fix formatting; NFC
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineCasts.cpp
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 #define DEBUG_TYPE "instcombine"
23
24 /// Analyze 'Val', seeing if it is a simple linear expression.
25 /// If so, decompose it, returning some value X, such that Val is
26 /// X*Scale+Offset.
27 ///
28 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
29                                         uint64_t &Offset) {
30   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
31     Offset = CI->getZExtValue();
32     Scale  = 0;
33     return ConstantInt::get(Val->getType(), 0);
34   }
35
36   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
37     // Cannot look past anything that might overflow.
38     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
39     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
40       Scale = 1;
41       Offset = 0;
42       return Val;
43     }
44
45     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
46       if (I->getOpcode() == Instruction::Shl) {
47         // This is a value scaled by '1 << the shift amt'.
48         Scale = UINT64_C(1) << RHS->getZExtValue();
49         Offset = 0;
50         return I->getOperand(0);
51       }
52
53       if (I->getOpcode() == Instruction::Mul) {
54         // This value is scaled by 'RHS'.
55         Scale = RHS->getZExtValue();
56         Offset = 0;
57         return I->getOperand(0);
58       }
59
60       if (I->getOpcode() == Instruction::Add) {
61         // We have X+C.  Check to see if we really have (X*C2)+C1,
62         // where C1 is divisible by C2.
63         unsigned SubScale;
64         Value *SubVal =
65           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
66         Offset += RHS->getZExtValue();
67         Scale = SubScale;
68         return SubVal;
69       }
70     }
71   }
72
73   // Otherwise, we can't look past this.
74   Scale = 1;
75   Offset = 0;
76   return Val;
77 }
78
79 /// If we find a cast of an allocation instruction, try to eliminate the cast by
80 /// moving the type information into the alloc.
81 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
82                                                    AllocaInst &AI) {
83   PointerType *PTy = cast<PointerType>(CI.getType());
84
85   BuilderTy AllocaBuilder(*Builder);
86   AllocaBuilder.SetInsertPoint(&AI);
87
88   // Get the type really allocated and the type casted to.
89   Type *AllocElTy = AI.getAllocatedType();
90   Type *CastElTy = PTy->getElementType();
91   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
92
93   unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
94   unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
95   if (CastElTyAlign < AllocElTyAlign) return nullptr;
96
97   // If the allocation has multiple uses, only promote it if we are strictly
98   // increasing the alignment of the resultant allocation.  If we keep it the
99   // same, we open the door to infinite loops of various kinds.
100   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
101
102   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
103   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
104   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
105
106   // If the allocation has multiple uses, only promote it if we're not
107   // shrinking the amount of memory being allocated.
108   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
109   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
110   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
111
112   // See if we can satisfy the modulus by pulling a scale out of the array
113   // size argument.
114   unsigned ArraySizeScale;
115   uint64_t ArrayOffset;
116   Value *NumElements = // See if the array size is a decomposable linear expr.
117     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
118
119   // If we can now satisfy the modulus, by using a non-1 scale, we really can
120   // do the xform.
121   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
122       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
123
124   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
125   Value *Amt = nullptr;
126   if (Scale == 1) {
127     Amt = NumElements;
128   } else {
129     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
130     // Insert before the alloca, not before the cast.
131     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
132   }
133
134   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
135     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
136                                   Offset, true);
137     Amt = AllocaBuilder.CreateAdd(Amt, Off);
138   }
139
140   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
141   New->setAlignment(AI.getAlignment());
142   New->takeName(&AI);
143   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
144
145   // If the allocation has multiple real uses, insert a cast and change all
146   // things that used it to use the new cast.  This will also hack on CI, but it
147   // will die soon.
148   if (!AI.hasOneUse()) {
149     // New is the allocation instruction, pointer typed. AI is the original
150     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
151     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
152     ReplaceInstUsesWith(AI, NewCast);
153   }
154   return ReplaceInstUsesWith(CI, New);
155 }
156
157 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
158 /// true for, actually insert the code to evaluate the expression.
159 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
160                                              bool isSigned) {
161   if (Constant *C = dyn_cast<Constant>(V)) {
162     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
163     // If we got a constantexpr back, try to simplify it with DL info.
164     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
165       C = ConstantFoldConstantExpression(CE, DL, TLI);
166     return C;
167   }
168
169   // Otherwise, it must be an instruction.
170   Instruction *I = cast<Instruction>(V);
171   Instruction *Res = nullptr;
172   unsigned Opc = I->getOpcode();
173   switch (Opc) {
174   case Instruction::Add:
175   case Instruction::Sub:
176   case Instruction::Mul:
177   case Instruction::And:
178   case Instruction::Or:
179   case Instruction::Xor:
180   case Instruction::AShr:
181   case Instruction::LShr:
182   case Instruction::Shl:
183   case Instruction::UDiv:
184   case Instruction::URem: {
185     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
186     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
187     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
188     break;
189   }
190   case Instruction::Trunc:
191   case Instruction::ZExt:
192   case Instruction::SExt:
193     // If the source type of the cast is the type we're trying for then we can
194     // just return the source.  There's no need to insert it because it is not
195     // new.
196     if (I->getOperand(0)->getType() == Ty)
197       return I->getOperand(0);
198
199     // Otherwise, must be the same type of cast, so just reinsert a new one.
200     // This also handles the case of zext(trunc(x)) -> zext(x).
201     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
202                                       Opc == Instruction::SExt);
203     break;
204   case Instruction::Select: {
205     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
206     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
207     Res = SelectInst::Create(I->getOperand(0), True, False);
208     break;
209   }
210   case Instruction::PHI: {
211     PHINode *OPN = cast<PHINode>(I);
212     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
213     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
214       Value *V =
215           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
216       NPN->addIncoming(V, OPN->getIncomingBlock(i));
217     }
218     Res = NPN;
219     break;
220   }
221   default:
222     // TODO: Can handle more cases here.
223     llvm_unreachable("Unreachable!");
224   }
225
226   Res->takeName(I);
227   return InsertNewInstWith(Res, *I);
228 }
229
230
231 /// This function is a wrapper around CastInst::isEliminableCastPair. It
232 /// simply extracts arguments and returns what that function returns.
233 static Instruction::CastOps
234 isEliminableCastPair(const CastInst *CI, ///< First cast instruction
235                      unsigned opcode,    ///< Opcode for the second cast
236                      Type *DstTy,        ///< Target type for the second cast
237                      const DataLayout &DL) {
238   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
239   Type *MidTy = CI->getType();                  // B from above
240
241   // Get the opcodes of the two Cast instructions
242   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
243   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
244   Type *SrcIntPtrTy =
245       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
246   Type *MidIntPtrTy =
247       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
248   Type *DstIntPtrTy =
249       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
250   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
251                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
252                                                 DstIntPtrTy);
253
254   // We don't want to form an inttoptr or ptrtoint that converts to an integer
255   // type that differs from the pointer size.
256   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
257       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
258     Res = 0;
259
260   return Instruction::CastOps(Res);
261 }
262
263 /// Return true if the cast from "V to Ty" actually results in any code being
264 /// generated and is interesting to optimize out.
265 /// If the cast can be eliminated by some other simple transformation, we prefer
266 /// to do the simplification first.
267 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
268                                       Type *Ty) {
269   // Noop casts and casts of constants should be eliminated trivially.
270   if (V->getType() == Ty || isa<Constant>(V)) return false;
271
272   // If this is another cast that can be eliminated, we prefer to have it
273   // eliminated.
274   if (const CastInst *CI = dyn_cast<CastInst>(V))
275     if (isEliminableCastPair(CI, opc, Ty, DL))
276       return false;
277
278   // If this is a vector sext from a compare, then we don't want to break the
279   // idiom where each element of the extended vector is either zero or all ones.
280   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
281     return false;
282
283   return true;
284 }
285
286
287 /// @brief Implement the transforms common to all CastInst visitors.
288 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
289   Value *Src = CI.getOperand(0);
290
291   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
292   // eliminate it now.
293   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
294     if (Instruction::CastOps opc =
295             isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
296       // The first cast (CSrc) is eliminable so we need to fix up or replace
297       // the second cast (CI). CSrc will then have a good chance of being dead.
298       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
299     }
300   }
301
302   // If we are casting a select then fold the cast into the select
303   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
304     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
305       return NV;
306
307   // If we are casting a PHI then fold the cast into the PHI
308   if (isa<PHINode>(Src)) {
309     // We don't do this if this would create a PHI node with an illegal type if
310     // it is currently legal.
311     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
312         ShouldChangeType(CI.getType(), Src->getType()))
313       if (Instruction *NV = FoldOpIntoPhi(CI))
314         return NV;
315   }
316
317   return nullptr;
318 }
319
320 /// Return true if we can evaluate the specified expression tree as type Ty
321 /// instead of its larger type, and arrive with the same value.
322 /// This is used by code that tries to eliminate truncates.
323 ///
324 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
325 /// can be computed by computing V in the smaller type.  If V is an instruction,
326 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
327 /// makes sense if x and y can be efficiently truncated.
328 ///
329 /// This function works on both vectors and scalars.
330 ///
331 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
332                                  Instruction *CxtI) {
333   // We can always evaluate constants in another type.
334   if (isa<Constant>(V))
335     return true;
336
337   Instruction *I = dyn_cast<Instruction>(V);
338   if (!I) return false;
339
340   Type *OrigTy = V->getType();
341
342   // If this is an extension from the dest type, we can eliminate it, even if it
343   // has multiple uses.
344   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
345       I->getOperand(0)->getType() == Ty)
346     return true;
347
348   // We can't extend or shrink something that has multiple uses: doing so would
349   // require duplicating the instruction in general, which isn't profitable.
350   if (!I->hasOneUse()) return false;
351
352   unsigned Opc = I->getOpcode();
353   switch (Opc) {
354   case Instruction::Add:
355   case Instruction::Sub:
356   case Instruction::Mul:
357   case Instruction::And:
358   case Instruction::Or:
359   case Instruction::Xor:
360     // These operators can all arbitrarily be extended or truncated.
361     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
362            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
363
364   case Instruction::UDiv:
365   case Instruction::URem: {
366     // UDiv and URem can be truncated if all the truncated bits are zero.
367     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
368     uint32_t BitWidth = Ty->getScalarSizeInBits();
369     if (BitWidth < OrigBitWidth) {
370       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
371       if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
372           IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
373         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
374                canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
375       }
376     }
377     break;
378   }
379   case Instruction::Shl:
380     // If we are truncating the result of this SHL, and if it's a shift of a
381     // constant amount, we can always perform a SHL in a smaller type.
382     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
383       uint32_t BitWidth = Ty->getScalarSizeInBits();
384       if (CI->getLimitedValue(BitWidth) < BitWidth)
385         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
386     }
387     break;
388   case Instruction::LShr:
389     // If this is a truncate of a logical shr, we can truncate it to a smaller
390     // lshr iff we know that the bits we would otherwise be shifting in are
391     // already zeros.
392     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
393       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
394       uint32_t BitWidth = Ty->getScalarSizeInBits();
395       if (IC.MaskedValueIsZero(I->getOperand(0),
396             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
397           CI->getLimitedValue(BitWidth) < BitWidth) {
398         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
399       }
400     }
401     break;
402   case Instruction::Trunc:
403     // trunc(trunc(x)) -> trunc(x)
404     return true;
405   case Instruction::ZExt:
406   case Instruction::SExt:
407     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
408     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
409     return true;
410   case Instruction::Select: {
411     SelectInst *SI = cast<SelectInst>(I);
412     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
413            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
414   }
415   case Instruction::PHI: {
416     // We can change a phi if we can change all operands.  Note that we never
417     // get into trouble with cyclic PHIs here because we only consider
418     // instructions with a single use.
419     PHINode *PN = cast<PHINode>(I);
420     for (Value *IncValue : PN->incoming_values())
421       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
422         return false;
423     return true;
424   }
425   default:
426     // TODO: Can handle more cases here.
427     break;
428   }
429
430   return false;
431 }
432
433 /// Given a vector that is bitcast to an integer, optionally logically
434 /// right-shifted, and truncated, convert it to an extractelement.
435 /// Example (big endian):
436 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
437 ///   --->
438 ///   extractelement <4 x i32> %X, 1
439 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC,
440                                          const DataLayout &DL) {
441   Value *TruncOp = Trunc.getOperand(0);
442   Type *DestType = Trunc.getType();
443   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
444     return nullptr;
445
446   Value *VecInput = nullptr;
447   ConstantInt *ShiftVal = nullptr;
448   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
449                                   m_LShr(m_BitCast(m_Value(VecInput)),
450                                          m_ConstantInt(ShiftVal)))) ||
451       !isa<VectorType>(VecInput->getType()))
452     return nullptr;
453
454   VectorType *VecType = cast<VectorType>(VecInput->getType());
455   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
456   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
457   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
458
459   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
460     return nullptr;
461
462   // If the element type of the vector doesn't match the result type,
463   // bitcast it to a vector type that we can extract from.
464   unsigned NumVecElts = VecWidth / DestWidth;
465   if (VecType->getElementType() != DestType) {
466     VecType = VectorType::get(DestType, NumVecElts);
467     VecInput = IC.Builder->CreateBitCast(VecInput, VecType, "bc");
468   }
469
470   unsigned Elt = ShiftAmount / DestWidth;
471   if (DL.isBigEndian())
472     Elt = NumVecElts - 1 - Elt;
473
474   return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
475 }
476
477 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
478   if (Instruction *Result = commonCastTransforms(CI))
479     return Result;
480
481   // Test if the trunc is the user of a select which is part of a
482   // minimum or maximum operation. If so, don't do any more simplification.
483   // Even simplifying demanded bits can break the canonical form of a 
484   // min/max.
485   Value *LHS, *RHS;
486   if (SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)))
487     if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
488       return nullptr;
489   
490   // See if we can simplify any instructions used by the input whose sole
491   // purpose is to compute bits we don't care about.
492   if (SimplifyDemandedInstructionBits(CI))
493     return &CI;
494
495   Value *Src = CI.getOperand(0);
496   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
497
498   // Attempt to truncate the entire input expression tree to the destination
499   // type.   Only do this if the dest type is a simple type, don't convert the
500   // expression tree to something weird like i93 unless the source is also
501   // strange.
502   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
503       canEvaluateTruncated(Src, DestTy, *this, &CI)) {
504
505     // If this cast is a truncate, evaluting in a different type always
506     // eliminates the cast, so it is always a win.
507     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
508           " to avoid cast: " << CI << '\n');
509     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
510     assert(Res->getType() == DestTy);
511     return ReplaceInstUsesWith(CI, Res);
512   }
513
514   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
515   if (DestTy->getScalarSizeInBits() == 1) {
516     Constant *One = ConstantInt::get(SrcTy, 1);
517     Src = Builder->CreateAnd(Src, One);
518     Value *Zero = Constant::getNullValue(Src->getType());
519     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
520   }
521
522   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
523   Value *A = nullptr; ConstantInt *Cst = nullptr;
524   if (Src->hasOneUse() &&
525       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
526     // We have three types to worry about here, the type of A, the source of
527     // the truncate (MidSize), and the destination of the truncate. We know that
528     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
529     // between ASize and ResultSize.
530     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
531
532     // If the shift amount is larger than the size of A, then the result is
533     // known to be zero because all the input bits got shifted out.
534     if (Cst->getZExtValue() >= ASize)
535       return ReplaceInstUsesWith(CI, Constant::getNullValue(DestTy));
536
537     // Since we're doing an lshr and a zero extend, and know that the shift
538     // amount is smaller than ASize, it is always safe to do the shift in A's
539     // type, then zero extend or truncate to the result.
540     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
541     Shift->takeName(Src);
542     return CastInst::CreateIntegerCast(Shift, DestTy, false);
543   }
544
545   // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
546   // conversion.
547   // It works because bits coming from sign extension have the same value as
548   // the sign bit of the original value; performing ashr instead of lshr
549   // generates bits of the same value as the sign bit.
550   if (Src->hasOneUse() &&
551       match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst))) &&
552       cast<Instruction>(Src)->getOperand(0)->hasOneUse()) {
553     const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
554     // This optimization can be only performed when zero bits generated by
555     // the original lshr aren't pulled into the value after truncation, so we
556     // can only shift by values smaller than the size of destination type (in
557     // bits).
558     if (Cst->getValue().ult(ASize)) {
559       Value *Shift = Builder->CreateAShr(A, Cst->getZExtValue());
560       Shift->takeName(Src);
561       return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
562     }
563   }
564
565   // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
566   // type isn't non-native.
567   if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
568       ShouldChangeType(SrcTy, DestTy) &&
569       match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
570     Value *NewTrunc = Builder->CreateTrunc(A, DestTy, A->getName() + ".tr");
571     return BinaryOperator::CreateAnd(NewTrunc,
572                                      ConstantExpr::getTrunc(Cst, DestTy));
573   }
574
575   if (Instruction *I = foldVecTruncToExtElt(CI, *this, DL))
576     return I;
577
578   return nullptr;
579 }
580
581 /// Transform (zext icmp) to bitwise / integer operations in order to eliminate
582 /// the icmp.
583 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
584                                              bool DoXform) {
585   // If we are just checking for a icmp eq of a single bit and zext'ing it
586   // to an integer, then shift the bit to the appropriate place and then
587   // cast to integer to avoid the comparison.
588   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
589     const APInt &Op1CV = Op1C->getValue();
590
591     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
592     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
593     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
594         (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
595       if (!DoXform) return ICI;
596
597       Value *In = ICI->getOperand(0);
598       Value *Sh = ConstantInt::get(In->getType(),
599                                    In->getType()->getScalarSizeInBits() - 1);
600       In = Builder->CreateLShr(In, Sh, In->getName() + ".lobit");
601       if (In->getType() != CI.getType())
602         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
603
604       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
605         Constant *One = ConstantInt::get(In->getType(), 1);
606         In = Builder->CreateXor(In, One, In->getName() + ".not");
607       }
608
609       return ReplaceInstUsesWith(CI, In);
610     }
611
612     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
613     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
614     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
615     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
616     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
617     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
618     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
619     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
620     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
621         // This only works for EQ and NE
622         ICI->isEquality()) {
623       // If Op1C some other power of two, convert:
624       uint32_t BitWidth = Op1C->getType()->getBitWidth();
625       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
626       computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
627
628       APInt KnownZeroMask(~KnownZero);
629       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
630         if (!DoXform) return ICI;
631
632         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
633         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
634           // (X&4) == 2 --> false
635           // (X&4) != 2 --> true
636           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
637                                            isNE);
638           Res = ConstantExpr::getZExt(Res, CI.getType());
639           return ReplaceInstUsesWith(CI, Res);
640         }
641
642         uint32_t ShAmt = KnownZeroMask.logBase2();
643         Value *In = ICI->getOperand(0);
644         if (ShAmt) {
645           // Perform a logical shr by shiftamt.
646           // Insert the shift to put the result in the low bit.
647           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
648                                    In->getName() + ".lobit");
649         }
650
651         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
652           Constant *One = ConstantInt::get(In->getType(), 1);
653           In = Builder->CreateXor(In, One);
654         }
655
656         if (CI.getType() == In->getType())
657           return ReplaceInstUsesWith(CI, In);
658         return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
659       }
660     }
661   }
662
663   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
664   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
665   // may lead to additional simplifications.
666   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
667     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
668       uint32_t BitWidth = ITy->getBitWidth();
669       Value *LHS = ICI->getOperand(0);
670       Value *RHS = ICI->getOperand(1);
671
672       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
673       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
674       computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
675       computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
676
677       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
678         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
679         APInt UnknownBit = ~KnownBits;
680         if (UnknownBit.countPopulation() == 1) {
681           if (!DoXform) return ICI;
682
683           Value *Result = Builder->CreateXor(LHS, RHS);
684
685           // Mask off any bits that are set and won't be shifted away.
686           if (KnownOneLHS.uge(UnknownBit))
687             Result = Builder->CreateAnd(Result,
688                                         ConstantInt::get(ITy, UnknownBit));
689
690           // Shift the bit we're testing down to the lsb.
691           Result = Builder->CreateLShr(
692                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
693
694           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
695             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
696           Result->takeName(ICI);
697           return ReplaceInstUsesWith(CI, Result);
698         }
699       }
700     }
701   }
702
703   return nullptr;
704 }
705
706 /// Determine if the specified value can be computed in the specified wider type
707 /// and produce the same low bits. If not, return false.
708 ///
709 /// If this function returns true, it can also return a non-zero number of bits
710 /// (in BitsToClear) which indicates that the value it computes is correct for
711 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
712 /// out.  For example, to promote something like:
713 ///
714 ///   %B = trunc i64 %A to i32
715 ///   %C = lshr i32 %B, 8
716 ///   %E = zext i32 %C to i64
717 ///
718 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
719 /// set to 8 to indicate that the promoted value needs to have bits 24-31
720 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
721 /// clear the top bits anyway, doing this has no extra cost.
722 ///
723 /// This function works on both vectors and scalars.
724 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
725                              InstCombiner &IC, Instruction *CxtI) {
726   BitsToClear = 0;
727   if (isa<Constant>(V))
728     return true;
729
730   Instruction *I = dyn_cast<Instruction>(V);
731   if (!I) return false;
732
733   // If the input is a truncate from the destination type, we can trivially
734   // eliminate it.
735   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
736     return true;
737
738   // We can't extend or shrink something that has multiple uses: doing so would
739   // require duplicating the instruction in general, which isn't profitable.
740   if (!I->hasOneUse()) return false;
741
742   unsigned Opc = I->getOpcode(), Tmp;
743   switch (Opc) {
744   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
745   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
746   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
747     return true;
748   case Instruction::And:
749   case Instruction::Or:
750   case Instruction::Xor:
751   case Instruction::Add:
752   case Instruction::Sub:
753   case Instruction::Mul:
754     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
755         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
756       return false;
757     // These can all be promoted if neither operand has 'bits to clear'.
758     if (BitsToClear == 0 && Tmp == 0)
759       return true;
760
761     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
762     // other side, BitsToClear is ok.
763     if (Tmp == 0 &&
764         (Opc == Instruction::And || Opc == Instruction::Or ||
765          Opc == Instruction::Xor)) {
766       // We use MaskedValueIsZero here for generality, but the case we care
767       // about the most is constant RHS.
768       unsigned VSize = V->getType()->getScalarSizeInBits();
769       if (IC.MaskedValueIsZero(I->getOperand(1),
770                                APInt::getHighBitsSet(VSize, BitsToClear),
771                                0, CxtI))
772         return true;
773     }
774
775     // Otherwise, we don't know how to analyze this BitsToClear case yet.
776     return false;
777
778   case Instruction::Shl:
779     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
780     // upper bits we can reduce BitsToClear by the shift amount.
781     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
782       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
783         return false;
784       uint64_t ShiftAmt = Amt->getZExtValue();
785       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
786       return true;
787     }
788     return false;
789   case Instruction::LShr:
790     // We can promote lshr(x, cst) if we can promote x.  This requires the
791     // ultimate 'and' to clear out the high zero bits we're clearing out though.
792     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
793       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
794         return false;
795       BitsToClear += Amt->getZExtValue();
796       if (BitsToClear > V->getType()->getScalarSizeInBits())
797         BitsToClear = V->getType()->getScalarSizeInBits();
798       return true;
799     }
800     // Cannot promote variable LSHR.
801     return false;
802   case Instruction::Select:
803     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
804         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
805         // TODO: If important, we could handle the case when the BitsToClear are
806         // known zero in the disagreeing side.
807         Tmp != BitsToClear)
808       return false;
809     return true;
810
811   case Instruction::PHI: {
812     // We can change a phi if we can change all operands.  Note that we never
813     // get into trouble with cyclic PHIs here because we only consider
814     // instructions with a single use.
815     PHINode *PN = cast<PHINode>(I);
816     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
817       return false;
818     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
819       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
820           // TODO: If important, we could handle the case when the BitsToClear
821           // are known zero in the disagreeing input.
822           Tmp != BitsToClear)
823         return false;
824     return true;
825   }
826   default:
827     // TODO: Can handle more cases here.
828     return false;
829   }
830 }
831
832 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
833   // If this zero extend is only used by a truncate, let the truncate be
834   // eliminated before we try to optimize this zext.
835   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
836     return nullptr;
837
838   // If one of the common conversion will work, do it.
839   if (Instruction *Result = commonCastTransforms(CI))
840     return Result;
841
842   // See if we can simplify any instructions used by the input whose sole
843   // purpose is to compute bits we don't care about.
844   if (SimplifyDemandedInstructionBits(CI))
845     return &CI;
846
847   Value *Src = CI.getOperand(0);
848   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
849
850   // Attempt to extend the entire input expression tree to the destination
851   // type.   Only do this if the dest type is a simple type, don't convert the
852   // expression tree to something weird like i93 unless the source is also
853   // strange.
854   unsigned BitsToClear;
855   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
856       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
857     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
858            "Unreasonable BitsToClear");
859
860     // Okay, we can transform this!  Insert the new expression now.
861     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
862           " to avoid zero extend: " << CI << '\n');
863     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
864     assert(Res->getType() == DestTy);
865
866     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
867     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
868
869     // If the high bits are already filled with zeros, just replace this
870     // cast with the result.
871     if (MaskedValueIsZero(Res,
872                           APInt::getHighBitsSet(DestBitSize,
873                                                 DestBitSize-SrcBitsKept),
874                              0, &CI))
875       return ReplaceInstUsesWith(CI, Res);
876
877     // We need to emit an AND to clear the high bits.
878     Constant *C = ConstantInt::get(Res->getType(),
879                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
880     return BinaryOperator::CreateAnd(Res, C);
881   }
882
883   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
884   // types and if the sizes are just right we can convert this into a logical
885   // 'and' which will be much cheaper than the pair of casts.
886   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
887     // TODO: Subsume this into EvaluateInDifferentType.
888
889     // Get the sizes of the types involved.  We know that the intermediate type
890     // will be smaller than A or C, but don't know the relation between A and C.
891     Value *A = CSrc->getOperand(0);
892     unsigned SrcSize = A->getType()->getScalarSizeInBits();
893     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
894     unsigned DstSize = CI.getType()->getScalarSizeInBits();
895     // If we're actually extending zero bits, then if
896     // SrcSize <  DstSize: zext(a & mask)
897     // SrcSize == DstSize: a & mask
898     // SrcSize  > DstSize: trunc(a) & mask
899     if (SrcSize < DstSize) {
900       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
901       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
902       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
903       return new ZExtInst(And, CI.getType());
904     }
905
906     if (SrcSize == DstSize) {
907       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
908       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
909                                                            AndValue));
910     }
911     if (SrcSize > DstSize) {
912       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
913       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
914       return BinaryOperator::CreateAnd(Trunc,
915                                        ConstantInt::get(Trunc->getType(),
916                                                         AndValue));
917     }
918   }
919
920   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
921     return transformZExtICmp(ICI, CI);
922
923   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
924   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
925     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
926     // of the (zext icmp) will be transformed.
927     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
928     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
929     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
930         (transformZExtICmp(LHS, CI, false) ||
931          transformZExtICmp(RHS, CI, false))) {
932       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
933       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
934       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
935     }
936   }
937
938   // zext(trunc(X) & C) -> (X & zext(C)).
939   Constant *C;
940   Value *X;
941   if (SrcI &&
942       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
943       X->getType() == CI.getType())
944     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
945
946   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
947   Value *And;
948   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
949       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
950       X->getType() == CI.getType()) {
951     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
952     return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
953   }
954
955   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
956   if (SrcI && SrcI->hasOneUse() &&
957       SrcI->getType()->getScalarType()->isIntegerTy(1) &&
958       match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
959     Value *New = Builder->CreateZExt(X, CI.getType());
960     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
961   }
962
963   return nullptr;
964 }
965
966 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
967 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
968   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
969   ICmpInst::Predicate Pred = ICI->getPredicate();
970
971   // Don't bother if Op1 isn't of vector or integer type.
972   if (!Op1->getType()->isIntOrIntVectorTy())
973     return nullptr;
974
975   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
976     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
977     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
978     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
979         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
980
981       Value *Sh = ConstantInt::get(Op0->getType(),
982                                    Op0->getType()->getScalarSizeInBits()-1);
983       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
984       if (In->getType() != CI.getType())
985         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
986
987       if (Pred == ICmpInst::ICMP_SGT)
988         In = Builder->CreateNot(In, In->getName()+".not");
989       return ReplaceInstUsesWith(CI, In);
990     }
991   }
992
993   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
994     // If we know that only one bit of the LHS of the icmp can be set and we
995     // have an equality comparison with zero or a power of 2, we can transform
996     // the icmp and sext into bitwise/integer operations.
997     if (ICI->hasOneUse() &&
998         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
999       unsigned BitWidth = Op1C->getType()->getBitWidth();
1000       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1001       computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
1002
1003       APInt KnownZeroMask(~KnownZero);
1004       if (KnownZeroMask.isPowerOf2()) {
1005         Value *In = ICI->getOperand(0);
1006
1007         // If the icmp tests for a known zero bit we can constant fold it.
1008         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1009           Value *V = Pred == ICmpInst::ICMP_NE ?
1010                        ConstantInt::getAllOnesValue(CI.getType()) :
1011                        ConstantInt::getNullValue(CI.getType());
1012           return ReplaceInstUsesWith(CI, V);
1013         }
1014
1015         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1016           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1017           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1018           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1019           // Perform a right shift to place the desired bit in the LSB.
1020           if (ShiftAmt)
1021             In = Builder->CreateLShr(In,
1022                                      ConstantInt::get(In->getType(), ShiftAmt));
1023
1024           // At this point "In" is either 1 or 0. Subtract 1 to turn
1025           // {1, 0} -> {0, -1}.
1026           In = Builder->CreateAdd(In,
1027                                   ConstantInt::getAllOnesValue(In->getType()),
1028                                   "sext");
1029         } else {
1030           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1031           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1032           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1033           // Perform a left shift to place the desired bit in the MSB.
1034           if (ShiftAmt)
1035             In = Builder->CreateShl(In,
1036                                     ConstantInt::get(In->getType(), ShiftAmt));
1037
1038           // Distribute the bit over the whole bit width.
1039           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
1040                                                         BitWidth - 1), "sext");
1041         }
1042
1043         if (CI.getType() == In->getType())
1044           return ReplaceInstUsesWith(CI, In);
1045         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1046       }
1047     }
1048   }
1049
1050   return nullptr;
1051 }
1052
1053 /// Return true if we can take the specified value and return it as type Ty
1054 /// without inserting any new casts and without changing the value of the common
1055 /// low bits.  This is used by code that tries to promote integer operations to
1056 /// a wider types will allow us to eliminate the extension.
1057 ///
1058 /// This function works on both vectors and scalars.
1059 ///
1060 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1061   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1062          "Can't sign extend type to a smaller type");
1063   // If this is a constant, it can be trivially promoted.
1064   if (isa<Constant>(V))
1065     return true;
1066
1067   Instruction *I = dyn_cast<Instruction>(V);
1068   if (!I) return false;
1069
1070   // If this is a truncate from the dest type, we can trivially eliminate it.
1071   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1072     return true;
1073
1074   // We can't extend or shrink something that has multiple uses: doing so would
1075   // require duplicating the instruction in general, which isn't profitable.
1076   if (!I->hasOneUse()) return false;
1077
1078   switch (I->getOpcode()) {
1079   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1080   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1081   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1082     return true;
1083   case Instruction::And:
1084   case Instruction::Or:
1085   case Instruction::Xor:
1086   case Instruction::Add:
1087   case Instruction::Sub:
1088   case Instruction::Mul:
1089     // These operators can all arbitrarily be extended if their inputs can.
1090     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1091            canEvaluateSExtd(I->getOperand(1), Ty);
1092
1093   //case Instruction::Shl:   TODO
1094   //case Instruction::LShr:  TODO
1095
1096   case Instruction::Select:
1097     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1098            canEvaluateSExtd(I->getOperand(2), Ty);
1099
1100   case Instruction::PHI: {
1101     // We can change a phi if we can change all operands.  Note that we never
1102     // get into trouble with cyclic PHIs here because we only consider
1103     // instructions with a single use.
1104     PHINode *PN = cast<PHINode>(I);
1105     for (Value *IncValue : PN->incoming_values())
1106       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1107     return true;
1108   }
1109   default:
1110     // TODO: Can handle more cases here.
1111     break;
1112   }
1113
1114   return false;
1115 }
1116
1117 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1118   // If this sign extend is only used by a truncate, let the truncate be
1119   // eliminated before we try to optimize this sext.
1120   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1121     return nullptr;
1122
1123   if (Instruction *I = commonCastTransforms(CI))
1124     return I;
1125
1126   // See if we can simplify any instructions used by the input whose sole
1127   // purpose is to compute bits we don't care about.
1128   if (SimplifyDemandedInstructionBits(CI))
1129     return &CI;
1130
1131   Value *Src = CI.getOperand(0);
1132   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1133
1134   // If we know that the value being extended is positive, we can use a zext
1135   // instead. 
1136   bool KnownZero, KnownOne;
1137   ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI);
1138   if (KnownZero) {
1139     Value *ZExt = Builder->CreateZExt(Src, DestTy);
1140     return ReplaceInstUsesWith(CI, ZExt);
1141   }
1142
1143   // Attempt to extend the entire input expression tree to the destination
1144   // type.   Only do this if the dest type is a simple type, don't convert the
1145   // expression tree to something weird like i93 unless the source is also
1146   // strange.
1147   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1148       canEvaluateSExtd(Src, DestTy)) {
1149     // Okay, we can transform this!  Insert the new expression now.
1150     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1151           " to avoid sign extend: " << CI << '\n');
1152     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1153     assert(Res->getType() == DestTy);
1154
1155     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1156     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1157
1158     // If the high bits are already filled with sign bit, just replace this
1159     // cast with the result.
1160     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1161       return ReplaceInstUsesWith(CI, Res);
1162
1163     // We need to emit a shl + ashr to do the sign extend.
1164     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1165     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1166                                       ShAmt);
1167   }
1168
1169   // If this input is a trunc from our destination, then turn sext(trunc(x))
1170   // into shifts.
1171   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1172     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1173       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1174       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1175
1176       // We need to emit a shl + ashr to do the sign extend.
1177       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1178       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1179       return BinaryOperator::CreateAShr(Res, ShAmt);
1180     }
1181
1182   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1183     return transformSExtICmp(ICI, CI);
1184
1185   // If the input is a shl/ashr pair of a same constant, then this is a sign
1186   // extension from a smaller value.  If we could trust arbitrary bitwidth
1187   // integers, we could turn this into a truncate to the smaller bit and then
1188   // use a sext for the whole extension.  Since we don't, look deeper and check
1189   // for a truncate.  If the source and dest are the same type, eliminate the
1190   // trunc and extend and just do shifts.  For example, turn:
1191   //   %a = trunc i32 %i to i8
1192   //   %b = shl i8 %a, 6
1193   //   %c = ashr i8 %b, 6
1194   //   %d = sext i8 %c to i32
1195   // into:
1196   //   %a = shl i32 %i, 30
1197   //   %d = ashr i32 %a, 30
1198   Value *A = nullptr;
1199   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1200   ConstantInt *BA = nullptr, *CA = nullptr;
1201   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1202                         m_ConstantInt(CA))) &&
1203       BA == CA && A->getType() == CI.getType()) {
1204     unsigned MidSize = Src->getType()->getScalarSizeInBits();
1205     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1206     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1207     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1208     A = Builder->CreateShl(A, ShAmtV, CI.getName());
1209     return BinaryOperator::CreateAShr(A, ShAmtV);
1210   }
1211
1212   return nullptr;
1213 }
1214
1215
1216 /// Return a Constant* for the specified floating-point constant if it fits
1217 /// in the specified FP type without changing its value.
1218 static Constant *fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1219   bool losesInfo;
1220   APFloat F = CFP->getValueAPF();
1221   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1222   if (!losesInfo)
1223     return ConstantFP::get(CFP->getContext(), F);
1224   return nullptr;
1225 }
1226
1227 /// If this is a floating-point extension instruction, look
1228 /// through it until we get the source value.
1229 static Value *lookThroughFPExtensions(Value *V) {
1230   if (Instruction *I = dyn_cast<Instruction>(V))
1231     if (I->getOpcode() == Instruction::FPExt)
1232       return lookThroughFPExtensions(I->getOperand(0));
1233
1234   // If this value is a constant, return the constant in the smallest FP type
1235   // that can accurately represent it.  This allows us to turn
1236   // (float)((double)X+2.0) into x+2.0f.
1237   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1238     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1239       return V;  // No constant folding of this.
1240     // See if the value can be truncated to half and then reextended.
1241     if (Value *V = fitsInFPType(CFP, APFloat::IEEEhalf))
1242       return V;
1243     // See if the value can be truncated to float and then reextended.
1244     if (Value *V = fitsInFPType(CFP, APFloat::IEEEsingle))
1245       return V;
1246     if (CFP->getType()->isDoubleTy())
1247       return V;  // Won't shrink.
1248     if (Value *V = fitsInFPType(CFP, APFloat::IEEEdouble))
1249       return V;
1250     // Don't try to shrink to various long double types.
1251   }
1252
1253   return V;
1254 }
1255
1256 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1257   if (Instruction *I = commonCastTransforms(CI))
1258     return I;
1259   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1260   // simplify this expression to avoid one or more of the trunc/extend
1261   // operations if we can do so without changing the numerical results.
1262   //
1263   // The exact manner in which the widths of the operands interact to limit
1264   // what we can and cannot do safely varies from operation to operation, and
1265   // is explained below in the various case statements.
1266   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1267   if (OpI && OpI->hasOneUse()) {
1268     Value *LHSOrig = lookThroughFPExtensions(OpI->getOperand(0));
1269     Value *RHSOrig = lookThroughFPExtensions(OpI->getOperand(1));
1270     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1271     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1272     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1273     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1274     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1275     switch (OpI->getOpcode()) {
1276       default: break;
1277       case Instruction::FAdd:
1278       case Instruction::FSub:
1279         // For addition and subtraction, the infinitely precise result can
1280         // essentially be arbitrarily wide; proving that double rounding
1281         // will not occur because the result of OpI is exact (as we will for
1282         // FMul, for example) is hopeless.  However, we *can* nonetheless
1283         // frequently know that double rounding cannot occur (or that it is
1284         // innocuous) by taking advantage of the specific structure of
1285         // infinitely-precise results that admit double rounding.
1286         //
1287         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1288         // to represent both sources, we can guarantee that the double
1289         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1290         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1291         // for proof of this fact).
1292         //
1293         // Note: Figueroa does not consider the case where DstFormat !=
1294         // SrcFormat.  It's possible (likely even!) that this analysis
1295         // could be tightened for those cases, but they are rare (the main
1296         // case of interest here is (float)((double)float + float)).
1297         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1298           if (LHSOrig->getType() != CI.getType())
1299             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1300           if (RHSOrig->getType() != CI.getType())
1301             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1302           Instruction *RI =
1303             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1304           RI->copyFastMathFlags(OpI);
1305           return RI;
1306         }
1307         break;
1308       case Instruction::FMul:
1309         // For multiplication, the infinitely precise result has at most
1310         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1311         // that such a value can be exactly represented, then no double
1312         // rounding can possibly occur; we can safely perform the operation
1313         // in the destination format if it can represent both sources.
1314         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1315           if (LHSOrig->getType() != CI.getType())
1316             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1317           if (RHSOrig->getType() != CI.getType())
1318             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1319           Instruction *RI =
1320             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1321           RI->copyFastMathFlags(OpI);
1322           return RI;
1323         }
1324         break;
1325       case Instruction::FDiv:
1326         // For division, we use again use the bound from Figueroa's
1327         // dissertation.  I am entirely certain that this bound can be
1328         // tightened in the unbalanced operand case by an analysis based on
1329         // the diophantine rational approximation bound, but the well-known
1330         // condition used here is a good conservative first pass.
1331         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1332         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1333           if (LHSOrig->getType() != CI.getType())
1334             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1335           if (RHSOrig->getType() != CI.getType())
1336             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1337           Instruction *RI =
1338             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1339           RI->copyFastMathFlags(OpI);
1340           return RI;
1341         }
1342         break;
1343       case Instruction::FRem:
1344         // Remainder is straightforward.  Remainder is always exact, so the
1345         // type of OpI doesn't enter into things at all.  We simply evaluate
1346         // in whichever source type is larger, then convert to the
1347         // destination type.
1348         if (SrcWidth == OpWidth)
1349           break;
1350         if (LHSWidth < SrcWidth)
1351           LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1352         else if (RHSWidth <= SrcWidth)
1353           RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1354         if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1355           Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1356           if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1357             RI->copyFastMathFlags(OpI);
1358           return CastInst::CreateFPCast(ExactResult, CI.getType());
1359         }
1360     }
1361
1362     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1363     if (BinaryOperator::isFNeg(OpI)) {
1364       Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1365                                                  CI.getType());
1366       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1367       RI->copyFastMathFlags(OpI);
1368       return RI;
1369     }
1370   }
1371
1372   // (fptrunc (select cond, R1, Cst)) -->
1373   // (select cond, (fptrunc R1), (fptrunc Cst))
1374   //
1375   //  - but only if this isn't part of a min/max operation, else we'll
1376   // ruin min/max canonical form which is to have the select and
1377   // compare's operands be of the same type with no casts to look through.
1378   Value *LHS, *RHS;
1379   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1380   if (SI &&
1381       (isa<ConstantFP>(SI->getOperand(1)) ||
1382        isa<ConstantFP>(SI->getOperand(2))) &&
1383       matchSelectPattern(SI, LHS, RHS).Flavor == SPF_UNKNOWN) {
1384     Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1385                                              CI.getType());
1386     Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1387                                              CI.getType());
1388     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1389   }
1390
1391   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1392   if (II) {
1393     switch (II->getIntrinsicID()) {
1394       default: break;
1395       case Intrinsic::fabs: {
1396         // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1397         Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1398                                                    CI.getType());
1399         Type *IntrinsicType[] = { CI.getType() };
1400         Function *Overload = Intrinsic::getDeclaration(
1401             CI.getModule(), II->getIntrinsicID(), IntrinsicType);
1402
1403         Value *Args[] = { InnerTrunc };
1404         return CallInst::Create(Overload, Args, II->getName());
1405       }
1406     }
1407   }
1408
1409   return nullptr;
1410 }
1411
1412 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1413   return commonCastTransforms(CI);
1414 }
1415
1416 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1417 // This is safe if the intermediate type has enough bits in its mantissa to
1418 // accurately represent all values of X.  For example, this won't work with
1419 // i64 -> float -> i64.
1420 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1421   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1422     return nullptr;
1423   Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1424
1425   Value *SrcI = OpI->getOperand(0);
1426   Type *FITy = FI.getType();
1427   Type *OpITy = OpI->getType();
1428   Type *SrcTy = SrcI->getType();
1429   bool IsInputSigned = isa<SIToFPInst>(OpI);
1430   bool IsOutputSigned = isa<FPToSIInst>(FI);
1431
1432   // We can safely assume the conversion won't overflow the output range,
1433   // because (for example) (uint8_t)18293.f is undefined behavior.
1434
1435   // Since we can assume the conversion won't overflow, our decision as to
1436   // whether the input will fit in the float should depend on the minimum
1437   // of the input range and output range.
1438
1439   // This means this is also safe for a signed input and unsigned output, since
1440   // a negative input would lead to undefined behavior.
1441   int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1442   int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1443   int ActualSize = std::min(InputSize, OutputSize);
1444
1445   if (ActualSize <= OpITy->getFPMantissaWidth()) {
1446     if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1447       if (IsInputSigned && IsOutputSigned)
1448         return new SExtInst(SrcI, FITy);
1449       return new ZExtInst(SrcI, FITy);
1450     }
1451     if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1452       return new TruncInst(SrcI, FITy);
1453     if (SrcTy == FITy)
1454       return ReplaceInstUsesWith(FI, SrcI);
1455     return new BitCastInst(SrcI, FITy);
1456   }
1457   return nullptr;
1458 }
1459
1460 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1461   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1462   if (!OpI)
1463     return commonCastTransforms(FI);
1464
1465   if (Instruction *I = FoldItoFPtoI(FI))
1466     return I;
1467
1468   return commonCastTransforms(FI);
1469 }
1470
1471 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1472   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1473   if (!OpI)
1474     return commonCastTransforms(FI);
1475
1476   if (Instruction *I = FoldItoFPtoI(FI))
1477     return I;
1478
1479   return commonCastTransforms(FI);
1480 }
1481
1482 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1483   return commonCastTransforms(CI);
1484 }
1485
1486 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1487   return commonCastTransforms(CI);
1488 }
1489
1490 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1491   // If the source integer type is not the intptr_t type for this target, do a
1492   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1493   // cast to be exposed to other transforms.
1494   unsigned AS = CI.getAddressSpace();
1495   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1496       DL.getPointerSizeInBits(AS)) {
1497     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1498     if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1499       Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1500
1501     Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1502     return new IntToPtrInst(P, CI.getType());
1503   }
1504
1505   if (Instruction *I = commonCastTransforms(CI))
1506     return I;
1507
1508   return nullptr;
1509 }
1510
1511 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1512 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1513   Value *Src = CI.getOperand(0);
1514
1515   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1516     // If casting the result of a getelementptr instruction with no offset, turn
1517     // this into a cast of the original pointer!
1518     if (GEP->hasAllZeroIndices() &&
1519         // If CI is an addrspacecast and GEP changes the poiner type, merging
1520         // GEP into CI would undo canonicalizing addrspacecast with different
1521         // pointer types, causing infinite loops.
1522         (!isa<AddrSpaceCastInst>(CI) ||
1523           GEP->getType() == GEP->getPointerOperand()->getType())) {
1524       // Changing the cast operand is usually not a good idea but it is safe
1525       // here because the pointer operand is being replaced with another
1526       // pointer operand so the opcode doesn't need to change.
1527       Worklist.Add(GEP);
1528       CI.setOperand(0, GEP->getOperand(0));
1529       return &CI;
1530     }
1531   }
1532
1533   return commonCastTransforms(CI);
1534 }
1535
1536 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1537   // If the destination integer type is not the intptr_t type for this target,
1538   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1539   // to be exposed to other transforms.
1540
1541   Type *Ty = CI.getType();
1542   unsigned AS = CI.getPointerAddressSpace();
1543
1544   if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1545     return commonPointerCastTransforms(CI);
1546
1547   Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1548   if (Ty->isVectorTy()) // Handle vectors of pointers.
1549     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1550
1551   Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1552   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1553 }
1554
1555 /// This input value (which is known to have vector type) is being zero extended
1556 /// or truncated to the specified vector type.
1557 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1558 ///
1559 /// The source and destination vector types may have different element types.
1560 static Instruction *optimizeVectorResize(Value *InVal, VectorType *DestTy,
1561                                          InstCombiner &IC) {
1562   // We can only do this optimization if the output is a multiple of the input
1563   // element size, or the input is a multiple of the output element size.
1564   // Convert the input type to have the same element type as the output.
1565   VectorType *SrcTy = cast<VectorType>(InVal->getType());
1566
1567   if (SrcTy->getElementType() != DestTy->getElementType()) {
1568     // The input types don't need to be identical, but for now they must be the
1569     // same size.  There is no specific reason we couldn't handle things like
1570     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1571     // there yet.
1572     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1573         DestTy->getElementType()->getPrimitiveSizeInBits())
1574       return nullptr;
1575
1576     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1577     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1578   }
1579
1580   // Now that the element types match, get the shuffle mask and RHS of the
1581   // shuffle to use, which depends on whether we're increasing or decreasing the
1582   // size of the input.
1583   SmallVector<uint32_t, 16> ShuffleMask;
1584   Value *V2;
1585
1586   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1587     // If we're shrinking the number of elements, just shuffle in the low
1588     // elements from the input and use undef as the second shuffle input.
1589     V2 = UndefValue::get(SrcTy);
1590     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1591       ShuffleMask.push_back(i);
1592
1593   } else {
1594     // If we're increasing the number of elements, shuffle in all of the
1595     // elements from InVal and fill the rest of the result elements with zeros
1596     // from a constant zero.
1597     V2 = Constant::getNullValue(SrcTy);
1598     unsigned SrcElts = SrcTy->getNumElements();
1599     for (unsigned i = 0, e = SrcElts; i != e; ++i)
1600       ShuffleMask.push_back(i);
1601
1602     // The excess elements reference the first element of the zero input.
1603     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1604       ShuffleMask.push_back(SrcElts);
1605   }
1606
1607   return new ShuffleVectorInst(InVal, V2,
1608                                ConstantDataVector::get(V2->getContext(),
1609                                                        ShuffleMask));
1610 }
1611
1612 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1613   return Value % Ty->getPrimitiveSizeInBits() == 0;
1614 }
1615
1616 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1617   return Value / Ty->getPrimitiveSizeInBits();
1618 }
1619
1620 /// V is a value which is inserted into a vector of VecEltTy.
1621 /// Look through the value to see if we can decompose it into
1622 /// insertions into the vector.  See the example in the comment for
1623 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1624 /// The type of V is always a non-zero multiple of VecEltTy's size.
1625 /// Shift is the number of bits between the lsb of V and the lsb of
1626 /// the vector.
1627 ///
1628 /// This returns false if the pattern can't be matched or true if it can,
1629 /// filling in Elements with the elements found here.
1630 static bool collectInsertionElements(Value *V, unsigned Shift,
1631                                      SmallVectorImpl<Value *> &Elements,
1632                                      Type *VecEltTy, bool isBigEndian) {
1633   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1634          "Shift should be a multiple of the element type size");
1635
1636   // Undef values never contribute useful bits to the result.
1637   if (isa<UndefValue>(V)) return true;
1638
1639   // If we got down to a value of the right type, we win, try inserting into the
1640   // right element.
1641   if (V->getType() == VecEltTy) {
1642     // Inserting null doesn't actually insert any elements.
1643     if (Constant *C = dyn_cast<Constant>(V))
1644       if (C->isNullValue())
1645         return true;
1646
1647     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1648     if (isBigEndian)
1649       ElementIndex = Elements.size() - ElementIndex - 1;
1650
1651     // Fail if multiple elements are inserted into this slot.
1652     if (Elements[ElementIndex])
1653       return false;
1654
1655     Elements[ElementIndex] = V;
1656     return true;
1657   }
1658
1659   if (Constant *C = dyn_cast<Constant>(V)) {
1660     // Figure out the # elements this provides, and bitcast it or slice it up
1661     // as required.
1662     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1663                                         VecEltTy);
1664     // If the constant is the size of a vector element, we just need to bitcast
1665     // it to the right type so it gets properly inserted.
1666     if (NumElts == 1)
1667       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1668                                       Shift, Elements, VecEltTy, isBigEndian);
1669
1670     // Okay, this is a constant that covers multiple elements.  Slice it up into
1671     // pieces and insert each element-sized piece into the vector.
1672     if (!isa<IntegerType>(C->getType()))
1673       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1674                                        C->getType()->getPrimitiveSizeInBits()));
1675     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1676     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1677
1678     for (unsigned i = 0; i != NumElts; ++i) {
1679       unsigned ShiftI = Shift+i*ElementSize;
1680       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1681                                                                   ShiftI));
1682       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1683       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1684                                     isBigEndian))
1685         return false;
1686     }
1687     return true;
1688   }
1689
1690   if (!V->hasOneUse()) return false;
1691
1692   Instruction *I = dyn_cast<Instruction>(V);
1693   if (!I) return false;
1694   switch (I->getOpcode()) {
1695   default: return false; // Unhandled case.
1696   case Instruction::BitCast:
1697     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1698                                     isBigEndian);
1699   case Instruction::ZExt:
1700     if (!isMultipleOfTypeSize(
1701                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1702                               VecEltTy))
1703       return false;
1704     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1705                                     isBigEndian);
1706   case Instruction::Or:
1707     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1708                                     isBigEndian) &&
1709            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1710                                     isBigEndian);
1711   case Instruction::Shl: {
1712     // Must be shifting by a constant that is a multiple of the element size.
1713     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1714     if (!CI) return false;
1715     Shift += CI->getZExtValue();
1716     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1717     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1718                                     isBigEndian);
1719   }
1720
1721   }
1722 }
1723
1724
1725 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1726 /// assemble the elements of the vector manually.
1727 /// Try to rip the code out and replace it with insertelements.  This is to
1728 /// optimize code like this:
1729 ///
1730 ///    %tmp37 = bitcast float %inc to i32
1731 ///    %tmp38 = zext i32 %tmp37 to i64
1732 ///    %tmp31 = bitcast float %inc5 to i32
1733 ///    %tmp32 = zext i32 %tmp31 to i64
1734 ///    %tmp33 = shl i64 %tmp32, 32
1735 ///    %ins35 = or i64 %tmp33, %tmp38
1736 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1737 ///
1738 /// Into two insertelements that do "buildvector{%inc, %inc5}".
1739 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
1740                                                 InstCombiner &IC) {
1741   VectorType *DestVecTy = cast<VectorType>(CI.getType());
1742   Value *IntInput = CI.getOperand(0);
1743
1744   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1745   if (!collectInsertionElements(IntInput, 0, Elements,
1746                                 DestVecTy->getElementType(),
1747                                 IC.getDataLayout().isBigEndian()))
1748     return nullptr;
1749
1750   // If we succeeded, we know that all of the element are specified by Elements
1751   // or are zero if Elements has a null entry.  Recast this as a set of
1752   // insertions.
1753   Value *Result = Constant::getNullValue(CI.getType());
1754   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1755     if (!Elements[i]) continue;  // Unset element.
1756
1757     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1758                                              IC.Builder->getInt32(i));
1759   }
1760
1761   return Result;
1762 }
1763
1764 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
1765 /// vector followed by extract element. The backend tends to handle bitcasts of
1766 /// vectors better than bitcasts of scalars because vector registers are
1767 /// usually not type-specific like scalar integer or scalar floating-point.
1768 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
1769                                               InstCombiner &IC,
1770                                               const DataLayout &DL) {
1771   // TODO: Create and use a pattern matcher for ExtractElementInst.
1772   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
1773   if (!ExtElt || !ExtElt->hasOneUse())
1774     return nullptr;
1775
1776   // The bitcast must be to a vectorizable type, otherwise we can't make a new
1777   // type to extract from.
1778   Type *DestType = BitCast.getType();
1779   if (!VectorType::isValidElementType(DestType))
1780     return nullptr;
1781
1782   unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
1783   auto *NewVecType = VectorType::get(DestType, NumElts);
1784   auto *NewBC = IC.Builder->CreateBitCast(ExtElt->getVectorOperand(),
1785                                           NewVecType, "bc");
1786   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
1787 }
1788
1789 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1790   // If the operands are integer typed then apply the integer transforms,
1791   // otherwise just apply the common ones.
1792   Value *Src = CI.getOperand(0);
1793   Type *SrcTy = Src->getType();
1794   Type *DestTy = CI.getType();
1795
1796   // Get rid of casts from one type to the same type. These are useless and can
1797   // be replaced by the operand.
1798   if (DestTy == Src->getType())
1799     return ReplaceInstUsesWith(CI, Src);
1800
1801   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1802     PointerType *SrcPTy = cast<PointerType>(SrcTy);
1803     Type *DstElTy = DstPTy->getElementType();
1804     Type *SrcElTy = SrcPTy->getElementType();
1805
1806     // If we are casting a alloca to a pointer to a type of the same
1807     // size, rewrite the allocation instruction to allocate the "right" type.
1808     // There is no need to modify malloc calls because it is their bitcast that
1809     // needs to be cleaned up.
1810     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1811       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1812         return V;
1813
1814     // If the source and destination are pointers, and this cast is equivalent
1815     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1816     // This can enhance SROA and other transforms that want type-safe pointers.
1817     unsigned NumZeros = 0;
1818     while (SrcElTy != DstElTy &&
1819            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1820            SrcElTy->getNumContainedTypes() /* not "{}" */) {
1821       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
1822       ++NumZeros;
1823     }
1824
1825     // If we found a path from the src to dest, create the getelementptr now.
1826     if (SrcElTy == DstElTy) {
1827       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder->getInt32(0));
1828       return GetElementPtrInst::CreateInBounds(Src, Idxs);
1829     }
1830   }
1831
1832   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1833     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1834       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1835       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1836                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1837       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1838     }
1839
1840     if (isa<IntegerType>(SrcTy)) {
1841       // If this is a cast from an integer to vector, check to see if the input
1842       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1843       // the casts with a shuffle and (potentially) a bitcast.
1844       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1845         CastInst *SrcCast = cast<CastInst>(Src);
1846         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1847           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1848             if (Instruction *I = optimizeVectorResize(BCIn->getOperand(0),
1849                                                cast<VectorType>(DestTy), *this))
1850               return I;
1851       }
1852
1853       // If the input is an 'or' instruction, we may be doing shifts and ors to
1854       // assemble the elements of the vector manually.  Try to rip the code out
1855       // and replace it with insertelements.
1856       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
1857         return ReplaceInstUsesWith(CI, V);
1858     }
1859   }
1860
1861   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1862     if (SrcVTy->getNumElements() == 1) {
1863       // If our destination is not a vector, then make this a straight
1864       // scalar-scalar cast.
1865       if (!DestTy->isVectorTy()) {
1866         Value *Elem =
1867           Builder->CreateExtractElement(Src,
1868                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1869         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1870       }
1871
1872       // Otherwise, see if our source is an insert. If so, then use the scalar
1873       // component directly.
1874       if (InsertElementInst *IEI =
1875             dyn_cast<InsertElementInst>(CI.getOperand(0)))
1876         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
1877                                 DestTy);
1878     }
1879   }
1880
1881   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1882     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1883     // a bitcast to a vector with the same # elts.
1884     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1885         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
1886         SVI->getType()->getNumElements() ==
1887         SVI->getOperand(0)->getType()->getVectorNumElements()) {
1888       BitCastInst *Tmp;
1889       // If either of the operands is a cast from CI.getType(), then
1890       // evaluating the shuffle in the casted destination's type will allow
1891       // us to eliminate at least one cast.
1892       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1893            Tmp->getOperand(0)->getType() == DestTy) ||
1894           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1895            Tmp->getOperand(0)->getType() == DestTy)) {
1896         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1897         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1898         // Return a new shuffle vector.  Use the same element ID's, as we
1899         // know the vector types match #elts.
1900         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1901       }
1902     }
1903   }
1904
1905   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this, DL))
1906     return I;
1907
1908   if (SrcTy->isPointerTy())
1909     return commonPointerCastTransforms(CI);
1910   return commonCastTransforms(CI);
1911 }
1912
1913 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
1914   // If the destination pointer element type is not the same as the source's
1915   // first do a bitcast to the destination type, and then the addrspacecast.
1916   // This allows the cast to be exposed to other transforms.
1917   Value *Src = CI.getOperand(0);
1918   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
1919   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
1920
1921   Type *DestElemTy = DestTy->getElementType();
1922   if (SrcTy->getElementType() != DestElemTy) {
1923     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
1924     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
1925       // Handle vectors of pointers.
1926       MidTy = VectorType::get(MidTy, VT->getNumElements());
1927     }
1928
1929     Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
1930     return new AddrSpaceCastInst(NewBitCast, CI.getType());
1931   }
1932
1933   return commonPointerCastTransforms(CI);
1934 }