DT, AC))
1049     return ReplaceInstUsesWith(I, V);
1050
1051   // Handle the integer div common cases
1052   if (Instruction *Common = commonIDivTransforms(I))
1053     return Common;
1054
1055   // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
1056   {
1057     Value *X;
1058     const APInt *C1, *C2;
1059     if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) &&
1060         match(Op1, m_APInt(C2))) {
1061       bool Overflow;
1062       APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1063       if (!Overflow) {
1064         bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1065         BinaryOperator *BO = BinaryOperator::CreateUDiv(
1066             X, ConstantInt::get(X->getType(), C2ShlC1));
1067         if (IsExact)
1068           BO->setIsExact();
1069         return BO;
1070       }
1071     }
1072   }
1073
1074   // (zext A) udiv (zext B) --> zext (A udiv B)
1075   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1076     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1077       return new ZExtInst(
1078           Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", I.isExact()),
1079           I.getType());
1080
1081   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1082   SmallVector<UDivFoldAction, 6> UDivActions;
1083   if (visitUDivOperand(Op0, Op1, I, UDivActions))
1084     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1085       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1086       Value *ActionOp1 = UDivActions[i].OperandToFold;
1087       Instruction *Inst;
1088       if (Action)
1089         Inst = Action(Op0, ActionOp1, I, *this);
1090       else {
1091         // This action joins two actions together.  The RHS of this action is
1092         // simply the last action we processed, we saved the LHS action index in
1093         // the joining action.
1094         size_t SelectRHSIdx = i - 1;
1095         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1096         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1097         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1098         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1099                                   SelectLHS, SelectRHS);
1100       }
1101
1102       // If this is the last action to process, return it to the InstCombiner.
1103       // Otherwise, we insert it before the UDiv and record it so that we may
1104       // use it as part of a joining action (i.e., a SelectInst).
1105       if (e - i != 1) {
1106         Inst->insertBefore(&I);
1107         UDivActions[i].FoldResult = Inst;
1108       } else
1109         return Inst;
1110     }
1111
1112   return nullptr;
1113 }
1114
1115 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
1116   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1117
1118   if (Value *V = SimplifyVectorOp(I))
1119     return ReplaceInstUsesWith(I, V);
1120
1121   if (Value *V = SimplifySDivInst(Op0, Op1, DL, TLI, DT, AC))
1122     return ReplaceInstUsesWith(I, V);
1123
1124   // Handle the integer div common cases
1125   if (Instruction *Common = commonIDivTransforms(I))
1126     return Common;
1127
1128   // sdiv X, -1 == -X
1129   if (match(Op1, m_AllOnes()))
1130     return BinaryOperator::CreateNeg(Op0);
1131
1132   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1133     // sdiv X, C  -->  ashr exact X, log2(C)
1134     if (I.isExact() && RHS->getValue().isNonNegative() &&
1135         RHS->getValue().isPowerOf2()) {
1136       Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
1137                                             RHS->getValue().exactLogBase2());
1138       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
1139     }
1140   }
1141
1142   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
1143     // X/INT_MIN -> X == INT_MIN
1144     if (RHS->isMinSignedValue())
1145       return new ZExtInst(Builder->CreateICmpEQ(Op0, Op1), I.getType());
1146
1147     // -X/C  -->  X/-C  provided the negation doesn't overflow.
1148     Value *X;
1149     if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1150       auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
1151       BO->setIsExact(I.isExact());
1152       return BO;
1153     }
1154   }
1155
1156   // If the sign bits of both operands are zero (i.e. we can prove they are
1157   // unsigned inputs), turn this into a udiv.
1158   if (I.getType()->isIntegerTy()) {
1159     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1160     if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1161       if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1162         // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1163         auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1164         BO->setIsExact(I.isExact());
1165         return BO;
1166       }
1167
1168       if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
1169         // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1170         // Safe because the only negative value (1 << Y) can take on is
1171         // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1172         // the sign bit set.
1173         auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1174         BO->setIsExact(I.isExact());
1175         return BO;
1176       }
1177     }
1178   }
1179
1180   return nullptr;
1181 }
1182
1183 /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
1184 /// FP value and:
1185 ///    1) 1/C is exact, or
1186 ///    2) reciprocal is allowed.
1187 /// If the conversion was successful, the simplified expression "X * 1/C" is
1188 /// returned; otherwise, NULL is returned.
1189 ///
1190 static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Constant *Divisor,
1191                                              bool AllowReciprocal) {
1192   if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
1193     return nullptr;
1194
1195   const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
1196   APFloat Reciprocal(FpVal.getSemantics());
1197   bool Cvt = FpVal.getExactInverse(&Reciprocal);
1198
1199   if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
1200     Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
1201     (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
1202     Cvt = !Reciprocal.isDenormal();
1203   }
1204
1205   if (!Cvt)
1206     return nullptr;
1207
1208   ConstantFP *R;
1209   R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
1210   return BinaryOperator::CreateFMul(Dividend, R);
1211 }
1212
1213 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1214   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1215
1216   if (Value *V = SimplifyVectorOp(I))
1217     return ReplaceInstUsesWith(I, V);
1218
1219   if (Value *V = SimplifyFDivInst(Op0, Op1, I.getFastMathFlags(),
1220                                   DL, TLI, DT, AC))
1221     return ReplaceInstUsesWith(I, V);
1222
1223   if (isa<Constant>(Op0))
1224     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1225       if (Instruction *R = FoldOpIntoSelect(I, SI))
1226         return R;
1227
1228   bool AllowReassociate = I.hasUnsafeAlgebra();
1229   bool AllowReciprocal = I.hasAllowReciprocal();
1230
1231   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1232     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1233       if (Instruction *R = FoldOpIntoSelect(I, SI))
1234         return R;
1235
1236     if (AllowReassociate) {
1237       Constant *C1 = nullptr;
1238       Constant *C2 = Op1C;
1239       Value *X;
1240       Instruction *Res = nullptr;
1241
1242       if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
1243         // (X*C1)/C2 => X * (C1/C2)
1244         //
1245         Constant *C = ConstantExpr::getFDiv(C1, C2);
1246         if (isNormalFp(C))
1247           Res = BinaryOperator::CreateFMul(X, C);
1248       } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
1249         // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
1250         //
1251         Constant *C = ConstantExpr::getFMul(C1, C2);
1252         if (isNormalFp(C)) {
1253           Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
1254           if (!Res)
1255             Res = BinaryOperator::CreateFDiv(X, C);
1256         }
1257       }
1258
1259       if (Res) {
1260         Res->setFastMathFlags(I.getFastMathFlags());
1261         return Res;
1262       }
1263     }
1264
1265     // X / C => X * 1/C
1266     if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) {
1267       T->copyFastMathFlags(&I);
1268       return T;
1269     }
1270
1271     return nullptr;
1272   }
1273
1274   if (AllowReassociate && isa<Constant>(Op0)) {
1275     Constant *C1 = cast<Constant>(Op0), *C2;
1276     Constant *Fold = nullptr;
1277     Value *X;
1278     bool CreateDiv = true;
1279
1280     // C1 / (X*C2) => (C1/C2) / X
1281     if (match(Op1, m_FMul(m_Value(X), m_Constant(C2))))
1282       Fold = ConstantExpr::getFDiv(C1, C2);
1283     else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) {
1284       // C1 / (X/C2) => (C1*C2) / X
1285       Fold = ConstantExpr::getFMul(C1, C2);
1286     } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) {
1287       // C1 / (C2/X) => (C1/C2) * X
1288       Fold = ConstantExpr::getFDiv(C1, C2);
1289       CreateDiv = false;
1290     }
1291
1292     if (Fold && isNormalFp(Fold)) {
1293       Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X)
1294                                  : BinaryOperator::CreateFMul(X, Fold);
1295       R->setFastMathFlags(I.getFastMathFlags());
1296       return R;
1297     }
1298     return nullptr;
1299   }
1300
1301   if (AllowReassociate) {
1302     Value *X, *Y;
1303     Value *NewInst = nullptr;
1304     Instruction *SimpR = nullptr;
1305
1306     if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
1307       // (X/Y) / Z => X / (Y*Z)
1308       //
1309       if (!isa<Constant>(Y) || !isa<Constant>(Op1)) {
1310         NewInst = Builder->CreateFMul(Y, Op1);
1311         if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
1312           FastMathFlags Flags = I.getFastMathFlags();
1313           Flags &= cast<Instruction>(Op0)->getFastMathFlags();
1314           RI->setFastMathFlags(Flags);
1315         }
1316         SimpR = BinaryOperator::CreateFDiv(X, NewInst);
1317       }
1318     } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
1319       // Z / (X/Y) => Z*Y / X
1320       //
1321       if (!isa<Constant>(Y) || !isa<Constant>(Op0)) {
1322         NewInst = Builder->CreateFMul(Op0, Y);
1323         if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
1324           FastMathFlags Flags = I.getFastMathFlags();
1325           Flags &= cast<Instruction>(Op1)->getFastMathFlags();
1326           RI->setFastMathFlags(Flags);
1327         }
1328         SimpR = BinaryOperator::CreateFDiv(NewInst, X);
1329       }
1330     }
1331
1332     if (NewInst) {
1333       if (Instruction *T = dyn_cast<Instruction>(NewInst))
1334         T->setDebugLoc(I.getDebugLoc());
1335       SimpR->setFastMathFlags(I.getFastMathFlags());
1336       return SimpR;
1337     }
1338   }
1339
1340   return nullptr;
1341 }
1342
1343 /// This function implements the transforms common to both integer remainder
1344 /// instructions (urem and srem). It is called by the visitors to those integer
1345 /// remainder instructions.
1346 /// @brief Common integer remainder transforms
1347 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1348   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1349
1350   // The RHS is known non-zero.
1351   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
1352     I.setOperand(1, V);
1353     return &I;
1354   }
1355
1356   // Handle cases involving: rem X, (select Cond, Y, Z)
1357   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1358     return &I;
1359
1360   if (isa<Constant>(Op1)) {
1361     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1362       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1363         if (Instruction *R = FoldOpIntoSelect(I, SI))
1364           return R;
1365       } else if (isa<PHINode>(Op0I)) {
1366         if (Instruction *NV = FoldOpIntoPhi(I))
1367           return NV;
1368       }
1369
1370       // See if we can fold away this rem instruction.
1371       if (SimplifyDemandedInstructionBits(I))
1372         return &I;
1373     }
1374   }
1375
1376   return nullptr;
1377 }
1378
1379 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1380   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1381
1382   if (Value *V = SimplifyVectorOp(I))
1383     return ReplaceInstUsesWith(I, V);
1384
1385   if (Value *V = SimplifyURemInst(Op0, Op1, DL, TLI, DT, AC))
1386     return ReplaceInstUsesWith(I, V);
1387
1388   if (Instruction *common = commonIRemTransforms(I))
1389     return common;
1390
1391   // (zext A) urem (zext B) --> zext (A urem B)
1392   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1393     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1394       return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
1395                           I.getType());
1396
1397   // X urem Y -> X and Y-1, where Y is a power of 2,
1398   if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
1399     Constant *N1 = Constant::getAllOnesValue(I.getType());
1400     Value *Add = Builder->CreateAdd(Op1, N1);
1401     return BinaryOperator::CreateAnd(Op0, Add);
1402   }
1403
1404   // 1 urem X -> zext(X != 1)
1405   if (match(Op0, m_One())) {
1406     Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
1407     Value *Ext = Builder->CreateZExt(Cmp, I.getType());
1408     return ReplaceInstUsesWith(I, Ext);
1409   }
1410
1411   return nullptr;
1412 }
1413
1414 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1415   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1416
1417   if (Value *V = SimplifyVectorOp(I))
1418     return ReplaceInstUsesWith(I, V);
1419
1420   if (Value *V = SimplifySRemInst(Op0, Op1, DL, TLI, DT, AC))
1421     return ReplaceInstUsesWith(I, V);
1422
1423   // Handle the integer rem common cases
1424   if (Instruction *Common = commonIRemTransforms(I))
1425     return Common;
1426
1427   {
1428     const APInt *Y;
1429     // X % -Y -> X % Y
1430     if (match(Op1, m_APInt(Y)) && Y->isNegative() && !Y->isMinSignedValue()) {
1431       Worklist.AddValue(I.getOperand(1));
1432       I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
1433       return &I;
1434     }
1435   }
1436
1437   // If the sign bits of both operands are zero (i.e. we can prove they are
1438   // unsigned inputs), turn this into a urem.
1439   if (I.getType()->isIntegerTy()) {
1440     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1441     if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1442         MaskedValueIsZero(Op0, Mask, 0, &I)) {
1443       // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1444       return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1445     }
1446   }
1447
1448   // If it's a constant vector, flip any negative values positive.
1449   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1450     Constant *C = cast<Constant>(Op1);
1451     unsigned VWidth = C->getType()->getVectorNumElements();
1452
1453     bool hasNegative = false;
1454     bool hasMissing = false;
1455     for (unsigned i = 0; i != VWidth; ++i) {
1456       Constant *Elt = C->getAggregateElement(i);
1457       if (!Elt) {
1458         hasMissing = true;
1459         break;
1460       }
1461
1462       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1463         if (RHS->isNegative())
1464           hasNegative = true;
1465     }
1466
1467     if (hasNegative && !hasMissing) {
1468       SmallVector<Constant *, 16> Elts(VWidth);
1469       for (unsigned i = 0; i != VWidth; ++i) {
1470         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1471         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1472           if (RHS->isNegative())
1473             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1474         }
1475       }
1476
1477       Constant *NewRHSV = ConstantVector::get(Elts);
1478       if (NewRHSV != C) {  // Don't loop on -MININT
1479         Worklist.AddValue(I.getOperand(1));
1480         I.setOperand(1, NewRHSV);
1481         return &I;
1482       }
1483     }
1484   }
1485
1486   return nullptr;
1487 }
1488
1489 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1490   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1491
1492   if (Value *V = SimplifyVectorOp(I))
1493     return ReplaceInstUsesWith(I, V);
1494
1495   if (Value *V = SimplifyFRemInst(Op0, Op1, I.getFastMathFlags(),
1496                                   DL, TLI, DT, AC))
1497     return ReplaceInstUsesWith(I, V);
1498
1499   // Handle cases involving: rem X, (select Cond, Y, Z)
1500   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1501     return &I;
1502
1503   return nullptr;
1504 }