95c50d32c8207b12f5ec0abfd78301ce0e4da6a4
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineAndOrXor.cpp
1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitAnd, visitOr, and visitXor functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/ConstantRange.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Transforms/Utils/CmpInstAnalysis.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22
23 #define DEBUG_TYPE "instcombine"
24
25 static inline Value *dyn_castNotVal(Value *V) {
26   // If this is not(not(x)) don't return that this is a not: we want the two
27   // not's to be folded first.
28   if (BinaryOperator::isNot(V)) {
29     Value *Operand = BinaryOperator::getNotArgument(V);
30     if (!IsFreeToInvert(Operand, Operand->hasOneUse()))
31       return Operand;
32   }
33
34   // Constants can be considered to be not'ed values...
35   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
36     return ConstantInt::get(C->getType(), ~C->getValue());
37   return nullptr;
38 }
39
40 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
41 /// a three bit mask. It also returns whether it is an ordered predicate by
42 /// reference.
43 static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
44   isOrdered = false;
45   switch (CC) {
46   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
47   case FCmpInst::FCMP_UNO:                   return 0;  // 000
48   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
49   case FCmpInst::FCMP_UGT:                   return 1;  // 001
50   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
51   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
52   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
53   case FCmpInst::FCMP_UGE:                   return 3;  // 011
54   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
55   case FCmpInst::FCMP_ULT:                   return 4;  // 100
56   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
57   case FCmpInst::FCMP_UNE:                   return 5;  // 101
58   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
59   case FCmpInst::FCMP_ULE:                   return 6;  // 110
60     // True -> 7
61   default:
62     // Not expecting FCMP_FALSE and FCMP_TRUE;
63     llvm_unreachable("Unexpected FCmp predicate!");
64   }
65 }
66
67 /// This is the complement of getICmpCode, which turns an opcode and two
68 /// operands into either a constant true or false, or a brand new ICmp
69 /// instruction. The sign is passed in to determine which kind of predicate to
70 /// use in the new icmp instruction.
71 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
72                               InstCombiner::BuilderTy *Builder) {
73   ICmpInst::Predicate NewPred;
74   if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
75     return NewConstant;
76   return Builder->CreateICmp(NewPred, LHS, RHS);
77 }
78
79 /// This is the complement of getFCmpCode, which turns an opcode and two
80 /// operands into either a FCmp instruction. isordered is passed in to determine
81 /// which kind of predicate to use in the new fcmp instruction.
82 static Value *getFCmpValue(bool isordered, unsigned code,
83                            Value *LHS, Value *RHS,
84                            InstCombiner::BuilderTy *Builder) {
85   CmpInst::Predicate Pred;
86   switch (code) {
87   default: llvm_unreachable("Illegal FCmp code!");
88   case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
89   case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
90   case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
91   case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
92   case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
93   case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
94   case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
95   case 7:
96     if (!isordered)
97       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
98     Pred = FCmpInst::FCMP_ORD; break;
99   }
100   return Builder->CreateFCmp(Pred, LHS, RHS);
101 }
102
103 /// \brief Transform BITWISE_OP(BSWAP(A),BSWAP(B)) to BSWAP(BITWISE_OP(A, B))
104 /// \param I Binary operator to transform.
105 /// \return Pointer to node that must replace the original binary operator, or
106 ///         null pointer if no transformation was made.
107 Value *InstCombiner::SimplifyBSwap(BinaryOperator &I) {
108   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
109
110   // Can't do vectors.
111   if (I.getType()->isVectorTy()) return nullptr;
112
113   // Can only do bitwise ops.
114   unsigned Op = I.getOpcode();
115   if (Op != Instruction::And && Op != Instruction::Or &&
116       Op != Instruction::Xor)
117     return nullptr;
118
119   Value *OldLHS = I.getOperand(0);
120   Value *OldRHS = I.getOperand(1);
121   ConstantInt *ConstLHS = dyn_cast<ConstantInt>(OldLHS);
122   ConstantInt *ConstRHS = dyn_cast<ConstantInt>(OldRHS);
123   IntrinsicInst *IntrLHS = dyn_cast<IntrinsicInst>(OldLHS);
124   IntrinsicInst *IntrRHS = dyn_cast<IntrinsicInst>(OldRHS);
125   bool IsBswapLHS = (IntrLHS && IntrLHS->getIntrinsicID() == Intrinsic::bswap);
126   bool IsBswapRHS = (IntrRHS && IntrRHS->getIntrinsicID() == Intrinsic::bswap);
127
128   if (!IsBswapLHS && !IsBswapRHS)
129     return nullptr;
130
131   if (!IsBswapLHS && !ConstLHS)
132     return nullptr;
133
134   if (!IsBswapRHS && !ConstRHS)
135     return nullptr;
136
137   /// OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
138   /// OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
139   Value *NewLHS = IsBswapLHS ? IntrLHS->getOperand(0) :
140                   Builder->getInt(ConstLHS->getValue().byteSwap());
141
142   Value *NewRHS = IsBswapRHS ? IntrRHS->getOperand(0) :
143                   Builder->getInt(ConstRHS->getValue().byteSwap());
144
145   Value *BinOp = nullptr;
146   if (Op == Instruction::And)
147     BinOp = Builder->CreateAnd(NewLHS, NewRHS);
148   else if (Op == Instruction::Or)
149     BinOp = Builder->CreateOr(NewLHS, NewRHS);
150   else //if (Op == Instruction::Xor)
151     BinOp = Builder->CreateXor(NewLHS, NewRHS);
152
153   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap, ITy);
154   return Builder->CreateCall(F, BinOp);
155 }
156
157 /// This handles expressions of the form ((val OP C1) & C2).  Where
158 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
159 /// guaranteed to be a binary operator.
160 Instruction *InstCombiner::OptAndOp(Instruction *Op,
161                                     ConstantInt *OpRHS,
162                                     ConstantInt *AndRHS,
163                                     BinaryOperator &TheAnd) {
164   Value *X = Op->getOperand(0);
165   Constant *Together = nullptr;
166   if (!Op->isShift())
167     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
168
169   switch (Op->getOpcode()) {
170   case Instruction::Xor:
171     if (Op->hasOneUse()) {
172       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
173       Value *And = Builder->CreateAnd(X, AndRHS);
174       And->takeName(Op);
175       return BinaryOperator::CreateXor(And, Together);
176     }
177     break;
178   case Instruction::Or:
179     if (Op->hasOneUse()){
180       if (Together != OpRHS) {
181         // (X | C1) & C2 --> (X | (C1&C2)) & C2
182         Value *Or = Builder->CreateOr(X, Together);
183         Or->takeName(Op);
184         return BinaryOperator::CreateAnd(Or, AndRHS);
185       }
186
187       ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
188       if (TogetherCI && !TogetherCI->isZero()){
189         // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
190         // NOTE: This reduces the number of bits set in the & mask, which
191         // can expose opportunities for store narrowing.
192         Together = ConstantExpr::getXor(AndRHS, Together);
193         Value *And = Builder->CreateAnd(X, Together);
194         And->takeName(Op);
195         return BinaryOperator::CreateOr(And, OpRHS);
196       }
197     }
198
199     break;
200   case Instruction::Add:
201     if (Op->hasOneUse()) {
202       // Adding a one to a single bit bit-field should be turned into an XOR
203       // of the bit.  First thing to check is to see if this AND is with a
204       // single bit constant.
205       const APInt &AndRHSV = AndRHS->getValue();
206
207       // If there is only one bit set.
208       if (AndRHSV.isPowerOf2()) {
209         // Ok, at this point, we know that we are masking the result of the
210         // ADD down to exactly one bit.  If the constant we are adding has
211         // no bits set below this bit, then we can eliminate the ADD.
212         const APInt& AddRHS = OpRHS->getValue();
213
214         // Check to see if any bits below the one bit set in AndRHSV are set.
215         if ((AddRHS & (AndRHSV-1)) == 0) {
216           // If not, the only thing that can effect the output of the AND is
217           // the bit specified by AndRHSV.  If that bit is set, the effect of
218           // the XOR is to toggle the bit.  If it is clear, then the ADD has
219           // no effect.
220           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
221             TheAnd.setOperand(0, X);
222             return &TheAnd;
223           } else {
224             // Pull the XOR out of the AND.
225             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
226             NewAnd->takeName(Op);
227             return BinaryOperator::CreateXor(NewAnd, AndRHS);
228           }
229         }
230       }
231     }
232     break;
233
234   case Instruction::Shl: {
235     // We know that the AND will not produce any of the bits shifted in, so if
236     // the anded constant includes them, clear them now!
237     //
238     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
239     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
240     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
241     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShlMask);
242
243     if (CI->getValue() == ShlMask)
244       // Masking out bits that the shift already masks.
245       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
246
247     if (CI != AndRHS) {                  // Reducing bits set in and.
248       TheAnd.setOperand(1, CI);
249       return &TheAnd;
250     }
251     break;
252   }
253   case Instruction::LShr: {
254     // We know that the AND will not produce any of the bits shifted in, so if
255     // the anded constant includes them, clear them now!  This only applies to
256     // unsigned shifts, because a signed shr may bring in set bits!
257     //
258     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
259     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
260     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
261     ConstantInt *CI = Builder->getInt(AndRHS->getValue() & ShrMask);
262
263     if (CI->getValue() == ShrMask)
264       // Masking out bits that the shift already masks.
265       return ReplaceInstUsesWith(TheAnd, Op);
266
267     if (CI != AndRHS) {
268       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
269       return &TheAnd;
270     }
271     break;
272   }
273   case Instruction::AShr:
274     // Signed shr.
275     // See if this is shifting in some sign extension, then masking it out
276     // with an and.
277     if (Op->hasOneUse()) {
278       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
279       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
280       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
281       Constant *C = Builder->getInt(AndRHS->getValue() & ShrMask);
282       if (C == AndRHS) {          // Masking out bits shifted in.
283         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
284         // Make the argument unsigned.
285         Value *ShVal = Op->getOperand(0);
286         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
287         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
288       }
289     }
290     break;
291   }
292   return nullptr;
293 }
294
295 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
296 /// (V < Lo || V >= Hi).  In practice, we emit the more efficient
297 /// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
298 /// whether to treat the V, Lo and HI as signed or not. IB is the location to
299 /// insert new instructions.
300 Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
301                                      bool isSigned, bool Inside) {
302   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
303             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
304          "Lo is not <= Hi in range emission code!");
305
306   if (Inside) {
307     if (Lo == Hi)  // Trivially false.
308       return Builder->getFalse();
309
310     // V >= Min && V < Hi --> V < Hi
311     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
312       ICmpInst::Predicate pred = (isSigned ?
313         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
314       return Builder->CreateICmp(pred, V, Hi);
315     }
316
317     // Emit V-Lo <u Hi-Lo
318     Constant *NegLo = ConstantExpr::getNeg(Lo);
319     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
320     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
321     return Builder->CreateICmpULT(Add, UpperBound);
322   }
323
324   if (Lo == Hi)  // Trivially true.
325     return Builder->getTrue();
326
327   // V < Min || V >= Hi -> V > Hi-1
328   Hi = SubOne(cast<ConstantInt>(Hi));
329   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
330     ICmpInst::Predicate pred = (isSigned ?
331         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
332     return Builder->CreateICmp(pred, V, Hi);
333   }
334
335   // Emit V-Lo >u Hi-1-Lo
336   // Note that Hi has already had one subtracted from it, above.
337   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
338   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
339   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
340   return Builder->CreateICmpUGT(Add, LowerBound);
341 }
342
343 /// Returns true iff Val consists of one contiguous run of 1s with any number
344 /// of 0s on either side.  The 1s are allowed to wrap from LSB to MSB,
345 /// so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
346 /// not, since all 1s are not contiguous.
347 static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
348   const APInt& V = Val->getValue();
349   uint32_t BitWidth = Val->getType()->getBitWidth();
350   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
351
352   // look for the first zero bit after the run of ones
353   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
354   // look for the first non-zero bit
355   ME = V.getActiveBits();
356   return true;
357 }
358
359 /// This is part of an expression (LHS +/- RHS) & Mask, where isSub determines
360 /// whether the operator is a sub. If we can fold one of the following xforms:
361 ///
362 /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
363 /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
364 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
365 ///
366 /// return (A +/- B).
367 ///
368 Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
369                                         ConstantInt *Mask, bool isSub,
370                                         Instruction &I) {
371   Instruction *LHSI = dyn_cast<Instruction>(LHS);
372   if (!LHSI || LHSI->getNumOperands() != 2 ||
373       !isa<ConstantInt>(LHSI->getOperand(1))) return nullptr;
374
375   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
376
377   switch (LHSI->getOpcode()) {
378   default: return nullptr;
379   case Instruction::And:
380     if (ConstantExpr::getAnd(N, Mask) == Mask) {
381       // If the AndRHS is a power of two minus one (0+1+), this is simple.
382       if ((Mask->getValue().countLeadingZeros() +
383            Mask->getValue().countPopulation()) ==
384           Mask->getValue().getBitWidth())
385         break;
386
387       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
388       // part, we don't need any explicit masks to take them out of A.  If that
389       // is all N is, ignore it.
390       uint32_t MB = 0, ME = 0;
391       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
392         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
393         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
394         if (MaskedValueIsZero(RHS, Mask, 0, &I))
395           break;
396       }
397     }
398     return nullptr;
399   case Instruction::Or:
400   case Instruction::Xor:
401     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
402     if ((Mask->getValue().countLeadingZeros() +
403          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
404         && ConstantExpr::getAnd(N, Mask)->isNullValue())
405       break;
406     return nullptr;
407   }
408
409   if (isSub)
410     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
411   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
412 }
413
414 /// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
415 /// One of A and B is considered the mask, the other the value. This is
416 /// described as the "AMask" or "BMask" part of the enum. If the enum
417 /// contains only "Mask", then both A and B can be considered masks.
418 /// If A is the mask, then it was proven, that (A & C) == C. This
419 /// is trivial if C == A, or C == 0. If both A and C are constants, this
420 /// proof is also easy.
421 /// For the following explanations we assume that A is the mask.
422 /// The part "AllOnes" declares, that the comparison is true only
423 /// if (A & B) == A, or all bits of A are set in B.
424 ///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
425 /// The part "AllZeroes" declares, that the comparison is true only
426 /// if (A & B) == 0, or all bits of A are cleared in B.
427 ///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
428 /// The part "Mixed" declares, that (A & B) == C and C might or might not
429 /// contain any number of one bits and zero bits.
430 ///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
431 /// The Part "Not" means, that in above descriptions "==" should be replaced
432 /// by "!=".
433 ///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
434 /// If the mask A contains a single bit, then the following is equivalent:
435 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
436 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
437 enum MaskedICmpType {
438   FoldMskICmp_AMask_AllOnes           =     1,
439   FoldMskICmp_AMask_NotAllOnes        =     2,
440   FoldMskICmp_BMask_AllOnes           =     4,
441   FoldMskICmp_BMask_NotAllOnes        =     8,
442   FoldMskICmp_Mask_AllZeroes          =    16,
443   FoldMskICmp_Mask_NotAllZeroes       =    32,
444   FoldMskICmp_AMask_Mixed             =    64,
445   FoldMskICmp_AMask_NotMixed          =   128,
446   FoldMskICmp_BMask_Mixed             =   256,
447   FoldMskICmp_BMask_NotMixed          =   512
448 };
449
450 /// Return the set of pattern classes (from MaskedICmpType)
451 /// that (icmp SCC (A & B), C) satisfies.
452 static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
453                                     ICmpInst::Predicate SCC)
454 {
455   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
456   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
457   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
458   bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
459   bool icmp_abit = (ACst && !ACst->isZero() &&
460                     ACst->getValue().isPowerOf2());
461   bool icmp_bbit = (BCst && !BCst->isZero() &&
462                     BCst->getValue().isPowerOf2());
463   unsigned result = 0;
464   if (CCst && CCst->isZero()) {
465     // if C is zero, then both A and B qualify as mask
466     result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
467                           FoldMskICmp_Mask_AllZeroes |
468                           FoldMskICmp_AMask_Mixed |
469                           FoldMskICmp_BMask_Mixed)
470                        : (FoldMskICmp_Mask_NotAllZeroes |
471                           FoldMskICmp_Mask_NotAllZeroes |
472                           FoldMskICmp_AMask_NotMixed |
473                           FoldMskICmp_BMask_NotMixed));
474     if (icmp_abit)
475       result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
476                             FoldMskICmp_AMask_NotMixed)
477                          : (FoldMskICmp_AMask_AllOnes |
478                             FoldMskICmp_AMask_Mixed));
479     if (icmp_bbit)
480       result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
481                             FoldMskICmp_BMask_NotMixed)
482                          : (FoldMskICmp_BMask_AllOnes |
483                             FoldMskICmp_BMask_Mixed));
484     return result;
485   }
486   if (A == C) {
487     result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
488                           FoldMskICmp_AMask_Mixed)
489                        : (FoldMskICmp_AMask_NotAllOnes |
490                           FoldMskICmp_AMask_NotMixed));
491     if (icmp_abit)
492       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
493                             FoldMskICmp_AMask_NotMixed)
494                          : (FoldMskICmp_Mask_AllZeroes |
495                             FoldMskICmp_AMask_Mixed));
496   } else if (ACst && CCst &&
497              ConstantExpr::getAnd(ACst, CCst) == CCst) {
498     result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
499                        : FoldMskICmp_AMask_NotMixed);
500   }
501   if (B == C) {
502     result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
503                           FoldMskICmp_BMask_Mixed)
504                        : (FoldMskICmp_BMask_NotAllOnes |
505                           FoldMskICmp_BMask_NotMixed));
506     if (icmp_bbit)
507       result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
508                             FoldMskICmp_BMask_NotMixed)
509                          : (FoldMskICmp_Mask_AllZeroes |
510                             FoldMskICmp_BMask_Mixed));
511   } else if (BCst && CCst &&
512              ConstantExpr::getAnd(BCst, CCst) == CCst) {
513     result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
514                        : FoldMskICmp_BMask_NotMixed);
515   }
516   return result;
517 }
518
519 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
520 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
521 /// is adjacent to the corresponding normal flag (recording ==), this just
522 /// involves swapping those bits over.
523 static unsigned conjugateICmpMask(unsigned Mask) {
524   unsigned NewMask;
525   NewMask = (Mask & (FoldMskICmp_AMask_AllOnes | FoldMskICmp_BMask_AllOnes |
526                      FoldMskICmp_Mask_AllZeroes | FoldMskICmp_AMask_Mixed |
527                      FoldMskICmp_BMask_Mixed))
528             << 1;
529
530   NewMask |=
531       (Mask & (FoldMskICmp_AMask_NotAllOnes | FoldMskICmp_BMask_NotAllOnes |
532                FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_AMask_NotMixed |
533                FoldMskICmp_BMask_NotMixed))
534       >> 1;
535
536   return NewMask;
537 }
538
539 /// Decompose an icmp into the form ((X & Y) pred Z) if possible.
540 /// The returned predicate is either == or !=. Returns false if
541 /// decomposition fails.
542 static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
543                                  Value *&X, Value *&Y, Value *&Z) {
544   ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1));
545   if (!C)
546     return false;
547
548   switch (I->getPredicate()) {
549   default:
550     return false;
551   case ICmpInst::ICMP_SLT:
552     // X < 0 is equivalent to (X & SignBit) != 0.
553     if (!C->isZero())
554       return false;
555     Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
556     Pred = ICmpInst::ICMP_NE;
557     break;
558   case ICmpInst::ICMP_SGT:
559     // X > -1 is equivalent to (X & SignBit) == 0.
560     if (!C->isAllOnesValue())
561       return false;
562     Y = ConstantInt::get(I->getContext(), APInt::getSignBit(C->getBitWidth()));
563     Pred = ICmpInst::ICMP_EQ;
564     break;
565   case ICmpInst::ICMP_ULT:
566     // X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
567     if (!C->getValue().isPowerOf2())
568       return false;
569     Y = ConstantInt::get(I->getContext(), -C->getValue());
570     Pred = ICmpInst::ICMP_EQ;
571     break;
572   case ICmpInst::ICMP_UGT:
573     // X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
574     if (!(C->getValue() + 1).isPowerOf2())
575       return false;
576     Y = ConstantInt::get(I->getContext(), ~C->getValue());
577     Pred = ICmpInst::ICMP_NE;
578     break;
579   }
580
581   X = I->getOperand(0);
582   Z = ConstantInt::getNullValue(C->getType());
583   return true;
584 }
585
586 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
587 /// Return the set of pattern classes (from MaskedICmpType)
588 /// that both LHS and RHS satisfy.
589 static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
590                                              Value*& B, Value*& C,
591                                              Value*& D, Value*& E,
592                                              ICmpInst *LHS, ICmpInst *RHS,
593                                              ICmpInst::Predicate &LHSCC,
594                                              ICmpInst::Predicate &RHSCC) {
595   if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
596   // vectors are not (yet?) supported
597   if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
598
599   // Here comes the tricky part:
600   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
601   // and L11 & L12 == L21 & L22. The same goes for RHS.
602   // Now we must find those components L** and R**, that are equal, so
603   // that we can extract the parameters A, B, C, D, and E for the canonical
604   // above.
605   Value *L1 = LHS->getOperand(0);
606   Value *L2 = LHS->getOperand(1);
607   Value *L11,*L12,*L21,*L22;
608   // Check whether the icmp can be decomposed into a bit test.
609   if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
610     L21 = L22 = L1 = nullptr;
611   } else {
612     // Look for ANDs in the LHS icmp.
613     if (!L1->getType()->isIntegerTy()) {
614       // You can icmp pointers, for example. They really aren't masks.
615       L11 = L12 = nullptr;
616     } else if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
617       // Any icmp can be viewed as being trivially masked; if it allows us to
618       // remove one, it's worth it.
619       L11 = L1;
620       L12 = Constant::getAllOnesValue(L1->getType());
621     }
622
623     if (!L2->getType()->isIntegerTy()) {
624       // You can icmp pointers, for example. They really aren't masks.
625       L21 = L22 = nullptr;
626     } else if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
627       L21 = L2;
628       L22 = Constant::getAllOnesValue(L2->getType());
629     }
630   }
631
632   // Bail if LHS was a icmp that can't be decomposed into an equality.
633   if (!ICmpInst::isEquality(LHSCC))
634     return 0;
635
636   Value *R1 = RHS->getOperand(0);
637   Value *R2 = RHS->getOperand(1);
638   Value *R11,*R12;
639   bool ok = false;
640   if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
641     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
642       A = R11; D = R12;
643     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
644       A = R12; D = R11;
645     } else {
646       return 0;
647     }
648     E = R2; R1 = nullptr; ok = true;
649   } else if (R1->getType()->isIntegerTy()) {
650     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
651       // As before, model no mask as a trivial mask if it'll let us do an
652       // optimization.
653       R11 = R1;
654       R12 = Constant::getAllOnesValue(R1->getType());
655     }
656
657     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
658       A = R11; D = R12; E = R2; ok = true;
659     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
660       A = R12; D = R11; E = R2; ok = true;
661     }
662   }
663
664   // Bail if RHS was a icmp that can't be decomposed into an equality.
665   if (!ICmpInst::isEquality(RHSCC))
666     return 0;
667
668   // Look for ANDs in on the right side of the RHS icmp.
669   if (!ok && R2->getType()->isIntegerTy()) {
670     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
671       R11 = R2;
672       R12 = Constant::getAllOnesValue(R2->getType());
673     }
674
675     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
676       A = R11; D = R12; E = R1; ok = true;
677     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
678       A = R12; D = R11; E = R1; ok = true;
679     } else {
680       return 0;
681     }
682   }
683   if (!ok)
684     return 0;
685
686   if (L11 == A) {
687     B = L12; C = L2;
688   } else if (L12 == A) {
689     B = L11; C = L2;
690   } else if (L21 == A) {
691     B = L22; C = L1;
692   } else if (L22 == A) {
693     B = L21; C = L1;
694   }
695
696   unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
697   unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
698   return left_type & right_type;
699 }
700
701 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
702 /// into a single (icmp(A & X) ==/!= Y).
703 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
704                                      llvm::InstCombiner::BuilderTy *Builder) {
705   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
706   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
707   unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
708                                                LHSCC, RHSCC);
709   if (mask == 0) return nullptr;
710   assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
711          "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
712
713   // In full generality:
714   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
715   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
716   //
717   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
718   // equivalent to (icmp (A & X) !Op Y).
719   //
720   // Therefore, we can pretend for the rest of this function that we're dealing
721   // with the conjunction, provided we flip the sense of any comparisons (both
722   // input and output).
723
724   // In most cases we're going to produce an EQ for the "&&" case.
725   ICmpInst::Predicate NEWCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
726   if (!IsAnd) {
727     // Convert the masking analysis into its equivalent with negated
728     // comparisons.
729     mask = conjugateICmpMask(mask);
730   }
731
732   if (mask & FoldMskICmp_Mask_AllZeroes) {
733     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
734     // -> (icmp eq (A & (B|D)), 0)
735     Value *newOr = Builder->CreateOr(B, D);
736     Value *newAnd = Builder->CreateAnd(A, newOr);
737     // we can't use C as zero, because we might actually handle
738     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
739     // with B and D, having a single bit set
740     Value *zero = Constant::getNullValue(A->getType());
741     return Builder->CreateICmp(NEWCC, newAnd, zero);
742   }
743   if (mask & FoldMskICmp_BMask_AllOnes) {
744     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
745     // -> (icmp eq (A & (B|D)), (B|D))
746     Value *newOr = Builder->CreateOr(B, D);
747     Value *newAnd = Builder->CreateAnd(A, newOr);
748     return Builder->CreateICmp(NEWCC, newAnd, newOr);
749   }
750   if (mask & FoldMskICmp_AMask_AllOnes) {
751     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
752     // -> (icmp eq (A & (B&D)), A)
753     Value *newAnd1 = Builder->CreateAnd(B, D);
754     Value *newAnd = Builder->CreateAnd(A, newAnd1);
755     return Builder->CreateICmp(NEWCC, newAnd, A);
756   }
757
758   // Remaining cases assume at least that B and D are constant, and depend on
759   // their actual values. This isn't strictly, necessary, just a "handle the
760   // easy cases for now" decision.
761   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
762   if (!BCst) return nullptr;
763   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
764   if (!DCst) return nullptr;
765
766   if (mask & (FoldMskICmp_Mask_NotAllZeroes | FoldMskICmp_BMask_NotAllOnes)) {
767     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
768     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
769     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
770     // Only valid if one of the masks is a superset of the other (check "B&D" is
771     // the same as either B or D).
772     APInt NewMask = BCst->getValue() & DCst->getValue();
773
774     if (NewMask == BCst->getValue())
775       return LHS;
776     else if (NewMask == DCst->getValue())
777       return RHS;
778   }
779   if (mask & FoldMskICmp_AMask_NotAllOnes) {
780     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
781     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
782     // Only valid if one of the masks is a superset of the other (check "B|D" is
783     // the same as either B or D).
784     APInt NewMask = BCst->getValue() | DCst->getValue();
785
786     if (NewMask == BCst->getValue())
787       return LHS;
788     else if (NewMask == DCst->getValue())
789       return RHS;
790   }
791   if (mask & FoldMskICmp_BMask_Mixed) {
792     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
793     // We already know that B & C == C && D & E == E.
794     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
795     // C and E, which are shared by both the mask B and the mask D, don't
796     // contradict, then we can transform to
797     // -> (icmp eq (A & (B|D)), (C|E))
798     // Currently, we only handle the case of B, C, D, and E being constant.
799     // we can't simply use C and E, because we might actually handle
800     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
801     // with B and D, having a single bit set
802     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
803     if (!CCst) return nullptr;
804     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
805     if (!ECst) return nullptr;
806     if (LHSCC != NEWCC)
807       CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
808     if (RHSCC != NEWCC)
809       ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
810     // if there is a conflict we should actually return a false for the
811     // whole construct
812     if (((BCst->getValue() & DCst->getValue()) &
813          (CCst->getValue() ^ ECst->getValue())) != 0)
814       return ConstantInt::get(LHS->getType(), !IsAnd);
815     Value *newOr1 = Builder->CreateOr(B, D);
816     Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
817     Value *newAnd = Builder->CreateAnd(A, newOr1);
818     return Builder->CreateICmp(NEWCC, newAnd, newOr2);
819   }
820   return nullptr;
821 }
822
823 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
824 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
825 /// If \p Inverted is true then the check is for the inverted range, e.g.
826 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
827 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
828                                         bool Inverted) {
829   // Check the lower range comparison, e.g. x >= 0
830   // InstCombine already ensured that if there is a constant it's on the RHS.
831   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
832   if (!RangeStart)
833     return nullptr;
834
835   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
836                                Cmp0->getPredicate());
837
838   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
839   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
840         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
841     return nullptr;
842
843   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
844                                Cmp1->getPredicate());
845
846   Value *Input = Cmp0->getOperand(0);
847   Value *RangeEnd;
848   if (Cmp1->getOperand(0) == Input) {
849     // For the upper range compare we have: icmp x, n
850     RangeEnd = Cmp1->getOperand(1);
851   } else if (Cmp1->getOperand(1) == Input) {
852     // For the upper range compare we have: icmp n, x
853     RangeEnd = Cmp1->getOperand(0);
854     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
855   } else {
856     return nullptr;
857   }
858
859   // Check the upper range comparison, e.g. x < n
860   ICmpInst::Predicate NewPred;
861   switch (Pred1) {
862     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
863     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
864     default: return nullptr;
865   }
866
867   // This simplification is only valid if the upper range is not negative.
868   bool IsNegative, IsNotNegative;
869   ComputeSignBit(RangeEnd, IsNotNegative, IsNegative, /*Depth=*/0, Cmp1);
870   if (!IsNotNegative)
871     return nullptr;
872
873   if (Inverted)
874     NewPred = ICmpInst::getInversePredicate(NewPred);
875
876   return Builder->CreateICmp(NewPred, Input, RangeEnd);
877 }
878
879 /// Fold (icmp)&(icmp) if possible.
880 Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
881   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
882
883   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
884   if (PredicatesFoldable(LHSCC, RHSCC)) {
885     if (LHS->getOperand(0) == RHS->getOperand(1) &&
886         LHS->getOperand(1) == RHS->getOperand(0))
887       LHS->swapOperands();
888     if (LHS->getOperand(0) == RHS->getOperand(0) &&
889         LHS->getOperand(1) == RHS->getOperand(1)) {
890       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
891       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
892       bool isSigned = LHS->isSigned() || RHS->isSigned();
893       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
894     }
895   }
896
897   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
898   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
899     return V;
900
901   // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
902   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
903     return V;
904
905   // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
906   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
907     return V;
908
909   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
910   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
911   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
912   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
913   if (!LHSCst || !RHSCst) return nullptr;
914
915   if (LHSCst == RHSCst && LHSCC == RHSCC) {
916     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
917     // where C is a power of 2
918     if (LHSCC == ICmpInst::ICMP_ULT &&
919         LHSCst->getValue().isPowerOf2()) {
920       Value *NewOr = Builder->CreateOr(Val, Val2);
921       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
922     }
923
924     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
925     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
926       Value *NewOr = Builder->CreateOr(Val, Val2);
927       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
928     }
929   }
930
931   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
932   // where CMAX is the all ones value for the truncated type,
933   // iff the lower bits of C2 and CA are zero.
934   if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
935       LHS->hasOneUse() && RHS->hasOneUse()) {
936     Value *V;
937     ConstantInt *AndCst, *SmallCst = nullptr, *BigCst = nullptr;
938
939     // (trunc x) == C1 & (and x, CA) == C2
940     // (and x, CA) == C2 & (trunc x) == C1
941     if (match(Val2, m_Trunc(m_Value(V))) &&
942         match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
943       SmallCst = RHSCst;
944       BigCst = LHSCst;
945     } else if (match(Val, m_Trunc(m_Value(V))) &&
946                match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
947       SmallCst = LHSCst;
948       BigCst = RHSCst;
949     }
950
951     if (SmallCst && BigCst) {
952       unsigned BigBitSize = BigCst->getType()->getBitWidth();
953       unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
954
955       // Check that the low bits are zero.
956       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
957       if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
958         Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
959         APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
960         Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
961         return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
962       }
963     }
964   }
965
966   // From here on, we only handle:
967   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
968   if (Val != Val2) return nullptr;
969
970   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
971   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
972       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
973       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
974       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
975     return nullptr;
976
977   // Make a constant range that's the intersection of the two icmp ranges.
978   // If the intersection is empty, we know that the result is false.
979   ConstantRange LHSRange =
980       ConstantRange::makeAllowedICmpRegion(LHSCC, LHSCst->getValue());
981   ConstantRange RHSRange =
982       ConstantRange::makeAllowedICmpRegion(RHSCC, RHSCst->getValue());
983
984   if (LHSRange.intersectWith(RHSRange).isEmptySet())
985     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
986
987   // We can't fold (ugt x, C) & (sgt x, C2).
988   if (!PredicatesFoldable(LHSCC, RHSCC))
989     return nullptr;
990
991   // Ensure that the larger constant is on the RHS.
992   bool ShouldSwap;
993   if (CmpInst::isSigned(LHSCC) ||
994       (ICmpInst::isEquality(LHSCC) &&
995        CmpInst::isSigned(RHSCC)))
996     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
997   else
998     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
999
1000   if (ShouldSwap) {
1001     std::swap(LHS, RHS);
1002     std::swap(LHSCst, RHSCst);
1003     std::swap(LHSCC, RHSCC);
1004   }
1005
1006   // At this point, we know we have two icmp instructions
1007   // comparing a value against two constants and and'ing the result
1008   // together.  Because of the above check, we know that we only have
1009   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1010   // (from the icmp folding check above), that the two constants
1011   // are not equal and that the larger constant is on the RHS
1012   assert(LHSCst != RHSCst && "Compares not folded above?");
1013
1014   switch (LHSCC) {
1015   default: llvm_unreachable("Unknown integer condition code!");
1016   case ICmpInst::ICMP_EQ:
1017     switch (RHSCC) {
1018     default: llvm_unreachable("Unknown integer condition code!");
1019     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
1020     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
1021     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
1022       return LHS;
1023     }
1024   case ICmpInst::ICMP_NE:
1025     switch (RHSCC) {
1026     default: llvm_unreachable("Unknown integer condition code!");
1027     case ICmpInst::ICMP_ULT:
1028       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
1029         return Builder->CreateICmpULT(Val, LHSCst);
1030       if (LHSCst->isNullValue())    // (X !=  0 & X u< 14) -> X-1 u< 13
1031         return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
1032       break;                        // (X != 13 & X u< 15) -> no change
1033     case ICmpInst::ICMP_SLT:
1034       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
1035         return Builder->CreateICmpSLT(Val, LHSCst);
1036       break;                        // (X != 13 & X s< 15) -> no change
1037     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
1038     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
1039     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
1040       return RHS;
1041     case ICmpInst::ICMP_NE:
1042       // Special case to get the ordering right when the values wrap around
1043       // zero.
1044       if (LHSCst->getValue() == 0 && RHSCst->getValue().isAllOnesValue())
1045         std::swap(LHSCst, RHSCst);
1046       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
1047         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1048         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1049         return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1),
1050                                       Val->getName()+".cmp");
1051       }
1052       break;                        // (X != 13 & X != 15) -> no change
1053     }
1054     break;
1055   case ICmpInst::ICMP_ULT:
1056     switch (RHSCC) {
1057     default: llvm_unreachable("Unknown integer condition code!");
1058     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
1059     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
1060       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1061     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
1062       break;
1063     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
1064     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
1065       return LHS;
1066     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
1067       break;
1068     }
1069     break;
1070   case ICmpInst::ICMP_SLT:
1071     switch (RHSCC) {
1072     default: llvm_unreachable("Unknown integer condition code!");
1073     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
1074       break;
1075     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
1076     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
1077       return LHS;
1078     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
1079       break;
1080     }
1081     break;
1082   case ICmpInst::ICMP_UGT:
1083     switch (RHSCC) {
1084     default: llvm_unreachable("Unknown integer condition code!");
1085     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
1086     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
1087       return RHS;
1088     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
1089       break;
1090     case ICmpInst::ICMP_NE:
1091       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
1092         return Builder->CreateICmp(LHSCC, Val, RHSCst);
1093       break;                        // (X u> 13 & X != 15) -> no change
1094     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
1095       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
1096     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
1097       break;
1098     }
1099     break;
1100   case ICmpInst::ICMP_SGT:
1101     switch (RHSCC) {
1102     default: llvm_unreachable("Unknown integer condition code!");
1103     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
1104     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
1105       return RHS;
1106     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
1107       break;
1108     case ICmpInst::ICMP_NE:
1109       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
1110         return Builder->CreateICmp(LHSCC, Val, RHSCst);
1111       break;                        // (X s> 13 & X != 15) -> no change
1112     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
1113       return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
1114     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
1115       break;
1116     }
1117     break;
1118   }
1119
1120   return nullptr;
1121 }
1122
1123 /// Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of instcombine, this returns
1124 /// a Value which should already be inserted into the function.
1125 Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1126   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
1127       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
1128     if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType())
1129       return nullptr;
1130
1131     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
1132     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1133       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1134         // If either of the constants are nans, then the whole thing returns
1135         // false.
1136         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1137           return Builder->getFalse();
1138         return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1139       }
1140
1141     // Handle vector zeros.  This occurs because the canonical form of
1142     // "fcmp ord x,x" is "fcmp ord x, 0".
1143     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1144         isa<ConstantAggregateZero>(RHS->getOperand(1)))
1145       return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
1146     return nullptr;
1147   }
1148
1149   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1150   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1151   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1152
1153
1154   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1155     // Swap RHS operands to match LHS.
1156     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1157     std::swap(Op1LHS, Op1RHS);
1158   }
1159
1160   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1161     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1162     if (Op0CC == Op1CC)
1163       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
1164     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
1165       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1166     if (Op0CC == FCmpInst::FCMP_TRUE)
1167       return RHS;
1168     if (Op1CC == FCmpInst::FCMP_TRUE)
1169       return LHS;
1170
1171     bool Op0Ordered;
1172     bool Op1Ordered;
1173     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1174     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1175     // uno && ord -> false
1176     if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
1177         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1178     if (Op1Pred == 0) {
1179       std::swap(LHS, RHS);
1180       std::swap(Op0Pred, Op1Pred);
1181       std::swap(Op0Ordered, Op1Ordered);
1182     }
1183     if (Op0Pred == 0) {
1184       // uno && ueq -> uno && (uno || eq) -> uno
1185       // ord && olt -> ord && (ord && lt) -> olt
1186       if (!Op0Ordered && (Op0Ordered == Op1Ordered))
1187         return LHS;
1188       if (Op0Ordered && (Op0Ordered == Op1Ordered))
1189         return RHS;
1190
1191       // uno && oeq -> uno && (ord && eq) -> false
1192       if (!Op0Ordered)
1193         return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1194       // ord && ueq -> ord && (uno || eq) -> oeq
1195       return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
1196     }
1197   }
1198
1199   return nullptr;
1200 }
1201
1202 /// Match De Morgan's Laws:
1203 /// (~A & ~B) == (~(A | B))
1204 /// (~A | ~B) == (~(A & B))
1205 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1206                                        InstCombiner::BuilderTy *Builder) {
1207   auto Opcode = I.getOpcode();
1208   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1209          "Trying to match De Morgan's Laws with something other than and/or");
1210   // Flip the logic operation.
1211   if (Opcode == Instruction::And)
1212     Opcode = Instruction::Or;
1213   else
1214     Opcode = Instruction::And;
1215
1216   Value *Op0 = I.getOperand(0);
1217   Value *Op1 = I.getOperand(1);
1218   // TODO: Use pattern matchers instead of dyn_cast.
1219   if (Value *Op0NotVal = dyn_castNotVal(Op0))
1220     if (Value *Op1NotVal = dyn_castNotVal(Op1))
1221       if (Op0->hasOneUse() && Op1->hasOneUse()) {
1222         Value *LogicOp = Builder->CreateBinOp(Opcode, Op0NotVal, Op1NotVal,
1223                                               I.getName() + ".demorgan");
1224         return BinaryOperator::CreateNot(LogicOp);
1225       }
1226
1227   // De Morgan's Law in disguise:
1228   // (zext(bool A) ^ 1) & (zext(bool B) ^ 1) -> zext(~(A | B))
1229   // (zext(bool A) ^ 1) | (zext(bool B) ^ 1) -> zext(~(A & B))
1230   Value *A = nullptr;
1231   Value *B = nullptr;
1232   ConstantInt *C1 = nullptr;
1233   if (match(Op0, m_OneUse(m_Xor(m_ZExt(m_Value(A)), m_ConstantInt(C1)))) &&
1234       match(Op1, m_OneUse(m_Xor(m_ZExt(m_Value(B)), m_Specific(C1))))) {
1235     // TODO: This check could be loosened to handle different type sizes.
1236     // Alternatively, we could fix the definition of m_Not to recognize a not
1237     // operation hidden by a zext?
1238     if (A->getType()->isIntegerTy(1) && B->getType()->isIntegerTy(1) &&
1239         C1->isOne()) {
1240       Value *LogicOp = Builder->CreateBinOp(Opcode, A, B,
1241                                             I.getName() + ".demorgan");
1242       Value *Not = Builder->CreateNot(LogicOp);
1243       return CastInst::CreateZExtOrBitCast(Not, I.getType());
1244     }
1245   }
1246
1247   return nullptr;
1248 }
1249
1250 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1251   bool Changed = SimplifyAssociativeOrCommutative(I);
1252   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1253
1254   if (Value *V = SimplifyVectorOp(I))
1255     return ReplaceInstUsesWith(I, V);
1256
1257   if (Value *V = SimplifyAndInst(Op0, Op1, DL, TLI, DT, AC))
1258     return ReplaceInstUsesWith(I, V);
1259
1260   // (A|B)&(A|C) -> A|(B&C) etc
1261   if (Value *V = SimplifyUsingDistributiveLaws(I))
1262     return ReplaceInstUsesWith(I, V);
1263
1264   // See if we can simplify any instructions used by the instruction whose sole
1265   // purpose is to compute bits we don't care about.
1266   if (SimplifyDemandedInstructionBits(I))
1267     return &I;
1268
1269   if (Value *V = SimplifyBSwap(I))
1270     return ReplaceInstUsesWith(I, V);
1271
1272   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1273     const APInt &AndRHSMask = AndRHS->getValue();
1274
1275     // Optimize a variety of ((val OP C1) & C2) combinations...
1276     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1277       Value *Op0LHS = Op0I->getOperand(0);
1278       Value *Op0RHS = Op0I->getOperand(1);
1279       switch (Op0I->getOpcode()) {
1280       default: break;
1281       case Instruction::Xor:
1282       case Instruction::Or: {
1283         // If the mask is only needed on one incoming arm, push it up.
1284         if (!Op0I->hasOneUse()) break;
1285
1286         APInt NotAndRHS(~AndRHSMask);
1287         if (MaskedValueIsZero(Op0LHS, NotAndRHS, 0, &I)) {
1288           // Not masking anything out for the LHS, move to RHS.
1289           Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1290                                              Op0RHS->getName()+".masked");
1291           return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1292         }
1293         if (!isa<Constant>(Op0RHS) &&
1294             MaskedValueIsZero(Op0RHS, NotAndRHS, 0, &I)) {
1295           // Not masking anything out for the RHS, move to LHS.
1296           Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1297                                              Op0LHS->getName()+".masked");
1298           return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1299         }
1300
1301         break;
1302       }
1303       case Instruction::Add:
1304         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1305         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1306         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1307         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1308           return BinaryOperator::CreateAnd(V, AndRHS);
1309         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1310           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
1311         break;
1312
1313       case Instruction::Sub:
1314         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1315         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1316         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1317         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1318           return BinaryOperator::CreateAnd(V, AndRHS);
1319
1320         // -x & 1 -> x & 1
1321         if (AndRHSMask == 1 && match(Op0LHS, m_Zero()))
1322           return BinaryOperator::CreateAnd(Op0RHS, AndRHS);
1323
1324         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1325         // has 1's for all bits that the subtraction with A might affect.
1326         if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
1327           uint32_t BitWidth = AndRHSMask.getBitWidth();
1328           uint32_t Zeros = AndRHSMask.countLeadingZeros();
1329           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1330
1331           if (MaskedValueIsZero(Op0LHS, Mask, 0, &I)) {
1332             Value *NewNeg = Builder->CreateNeg(Op0RHS);
1333             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1334           }
1335         }
1336         break;
1337
1338       case Instruction::Shl:
1339       case Instruction::LShr:
1340         // (1 << x) & 1 --> zext(x == 0)
1341         // (1 >> x) & 1 --> zext(x == 0)
1342         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1343           Value *NewICmp =
1344             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1345           return new ZExtInst(NewICmp, I.getType());
1346         }
1347         break;
1348       }
1349
1350       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1351         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1352           return Res;
1353     }
1354
1355     // If this is an integer truncation, and if the source is an 'and' with
1356     // immediate, transform it.  This frequently occurs for bitfield accesses.
1357     {
1358       Value *X = nullptr; ConstantInt *YC = nullptr;
1359       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1360         // Change: and (trunc (and X, YC) to T), C2
1361         // into  : and (trunc X to T), trunc(YC) & C2
1362         // This will fold the two constants together, which may allow
1363         // other simplifications.
1364         Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1365         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1366         C3 = ConstantExpr::getAnd(C3, AndRHS);
1367         return BinaryOperator::CreateAnd(NewCast, C3);
1368       }
1369     }
1370
1371     // Try to fold constant and into select arguments.
1372     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1373       if (Instruction *R = FoldOpIntoSelect(I, SI))
1374         return R;
1375     if (isa<PHINode>(Op0))
1376       if (Instruction *NV = FoldOpIntoPhi(I))
1377         return NV;
1378   }
1379
1380   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
1381     return DeMorgan;
1382
1383   {
1384     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
1385     // (A|B) & ~(A&B) -> A^B
1386     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1387         match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1388         ((A == C && B == D) || (A == D && B == C)))
1389       return BinaryOperator::CreateXor(A, B);
1390
1391     // ~(A&B) & (A|B) -> A^B
1392     if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1393         match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1394         ((A == C && B == D) || (A == D && B == C)))
1395       return BinaryOperator::CreateXor(A, B);
1396
1397     // A&(A^B) => A & ~B
1398     {
1399       Value *tmpOp0 = Op0;
1400       Value *tmpOp1 = Op1;
1401       if (Op0->hasOneUse() &&
1402           match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1403         if (A == Op1 || B == Op1 ) {
1404           tmpOp1 = Op0;
1405           tmpOp0 = Op1;
1406           // Simplify below
1407         }
1408       }
1409
1410       if (tmpOp1->hasOneUse() &&
1411           match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
1412         if (B == tmpOp0) {
1413           std::swap(A, B);
1414         }
1415         // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
1416         // A is originally -1 (or a vector of -1 and undefs), then we enter
1417         // an endless loop. By checking that A is non-constant we ensure that
1418         // we will never get to the loop.
1419         if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
1420           return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
1421       }
1422     }
1423
1424     // (A&((~A)|B)) -> A&B
1425     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1426         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1427       return BinaryOperator::CreateAnd(A, Op1);
1428     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1429         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1430       return BinaryOperator::CreateAnd(A, Op0);
1431
1432     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1433     if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
1434       if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
1435         if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
1436           return BinaryOperator::CreateAnd(Op0, Builder->CreateNot(C));
1437
1438     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1439     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
1440       if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
1441         if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
1442           return BinaryOperator::CreateAnd(Op1, Builder->CreateNot(C));
1443
1444     // (A | B) & ((~A) ^ B) -> (A & B)
1445     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1446         match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
1447       return BinaryOperator::CreateAnd(A, B);
1448
1449     // ((~A) ^ B) & (A | B) -> (A & B)
1450     if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1451         match(Op1, m_Or(m_Specific(A), m_Specific(B))))
1452       return BinaryOperator::CreateAnd(A, B);
1453   }
1454
1455   {
1456     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
1457     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
1458     if (LHS && RHS)
1459       if (Value *Res = FoldAndOfICmps(LHS, RHS))
1460         return ReplaceInstUsesWith(I, Res);
1461
1462     // TODO: Make this recursive; it's a little tricky because an arbitrary
1463     // number of 'and' instructions might have to be created.
1464     Value *X, *Y;
1465     if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1466       if (auto *Cmp = dyn_cast<ICmpInst>(X))
1467         if (Value *Res = FoldAndOfICmps(LHS, Cmp))
1468           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
1469       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1470         if (Value *Res = FoldAndOfICmps(LHS, Cmp))
1471           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
1472     }
1473     if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1474       if (auto *Cmp = dyn_cast<ICmpInst>(X))
1475         if (Value *Res = FoldAndOfICmps(Cmp, RHS))
1476           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, Y));
1477       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1478         if (Value *Res = FoldAndOfICmps(Cmp, RHS))
1479           return ReplaceInstUsesWith(I, Builder->CreateAnd(Res, X));
1480     }
1481   }
1482
1483   // If and'ing two fcmp, try combine them into one.
1484   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1485     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1486       if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1487         return ReplaceInstUsesWith(I, Res);
1488
1489
1490   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
1491     Value *Op0COp = Op0C->getOperand(0);
1492     Type *SrcTy = Op0COp->getType();
1493     // fold (and (cast A), (cast B)) -> (cast (and A, B))
1494     if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
1495       if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1496           SrcTy == Op1C->getOperand(0)->getType() &&
1497           SrcTy->isIntOrIntVectorTy()) {
1498         Value *Op1COp = Op1C->getOperand(0);
1499
1500         // Only do this if the casts both really cause code to be generated.
1501         if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1502             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1503           Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
1504           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1505         }
1506
1507         // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1508         // cast is otherwise not optimizable.  This happens for vector sexts.
1509         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1510           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
1511             if (Value *Res = FoldAndOfICmps(LHS, RHS))
1512               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1513
1514         // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1515         // cast is otherwise not optimizable.  This happens for vector sexts.
1516         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1517           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
1518             if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1519               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1520       }
1521     }
1522
1523     // If we are masking off the sign bit of a floating-point value, convert
1524     // this to the canonical fabs intrinsic call and cast back to integer.
1525     // The backend should know how to optimize fabs().
1526     // TODO: This transform should also apply to vectors.
1527     ConstantInt *CI;
1528     if (isa<BitCastInst>(Op0C) && SrcTy->isFloatingPointTy() &&
1529         match(Op1, m_ConstantInt(CI)) && CI->isMaxValue(true)) {
1530       Module *M = I.getModule();
1531       Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, SrcTy);
1532       Value *Call = Builder->CreateCall(Fabs, Op0COp, "fabs");
1533       return CastInst::CreateBitOrPointerCast(Call, I.getType());
1534     }
1535   }
1536
1537   {
1538     Value *X = nullptr;
1539     bool OpsSwapped = false;
1540     // Canonicalize SExt or Not to the LHS
1541     if (match(Op1, m_SExt(m_Value())) ||
1542         match(Op1, m_Not(m_Value()))) {
1543       std::swap(Op0, Op1);
1544       OpsSwapped = true;
1545     }
1546
1547     // Fold (and (sext bool to A), B) --> (select bool, B, 0)
1548     if (match(Op0, m_SExt(m_Value(X))) &&
1549         X->getType()->getScalarType()->isIntegerTy(1)) {
1550       Value *Zero = Constant::getNullValue(Op1->getType());
1551       return SelectInst::Create(X, Op1, Zero);
1552     }
1553
1554     // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
1555     if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
1556         X->getType()->getScalarType()->isIntegerTy(1)) {
1557       Value *Zero = Constant::getNullValue(Op0->getType());
1558       return SelectInst::Create(X, Zero, Op1);
1559     }
1560
1561     if (OpsSwapped)
1562       std::swap(Op0, Op1);
1563   }
1564
1565   return Changed ? &I : nullptr;
1566 }
1567
1568
1569 /// Analyze the specified subexpression and see if it is capable of providing
1570 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1571 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1572 /// the output of the expression came from a corresponding bit in some other
1573 /// value. This function is recursive, and the end result is a mapping of
1574 /// (value, bitnumber) to bitnumber. It is the caller's responsibility to
1575 /// validate that all `value`s are identical and that the bitnumber to bitnumber
1576 /// mapping is correct for a bswap or bitreverse.
1577 ///
1578 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1579 /// that the expression deposits the low byte of %X into the high byte of the
1580 /// result and that all other bits are zero. This expression is accepted,
1581 /// BitValues[24-31] are set to %X and BitProvenance[24-31] are set to [0-7].
1582 ///
1583 /// This function returns true if the match was unsuccessful and false if so.
1584 /// On entry to the function the "OverallLeftShift" is a signed integer value
1585 /// indicating the number of bits that the subexpression is later shifted.  For
1586 /// example, if the expression is later right shifted by 16 bits, the
1587 /// OverallLeftShift value would be -16 on entry.  This is used to specify which
1588 /// bits of BitValues are actually being set.
1589 ///
1590 /// Similarly, BitMask is a bitmask where a bit is clear if its corresponding
1591 /// bit is masked to zero by a user.  For example, in (X & 255), X will be
1592 /// processed with a bytemask of 255. BitMask is always in the local
1593 /// (OverallLeftShift) coordinate space.
1594 ///
1595 static bool CollectBitParts(Value *V, int OverallLeftShift, APInt BitMask,
1596                             SmallVectorImpl<Value *> &BitValues,
1597                             SmallVectorImpl<int> &BitProvenance) {
1598   if (Instruction *I = dyn_cast<Instruction>(V)) {
1599     // If this is an or instruction, it may be an inner node of the bswap.
1600     if (I->getOpcode() == Instruction::Or)
1601       return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
1602                              BitValues, BitProvenance) ||
1603              CollectBitParts(I->getOperand(1), OverallLeftShift, BitMask,
1604                              BitValues, BitProvenance);
1605
1606     // If this is a logical shift by a constant, recurse with OverallLeftShift
1607     // and BitMask adjusted.
1608     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1609       unsigned ShAmt =
1610           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1611       // Ensure the shift amount is defined.
1612       if (ShAmt > BitValues.size())
1613         return true;
1614
1615       unsigned BitShift = ShAmt;
1616       if (I->getOpcode() == Instruction::Shl) {
1617         // X << C -> collect(X, +C)
1618         OverallLeftShift += BitShift;
1619         BitMask = BitMask.lshr(BitShift);
1620       } else {
1621         // X >>u C -> collect(X, -C)
1622         OverallLeftShift -= BitShift;
1623         BitMask = BitMask.shl(BitShift);
1624       }
1625
1626       if (OverallLeftShift >= (int)BitValues.size())
1627         return true;
1628       if (OverallLeftShift <= -(int)BitValues.size())
1629         return true;
1630
1631       return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
1632                              BitValues, BitProvenance);
1633     }
1634
1635     // If this is a logical 'and' with a mask that clears bits, clear the
1636     // corresponding bits in BitMask.
1637     if (I->getOpcode() == Instruction::And &&
1638         isa<ConstantInt>(I->getOperand(1))) {
1639       unsigned NumBits = BitValues.size();
1640       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
1641       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1642
1643       for (unsigned i = 0; i != NumBits; ++i, Bit <<= 1) {
1644         // If this bit is masked out by a later operation, we don't care what
1645         // the and mask is.
1646         if (BitMask[i] == 0)
1647           continue;
1648
1649         // If the AndMask is zero for this bit, clear the bit.
1650         APInt MaskB = AndMask & Bit;
1651         if (MaskB == 0) {
1652           BitMask.clearBit(i);
1653           continue;
1654         }
1655
1656         // Otherwise, this bit is kept.
1657       }
1658
1659       return CollectBitParts(I->getOperand(0), OverallLeftShift, BitMask,
1660                              BitValues, BitProvenance);
1661     }
1662   }
1663
1664   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1665   // the input value to the bswap/bitreverse. To be part of a bswap or
1666   // bitreverse we must be demanding a contiguous range of bits from it.
1667   unsigned InputBitLen = BitMask.countPopulation();
1668   unsigned InputBitNo = BitMask.countTrailingZeros();
1669   if (BitMask.getBitWidth() - BitMask.countLeadingZeros() - InputBitNo !=
1670       InputBitLen)
1671     // Not a contiguous set range of bits!
1672     return true;
1673
1674   // We know we're moving a contiguous range of bits from the input to the
1675   // output. Record which bits in the output came from which bits in the input.
1676   unsigned DestBitNo = InputBitNo + OverallLeftShift;
1677   for (unsigned I = 0; I < InputBitLen; ++I)
1678     BitProvenance[DestBitNo + I] = InputBitNo + I;
1679
1680   // If the destination bit value is already defined, the values are or'd
1681   // together, which isn't a bswap/bitreverse (unless it's an or of the same
1682   // bits).
1683   if (BitValues[DestBitNo] && BitValues[DestBitNo] != V)
1684     return true;
1685   for (unsigned I = 0; I < InputBitLen; ++I)
1686     BitValues[DestBitNo + I] = V;
1687
1688   return false;
1689 }
1690
1691 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
1692                                           unsigned BitWidth) {
1693   if (From % 8 != To % 8)
1694     return false;
1695   // Convert from bit indices to byte indices and check for a byte reversal.
1696   From >>= 3;
1697   To >>= 3;
1698   BitWidth >>= 3;
1699   return From == BitWidth - To - 1;
1700 }
1701
1702 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
1703                                                unsigned BitWidth) {
1704   return From == BitWidth - To - 1;
1705 }
1706
1707 /// Given an OR instruction, check to see if this is a bswap or bitreverse
1708 /// idiom. If so, insert the new intrinsic and return it.
1709 Instruction *InstCombiner::MatchBSwapOrBitReverse(BinaryOperator &I) {
1710   IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
1711   if (!ITy)
1712     return nullptr;   // Can't do vectors.
1713   unsigned BW = ITy->getBitWidth();
1714   
1715   /// We keep track of which bit (BitProvenance) inside which value (BitValues)
1716   /// defines each bit in the result.
1717   SmallVector<Value *, 8> BitValues(BW, nullptr);
1718   SmallVector<int, 8> BitProvenance(BW, -1);
1719   
1720   // Try to find all the pieces corresponding to the bswap.
1721   APInt BitMask = APInt::getAllOnesValue(BitValues.size());
1722   if (CollectBitParts(&I, 0, BitMask, BitValues, BitProvenance))
1723     return nullptr;
1724
1725   // Check to see if all of the bits come from the same value.
1726   Value *V = BitValues[0];
1727   if (!V) return nullptr;  // Didn't find a bit?  Must be zero.
1728
1729   if (!std::all_of(BitValues.begin(), BitValues.end(),
1730                    [&](const Value *X) { return X == V; }))
1731     return nullptr;
1732
1733   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
1734   // only byteswap values with an even number of bytes.
1735   bool OKForBSwap = BW % 16 == 0, OKForBitReverse = true;;
1736   for (unsigned i = 0, e = BitValues.size(); i != e; ++i) {
1737     OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[i], i, BW);
1738     OKForBitReverse &=
1739         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, BW);
1740   }
1741
1742   Intrinsic::ID Intrin;
1743   if (OKForBSwap)
1744     Intrin = Intrinsic::bswap;
1745   else if (OKForBitReverse)
1746     Intrin = Intrinsic::bitreverse;
1747   else
1748     return nullptr;
1749
1750   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrin, ITy);
1751   return CallInst::Create(F, V);
1752 }
1753
1754 /// We have an expression of the form (A&C)|(B&D).  Check if A is (cond?-1:0)
1755 /// and either B or D is ~(cond?-1,0) or (cond?0,-1), then we can simplify this
1756 /// expression to "cond ? C : D or B".
1757 static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1758                                          Value *C, Value *D) {
1759   // If A is not a select of -1/0, this cannot match.
1760   Value *Cond = nullptr;
1761   if (!match(A, m_SExt(m_Value(Cond))) ||
1762       !Cond->getType()->isIntegerTy(1))
1763     return nullptr;
1764
1765   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
1766   if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
1767     return SelectInst::Create(Cond, C, B);
1768   if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
1769     return SelectInst::Create(Cond, C, B);
1770
1771   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
1772   if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
1773     return SelectInst::Create(Cond, C, D);
1774   if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
1775     return SelectInst::Create(Cond, C, D);
1776   return nullptr;
1777 }
1778
1779 /// Fold (icmp)|(icmp) if possible.
1780 Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1781                                    Instruction *CxtI) {
1782   ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1783
1784   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
1785   // if K1 and K2 are a one-bit mask.
1786   ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1787   ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1788
1789   if (LHS->getPredicate() == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero() &&
1790       RHS->getPredicate() == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1791
1792     BinaryOperator *LAnd = dyn_cast<BinaryOperator>(LHS->getOperand(0));
1793     BinaryOperator *RAnd = dyn_cast<BinaryOperator>(RHS->getOperand(0));
1794     if (LAnd && RAnd && LAnd->hasOneUse() && RHS->hasOneUse() &&
1795         LAnd->getOpcode() == Instruction::And &&
1796         RAnd->getOpcode() == Instruction::And) {
1797
1798       Value *Mask = nullptr;
1799       Value *Masked = nullptr;
1800       if (LAnd->getOperand(0) == RAnd->getOperand(0) &&
1801           isKnownToBeAPowerOfTwo(LAnd->getOperand(1), DL, false, 0, AC, CxtI,
1802                                  DT) &&
1803           isKnownToBeAPowerOfTwo(RAnd->getOperand(1), DL, false, 0, AC, CxtI,
1804                                  DT)) {
1805         Mask = Builder->CreateOr(LAnd->getOperand(1), RAnd->getOperand(1));
1806         Masked = Builder->CreateAnd(LAnd->getOperand(0), Mask);
1807       } else if (LAnd->getOperand(1) == RAnd->getOperand(1) &&
1808                  isKnownToBeAPowerOfTwo(LAnd->getOperand(0), DL, false, 0, AC,
1809                                         CxtI, DT) &&
1810                  isKnownToBeAPowerOfTwo(RAnd->getOperand(0), DL, false, 0, AC,
1811                                         CxtI, DT)) {
1812         Mask = Builder->CreateOr(LAnd->getOperand(0), RAnd->getOperand(0));
1813         Masked = Builder->CreateAnd(LAnd->getOperand(1), Mask);
1814       }
1815
1816       if (Masked)
1817         return Builder->CreateICmp(ICmpInst::ICMP_NE, Masked, Mask);
1818     }
1819   }
1820
1821   // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
1822   //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
1823   // The original condition actually refers to the following two ranges:
1824   // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
1825   // We can fold these two ranges if:
1826   // 1) C1 and C2 is unsigned greater than C3.
1827   // 2) The two ranges are separated.
1828   // 3) C1 ^ C2 is one-bit mask.
1829   // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
1830   // This implies all values in the two ranges differ by exactly one bit.
1831
1832   if ((LHSCC == ICmpInst::ICMP_ULT || LHSCC == ICmpInst::ICMP_ULE) &&
1833       LHSCC == RHSCC && LHSCst && RHSCst && LHS->hasOneUse() &&
1834       RHS->hasOneUse() && LHSCst->getType() == RHSCst->getType() &&
1835       LHSCst->getValue() == (RHSCst->getValue())) {
1836
1837     Value *LAdd = LHS->getOperand(0);
1838     Value *RAdd = RHS->getOperand(0);
1839
1840     Value *LAddOpnd, *RAddOpnd;
1841     ConstantInt *LAddCst, *RAddCst;
1842     if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddCst))) &&
1843         match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddCst))) &&
1844         LAddCst->getValue().ugt(LHSCst->getValue()) &&
1845         RAddCst->getValue().ugt(LHSCst->getValue())) {
1846
1847       APInt DiffCst = LAddCst->getValue() ^ RAddCst->getValue();
1848       if (LAddOpnd == RAddOpnd && DiffCst.isPowerOf2()) {
1849         ConstantInt *MaxAddCst = nullptr;
1850         if (LAddCst->getValue().ult(RAddCst->getValue()))
1851           MaxAddCst = RAddCst;
1852         else
1853           MaxAddCst = LAddCst;
1854
1855         APInt RRangeLow = -RAddCst->getValue();
1856         APInt RRangeHigh = RRangeLow + LHSCst->getValue();
1857         APInt LRangeLow = -LAddCst->getValue();
1858         APInt LRangeHigh = LRangeLow + LHSCst->getValue();
1859         APInt LowRangeDiff = RRangeLow ^ LRangeLow;
1860         APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
1861         APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
1862                                                    : RRangeLow - LRangeLow;
1863
1864         if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
1865             RangeDiff.ugt(LHSCst->getValue())) {
1866           Value *MaskCst = ConstantInt::get(LAddCst->getType(), ~DiffCst);
1867
1868           Value *NewAnd = Builder->CreateAnd(LAddOpnd, MaskCst);
1869           Value *NewAdd = Builder->CreateAdd(NewAnd, MaxAddCst);
1870           return (Builder->CreateICmp(LHS->getPredicate(), NewAdd, LHSCst));
1871         }
1872       }
1873     }
1874   }
1875
1876   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1877   if (PredicatesFoldable(LHSCC, RHSCC)) {
1878     if (LHS->getOperand(0) == RHS->getOperand(1) &&
1879         LHS->getOperand(1) == RHS->getOperand(0))
1880       LHS->swapOperands();
1881     if (LHS->getOperand(0) == RHS->getOperand(0) &&
1882         LHS->getOperand(1) == RHS->getOperand(1)) {
1883       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1884       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1885       bool isSigned = LHS->isSigned() || RHS->isSigned();
1886       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
1887     }
1888   }
1889
1890   // handle (roughly):
1891   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1892   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
1893     return V;
1894
1895   Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1896   if (LHS->hasOneUse() || RHS->hasOneUse()) {
1897     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
1898     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
1899     Value *A = nullptr, *B = nullptr;
1900     if (LHSCC == ICmpInst::ICMP_EQ && LHSCst && LHSCst->isZero()) {
1901       B = Val;
1902       if (RHSCC == ICmpInst::ICMP_ULT && Val == RHS->getOperand(1))
1903         A = Val2;
1904       else if (RHSCC == ICmpInst::ICMP_UGT && Val == Val2)
1905         A = RHS->getOperand(1);
1906     }
1907     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
1908     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
1909     else if (RHSCC == ICmpInst::ICMP_EQ && RHSCst && RHSCst->isZero()) {
1910       B = Val2;
1911       if (LHSCC == ICmpInst::ICMP_ULT && Val2 == LHS->getOperand(1))
1912         A = Val;
1913       else if (LHSCC == ICmpInst::ICMP_UGT && Val2 == Val)
1914         A = LHS->getOperand(1);
1915     }
1916     if (A && B)
1917       return Builder->CreateICmp(
1918           ICmpInst::ICMP_UGE,
1919           Builder->CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
1920   }
1921
1922   // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
1923   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
1924     return V;
1925
1926   // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
1927   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
1928     return V;
1929  
1930   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1931   if (!LHSCst || !RHSCst) return nullptr;
1932
1933   if (LHSCst == RHSCst && LHSCC == RHSCC) {
1934     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1935     if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1936       Value *NewOr = Builder->CreateOr(Val, Val2);
1937       return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1938     }
1939   }
1940
1941   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
1942   //   iff C2 + CA == C1.
1943   if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
1944     ConstantInt *AddCst;
1945     if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1946       if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
1947         return Builder->CreateICmpULE(Val, LHSCst);
1948   }
1949
1950   // From here on, we only handle:
1951   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1952   if (Val != Val2) return nullptr;
1953
1954   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1955   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1956       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1957       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1958       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1959     return nullptr;
1960
1961   // We can't fold (ugt x, C) | (sgt x, C2).
1962   if (!PredicatesFoldable(LHSCC, RHSCC))
1963     return nullptr;
1964
1965   // Ensure that the larger constant is on the RHS.
1966   bool ShouldSwap;
1967   if (CmpInst::isSigned(LHSCC) ||
1968       (ICmpInst::isEquality(LHSCC) &&
1969        CmpInst::isSigned(RHSCC)))
1970     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1971   else
1972     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1973
1974   if (ShouldSwap) {
1975     std::swap(LHS, RHS);
1976     std::swap(LHSCst, RHSCst);
1977     std::swap(LHSCC, RHSCC);
1978   }
1979
1980   // At this point, we know we have two icmp instructions
1981   // comparing a value against two constants and or'ing the result
1982   // together.  Because of the above check, we know that we only have
1983   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1984   // icmp folding check above), that the two constants are not
1985   // equal.
1986   assert(LHSCst != RHSCst && "Compares not folded above?");
1987
1988   switch (LHSCC) {
1989   default: llvm_unreachable("Unknown integer condition code!");
1990   case ICmpInst::ICMP_EQ:
1991     switch (RHSCC) {
1992     default: llvm_unreachable("Unknown integer condition code!");
1993     case ICmpInst::ICMP_EQ:
1994       if (LHS->getOperand(0) == RHS->getOperand(0)) {
1995         // if LHSCst and RHSCst differ only by one bit:
1996         // (A == C1 || A == C2) -> (A | (C1 ^ C2)) == C2
1997         assert(LHSCst->getValue().ule(LHSCst->getValue()));
1998
1999         APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
2000         if (Xor.isPowerOf2()) {
2001           Value *Cst = Builder->getInt(Xor);
2002           Value *Or = Builder->CreateOr(LHS->getOperand(0), Cst);
2003           return Builder->CreateICmp(ICmpInst::ICMP_EQ, Or, RHSCst);
2004         }
2005       }
2006
2007       if (LHSCst == SubOne(RHSCst)) {
2008         // (X == 13 | X == 14) -> X-13 <u 2
2009         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
2010         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
2011         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
2012         return Builder->CreateICmpULT(Add, AddCST);
2013       }
2014
2015       break;                         // (X == 13 | X == 15) -> no change
2016     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
2017     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
2018       break;
2019     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
2020     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
2021     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
2022       return RHS;
2023     }
2024     break;
2025   case ICmpInst::ICMP_NE:
2026     switch (RHSCC) {
2027     default: llvm_unreachable("Unknown integer condition code!");
2028     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
2029     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
2030     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
2031       return LHS;
2032     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
2033     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
2034     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
2035       return Builder->getTrue();
2036     }
2037   case ICmpInst::ICMP_ULT:
2038     switch (RHSCC) {
2039     default: llvm_unreachable("Unknown integer condition code!");
2040     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
2041       break;
2042     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
2043       // If RHSCst is [us]MAXINT, it is always false.  Not handling
2044       // this can cause overflow.
2045       if (RHSCst->isMaxValue(false))
2046         return LHS;
2047       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
2048     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
2049       break;
2050     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
2051     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
2052       return RHS;
2053     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
2054       break;
2055     }
2056     break;
2057   case ICmpInst::ICMP_SLT:
2058     switch (RHSCC) {
2059     default: llvm_unreachable("Unknown integer condition code!");
2060     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
2061       break;
2062     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
2063       // If RHSCst is [us]MAXINT, it is always false.  Not handling
2064       // this can cause overflow.
2065       if (RHSCst->isMaxValue(true))
2066         return LHS;
2067       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
2068     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
2069       break;
2070     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
2071     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
2072       return RHS;
2073     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
2074       break;
2075     }
2076     break;
2077   case ICmpInst::ICMP_UGT:
2078     switch (RHSCC) {
2079     default: llvm_unreachable("Unknown integer condition code!");
2080     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
2081     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
2082       return LHS;
2083     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
2084       break;
2085     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
2086     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
2087       return Builder->getTrue();
2088     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
2089       break;
2090     }
2091     break;
2092   case ICmpInst::ICMP_SGT:
2093     switch (RHSCC) {
2094     default: llvm_unreachable("Unknown integer condition code!");
2095     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
2096     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
2097       return LHS;
2098     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
2099       break;
2100     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
2101     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
2102       return Builder->getTrue();
2103     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
2104       break;
2105     }
2106     break;
2107   }
2108   return nullptr;
2109 }
2110
2111 /// Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of instcombine, this returns
2112 /// a Value which should already be inserted into the function.
2113 Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
2114   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
2115       RHS->getPredicate() == FCmpInst::FCMP_UNO &&
2116       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
2117     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
2118       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
2119         // If either of the constants are nans, then the whole thing returns
2120         // true.
2121         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
2122           return Builder->getTrue();
2123
2124         // Otherwise, no need to compare the two constants, compare the
2125         // rest.
2126         return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
2127       }
2128
2129     // Handle vector zeros.  This occurs because the canonical form of
2130     // "fcmp uno x,x" is "fcmp uno x, 0".
2131     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
2132         isa<ConstantAggregateZero>(RHS->getOperand(1)))
2133       return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
2134
2135     return nullptr;
2136   }
2137
2138   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
2139   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
2140   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
2141
2142   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
2143     // Swap RHS operands to match LHS.
2144     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
2145     std::swap(Op1LHS, Op1RHS);
2146   }
2147   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
2148     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
2149     if (Op0CC == Op1CC)
2150       return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
2151     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
2152       return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
2153     if (Op0CC == FCmpInst::FCMP_FALSE)
2154       return RHS;
2155     if (Op1CC == FCmpInst::FCMP_FALSE)
2156       return LHS;
2157     bool Op0Ordered;
2158     bool Op1Ordered;
2159     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
2160     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
2161     if (Op0Ordered == Op1Ordered) {
2162       // If both are ordered or unordered, return a new fcmp with
2163       // or'ed predicates.
2164       return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
2165     }
2166   }
2167   return nullptr;
2168 }
2169
2170 /// This helper function folds:
2171 ///
2172 ///     ((A | B) & C1) | (B & C2)
2173 ///
2174 /// into:
2175 ///
2176 ///     (A & C1) | B
2177 ///
2178 /// when the XOR of the two constants is "all ones" (-1).
2179 Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
2180                                                Value *A, Value *B, Value *C) {
2181   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
2182   if (!CI1) return nullptr;
2183
2184   Value *V1 = nullptr;
2185   ConstantInt *CI2 = nullptr;
2186   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return nullptr;
2187
2188   APInt Xor = CI1->getValue() ^ CI2->getValue();
2189   if (!Xor.isAllOnesValue()) return nullptr;
2190
2191   if (V1 == A || V1 == B) {
2192     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
2193     return BinaryOperator::CreateOr(NewOp, V1);
2194   }
2195
2196   return nullptr;
2197 }
2198
2199 /// \brief This helper function folds:
2200 ///
2201 ///     ((A | B) & C1) ^ (B & C2)
2202 ///
2203 /// into:
2204 ///
2205 ///     (A & C1) ^ B
2206 ///
2207 /// when the XOR of the two constants is "all ones" (-1).
2208 Instruction *InstCombiner::FoldXorWithConstants(BinaryOperator &I, Value *Op,
2209                                                 Value *A, Value *B, Value *C) {
2210   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
2211   if (!CI1)
2212     return nullptr;
2213
2214   Value *V1 = nullptr;
2215   ConstantInt *CI2 = nullptr;
2216   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2))))
2217     return nullptr;
2218
2219   APInt Xor = CI1->getValue() ^ CI2->getValue();
2220   if (!Xor.isAllOnesValue())
2221     return nullptr;
2222
2223   if (V1 == A || V1 == B) {
2224     Value *NewOp = Builder->CreateAnd(V1 == A ? B : A, CI1);
2225     return BinaryOperator::CreateXor(NewOp, V1);
2226   }
2227
2228   return nullptr;
2229 }
2230
2231 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
2232   bool Changed = SimplifyAssociativeOrCommutative(I);
2233   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2234
2235   if (Value *V = SimplifyVectorOp(I))
2236     return ReplaceInstUsesWith(I, V);
2237
2238   if (Value *V = SimplifyOrInst(Op0, Op1, DL, TLI, DT, AC))
2239     return ReplaceInstUsesWith(I, V);
2240
2241   // (A&B)|(A&C) -> A&(B|C) etc
2242   if (Value *V = SimplifyUsingDistributiveLaws(I))
2243     return ReplaceInstUsesWith(I, V);
2244
2245   // See if we can simplify any instructions used by the instruction whose sole
2246   // purpose is to compute bits we don't care about.
2247   if (SimplifyDemandedInstructionBits(I))
2248     return &I;
2249
2250   if (Value *V = SimplifyBSwap(I))
2251     return ReplaceInstUsesWith(I, V);
2252
2253   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2254     ConstantInt *C1 = nullptr; Value *X = nullptr;
2255     // (X & C1) | C2 --> (X | C2) & (C1|C2)
2256     // iff (C1 & C2) == 0.
2257     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
2258         (RHS->getValue() & C1->getValue()) != 0 &&
2259         Op0->hasOneUse()) {
2260       Value *Or = Builder->CreateOr(X, RHS);
2261       Or->takeName(Op0);
2262       return BinaryOperator::CreateAnd(Or,
2263                              Builder->getInt(RHS->getValue() | C1->getValue()));
2264     }
2265
2266     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
2267     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
2268         Op0->hasOneUse()) {
2269       Value *Or = Builder->CreateOr(X, RHS);
2270       Or->takeName(Op0);
2271       return BinaryOperator::CreateXor(Or,
2272                             Builder->getInt(C1->getValue() & ~RHS->getValue()));
2273     }
2274
2275     // Try to fold constant and into select arguments.
2276     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2277       if (Instruction *R = FoldOpIntoSelect(I, SI))
2278         return R;
2279
2280     if (isa<PHINode>(Op0))
2281       if (Instruction *NV = FoldOpIntoPhi(I))
2282         return NV;
2283   }
2284
2285   Value *A = nullptr, *B = nullptr;
2286   ConstantInt *C1 = nullptr, *C2 = nullptr;
2287
2288   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
2289   bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
2290                  match(Op1, m_Or(m_Value(), m_Value()));
2291   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
2292   bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
2293                     match(Op1, m_LogicalShift(m_Value(), m_Value()));
2294   // (A & B) | (C & D)                              -> bswap if possible.
2295   bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
2296                   match(Op1, m_And(m_Value(), m_Value()));
2297
2298   if (OrOfOrs || OrOfShifts || OrOfAnds)
2299     if (Instruction *BSwap = MatchBSwapOrBitReverse(I))
2300       return BSwap;
2301
2302   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
2303   if (Op0->hasOneUse() &&
2304       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
2305       MaskedValueIsZero(Op1, C1->getValue(), 0, &I)) {
2306     Value *NOr = Builder->CreateOr(A, Op1);
2307     NOr->takeName(Op0);
2308     return BinaryOperator::CreateXor(NOr, C1);
2309   }
2310
2311   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
2312   if (Op1->hasOneUse() &&
2313       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
2314       MaskedValueIsZero(Op0, C1->getValue(), 0, &I)) {
2315     Value *NOr = Builder->CreateOr(A, Op0);
2316     NOr->takeName(Op0);
2317     return BinaryOperator::CreateXor(NOr, C1);
2318   }
2319
2320   // ((~A & B) | A) -> (A | B)
2321   if (match(Op0, m_And(m_Not(m_Value(A)), m_Value(B))) &&
2322       match(Op1, m_Specific(A)))
2323     return BinaryOperator::CreateOr(A, B);
2324
2325   // ((A & B) | ~A) -> (~A | B)
2326   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2327       match(Op1, m_Not(m_Specific(A))))
2328     return BinaryOperator::CreateOr(Builder->CreateNot(A), B);
2329
2330   // (A & (~B)) | (A ^ B) -> (A ^ B)
2331   if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2332       match(Op1, m_Xor(m_Specific(A), m_Specific(B))))
2333     return BinaryOperator::CreateXor(A, B);
2334
2335   // (A ^ B) | ( A & (~B)) -> (A ^ B)
2336   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2337       match(Op1, m_And(m_Specific(A), m_Not(m_Specific(B)))))
2338     return BinaryOperator::CreateXor(A, B);
2339
2340   // (A & C)|(B & D)
2341   Value *C = nullptr, *D = nullptr;
2342   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2343       match(Op1, m_And(m_Value(B), m_Value(D)))) {
2344     Value *V1 = nullptr, *V2 = nullptr;
2345     C1 = dyn_cast<ConstantInt>(C);
2346     C2 = dyn_cast<ConstantInt>(D);
2347     if (C1 && C2) {  // (A & C1)|(B & C2)
2348       if ((C1->getValue() & C2->getValue()) == 0) {
2349         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2350         // iff (C1&C2) == 0 and (N&~C1) == 0
2351         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2352             ((V1 == B &&
2353               MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
2354              (V2 == B &&
2355               MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
2356           return BinaryOperator::CreateAnd(A,
2357                                 Builder->getInt(C1->getValue()|C2->getValue()));
2358         // Or commutes, try both ways.
2359         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2360             ((V1 == A &&
2361               MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
2362              (V2 == A &&
2363               MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
2364           return BinaryOperator::CreateAnd(B,
2365                                 Builder->getInt(C1->getValue()|C2->getValue()));
2366
2367         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2368         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2369         ConstantInt *C3 = nullptr, *C4 = nullptr;
2370         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2371             (C3->getValue() & ~C1->getValue()) == 0 &&
2372             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2373             (C4->getValue() & ~C2->getValue()) == 0) {
2374           V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2375           return BinaryOperator::CreateAnd(V2,
2376                                 Builder->getInt(C1->getValue()|C2->getValue()));
2377         }
2378       }
2379     }
2380
2381     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
2382     // Don't do this for vector select idioms, the code generator doesn't handle
2383     // them well yet.
2384     if (!I.getType()->isVectorTy()) {
2385       if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
2386         return Match;
2387       if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
2388         return Match;
2389       if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
2390         return Match;
2391       if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
2392         return Match;
2393     }
2394
2395     // ((A&~B)|(~A&B)) -> A^B
2396     if ((match(C, m_Not(m_Specific(D))) &&
2397          match(B, m_Not(m_Specific(A)))))
2398       return BinaryOperator::CreateXor(A, D);
2399     // ((~B&A)|(~A&B)) -> A^B
2400     if ((match(A, m_Not(m_Specific(D))) &&
2401          match(B, m_Not(m_Specific(C)))))
2402       return BinaryOperator::CreateXor(C, D);
2403     // ((A&~B)|(B&~A)) -> A^B
2404     if ((match(C, m_Not(m_Specific(B))) &&
2405          match(D, m_Not(m_Specific(A)))))
2406       return BinaryOperator::CreateXor(A, B);
2407     // ((~B&A)|(B&~A)) -> A^B
2408     if ((match(A, m_Not(m_Specific(B))) &&
2409          match(D, m_Not(m_Specific(C)))))
2410       return BinaryOperator::CreateXor(C, B);
2411
2412     // ((A|B)&1)|(B&-2) -> (A&1) | B
2413     if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
2414         match(A, m_Or(m_Specific(B), m_Value(V1)))) {
2415       Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
2416       if (Ret) return Ret;
2417     }
2418     // (B&-2)|((A|B)&1) -> (A&1) | B
2419     if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
2420         match(B, m_Or(m_Value(V1), m_Specific(A)))) {
2421       Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
2422       if (Ret) return Ret;
2423     }
2424     // ((A^B)&1)|(B&-2) -> (A&1) ^ B
2425     if (match(A, m_Xor(m_Value(V1), m_Specific(B))) ||
2426         match(A, m_Xor(m_Specific(B), m_Value(V1)))) {
2427       Instruction *Ret = FoldXorWithConstants(I, Op1, V1, B, C);
2428       if (Ret) return Ret;
2429     }
2430     // (B&-2)|((A^B)&1) -> (A&1) ^ B
2431     if (match(B, m_Xor(m_Specific(A), m_Value(V1))) ||
2432         match(B, m_Xor(m_Value(V1), m_Specific(A)))) {
2433       Instruction *Ret = FoldXorWithConstants(I, Op0, A, V1, D);
2434       if (Ret) return Ret;
2435     }
2436   }
2437
2438   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2439   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2440     if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2441       if (Op1->hasOneUse() || cast<BinaryOperator>(Op1)->hasOneUse())
2442         return BinaryOperator::CreateOr(Op0, C);
2443
2444   // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2445   if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2446     if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2447       if (Op0->hasOneUse() || cast<BinaryOperator>(Op0)->hasOneUse())
2448         return BinaryOperator::CreateOr(Op1, C);
2449
2450   // ((B | C) & A) | B -> B | (A & C)
2451   if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2452     return BinaryOperator::CreateOr(Op1, Builder->CreateAnd(A, C));
2453
2454   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2455     return DeMorgan;
2456
2457   // Canonicalize xor to the RHS.
2458   bool SwappedForXor = false;
2459   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2460     std::swap(Op0, Op1);
2461     SwappedForXor = true;
2462   }
2463
2464   // A | ( A ^ B) -> A |  B
2465   // A | (~A ^ B) -> A | ~B
2466   // (A & B) | (A ^ B)
2467   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2468     if (Op0 == A || Op0 == B)
2469       return BinaryOperator::CreateOr(A, B);
2470
2471     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2472         match(Op0, m_And(m_Specific(B), m_Specific(A))))
2473       return BinaryOperator::CreateOr(A, B);
2474
2475     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2476       Value *Not = Builder->CreateNot(B, B->getName()+".not");
2477       return BinaryOperator::CreateOr(Not, Op0);
2478     }
2479     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2480       Value *Not = Builder->CreateNot(A, A->getName()+".not");
2481       return BinaryOperator::CreateOr(Not, Op0);
2482     }
2483   }
2484
2485   // A | ~(A | B) -> A | ~B
2486   // A | ~(A ^ B) -> A | ~B
2487   if (match(Op1, m_Not(m_Value(A))))
2488     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2489       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2490           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2491                                B->getOpcode() == Instruction::Xor)) {
2492         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2493                                                  B->getOperand(0);
2494         Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
2495         return BinaryOperator::CreateOr(Not, Op0);
2496       }
2497
2498   // (A & B) | ((~A) ^ B) -> (~A ^ B)
2499   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2500       match(Op1, m_Xor(m_Not(m_Specific(A)), m_Specific(B))))
2501     return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
2502
2503   // ((~A) ^ B) | (A & B) -> (~A ^ B)
2504   if (match(Op0, m_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2505       match(Op1, m_And(m_Specific(A), m_Specific(B))))
2506     return BinaryOperator::CreateXor(Builder->CreateNot(A), B);
2507
2508   if (SwappedForXor)
2509     std::swap(Op0, Op1);
2510
2511   {
2512     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2513     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2514     if (LHS && RHS)
2515       if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
2516         return ReplaceInstUsesWith(I, Res);
2517
2518     // TODO: Make this recursive; it's a little tricky because an arbitrary
2519     // number of 'or' instructions might have to be created.
2520     Value *X, *Y;
2521     if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2522       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2523         if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
2524           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
2525       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2526         if (Value *Res = FoldOrOfICmps(LHS, Cmp, &I))
2527           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
2528     }
2529     if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2530       if (auto *Cmp = dyn_cast<ICmpInst>(X))
2531         if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
2532           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, Y));
2533       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2534         if (Value *Res = FoldOrOfICmps(Cmp, RHS, &I))
2535           return ReplaceInstUsesWith(I, Builder->CreateOr(Res, X));
2536     }
2537   }
2538
2539   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
2540   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2541     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2542       if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2543         return ReplaceInstUsesWith(I, Res);
2544
2545   // fold (or (cast A), (cast B)) -> (cast (or A, B))
2546   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2547     CastInst *Op1C = dyn_cast<CastInst>(Op1);
2548     if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
2549       Type *SrcTy = Op0C->getOperand(0)->getType();
2550       if (SrcTy == Op1C->getOperand(0)->getType() &&
2551           SrcTy->isIntOrIntVectorTy()) {
2552         Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
2553
2554         if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
2555             // Only do this if the casts both really cause code to be
2556             // generated.
2557             ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
2558             ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
2559           Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
2560           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2561         }
2562
2563         // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
2564         // cast is otherwise not optimizable.  This happens for vector sexts.
2565         if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
2566           if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
2567             if (Value *Res = FoldOrOfICmps(LHS, RHS, &I))
2568               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2569
2570         // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
2571         // cast is otherwise not optimizable.  This happens for vector sexts.
2572         if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
2573           if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
2574             if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2575               return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2576       }
2577     }
2578   }
2579
2580   // or(sext(A), B) -> A ? -1 : B where A is an i1
2581   // or(A, sext(B)) -> B ? -1 : A where B is an i1
2582   if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2583     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2584   if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2585     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2586
2587   // Note: If we've gotten to the point of visiting the outer OR, then the
2588   // inner one couldn't be simplified.  If it was a constant, then it won't
2589   // be simplified by a later pass either, so we try swapping the inner/outer
2590   // ORs in the hopes that we'll be able to simplify it this way.
2591   // (X|C) | V --> (X|V) | C
2592   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2593       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2594     Value *Inner = Builder->CreateOr(A, Op1);
2595     Inner->takeName(Op0);
2596     return BinaryOperator::CreateOr(Inner, C1);
2597   }
2598
2599   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2600   // Since this OR statement hasn't been optimized further yet, we hope
2601   // that this transformation will allow the new ORs to be optimized.
2602   {
2603     Value *X = nullptr, *Y = nullptr;
2604     if (Op0->hasOneUse() && Op1->hasOneUse() &&
2605         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2606         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2607       Value *orTrue = Builder->CreateOr(A, C);
2608       Value *orFalse = Builder->CreateOr(B, D);
2609       return SelectInst::Create(X, orTrue, orFalse);
2610     }
2611   }
2612
2613   return Changed ? &I : nullptr;
2614 }
2615
2616 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2617   bool Changed = SimplifyAssociativeOrCommutative(I);
2618   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2619
2620   if (Value *V = SimplifyVectorOp(I))
2621     return ReplaceInstUsesWith(I, V);
2622
2623   if (Value *V = SimplifyXorInst(Op0, Op1, DL, TLI, DT, AC))
2624     return ReplaceInstUsesWith(I, V);
2625
2626   // (A&B)^(A&C) -> A&(B^C) etc
2627   if (Value *V = SimplifyUsingDistributiveLaws(I))
2628     return ReplaceInstUsesWith(I, V);
2629
2630   // See if we can simplify any instructions used by the instruction whose sole
2631   // purpose is to compute bits we don't care about.
2632   if (SimplifyDemandedInstructionBits(I))
2633     return &I;
2634
2635   if (Value *V = SimplifyBSwap(I))
2636     return ReplaceInstUsesWith(I, V);
2637
2638   // Is this a ~ operation?
2639   if (Value *NotOp = dyn_castNotVal(&I)) {
2640     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
2641       if (Op0I->getOpcode() == Instruction::And ||
2642           Op0I->getOpcode() == Instruction::Or) {
2643         // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2644         // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2645         if (dyn_castNotVal(Op0I->getOperand(1)))
2646           Op0I->swapOperands();
2647         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2648           Value *NotY =
2649             Builder->CreateNot(Op0I->getOperand(1),
2650                                Op0I->getOperand(1)->getName()+".not");
2651           if (Op0I->getOpcode() == Instruction::And)
2652             return BinaryOperator::CreateOr(Op0NotVal, NotY);
2653           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
2654         }
2655
2656         // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2657         // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2658         if (IsFreeToInvert(Op0I->getOperand(0),
2659                            Op0I->getOperand(0)->hasOneUse()) &&
2660             IsFreeToInvert(Op0I->getOperand(1),
2661                            Op0I->getOperand(1)->hasOneUse())) {
2662           Value *NotX =
2663             Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2664           Value *NotY =
2665             Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2666           if (Op0I->getOpcode() == Instruction::And)
2667             return BinaryOperator::CreateOr(NotX, NotY);
2668           return BinaryOperator::CreateAnd(NotX, NotY);
2669         }
2670
2671       } else if (Op0I->getOpcode() == Instruction::AShr) {
2672         // ~(~X >>s Y) --> (X >>s Y)
2673         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2674           return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
2675       }
2676     }
2677   }
2678
2679   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
2680     if (RHS->isAllOnesValue() && Op0->hasOneUse())
2681       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
2682       if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2683         return CmpInst::Create(CI->getOpcode(),
2684                                CI->getInversePredicate(),
2685                                CI->getOperand(0), CI->getOperand(1));
2686   }
2687
2688   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2689     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2690     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2691       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2692         if (CI->hasOneUse() && Op0C->hasOneUse()) {
2693           Instruction::CastOps Opcode = Op0C->getOpcode();
2694           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2695               (RHS == ConstantExpr::getCast(Opcode, Builder->getTrue(),
2696                                             Op0C->getDestTy()))) {
2697             CI->setPredicate(CI->getInversePredicate());
2698             return CastInst::Create(Opcode, CI, Op0C->getType());
2699           }
2700         }
2701       }
2702     }
2703
2704     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2705       // ~(c-X) == X-c-1 == X+(-c-1)
2706       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2707         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2708           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2709           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2710                                       ConstantInt::get(I.getType(), 1));
2711           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2712         }
2713
2714       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2715         if (Op0I->getOpcode() == Instruction::Add) {
2716           // ~(X-c) --> (-c-1)-X
2717           if (RHS->isAllOnesValue()) {
2718             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2719             return BinaryOperator::CreateSub(
2720                            ConstantExpr::getSub(NegOp0CI,
2721                                       ConstantInt::get(I.getType(), 1)),
2722                                       Op0I->getOperand(0));
2723           } else if (RHS->getValue().isSignBit()) {
2724             // (X + C) ^ signbit -> (X + C + signbit)
2725             Constant *C = Builder->getInt(RHS->getValue() + Op0CI->getValue());
2726             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2727
2728           }
2729         } else if (Op0I->getOpcode() == Instruction::Or) {
2730           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2731           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue(),
2732                                 0, &I)) {
2733             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2734             // Anything in both C1 and C2 is known to be zero, remove it from
2735             // NewRHS.
2736             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2737             NewRHS = ConstantExpr::getAnd(NewRHS,
2738                                        ConstantExpr::getNot(CommonBits));
2739             Worklist.Add(Op0I);
2740             I.setOperand(0, Op0I->getOperand(0));
2741             I.setOperand(1, NewRHS);
2742             return &I;
2743           }
2744         } else if (Op0I->getOpcode() == Instruction::LShr) {
2745           // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2746           // E1 = "X ^ C1"
2747           BinaryOperator *E1;
2748           ConstantInt *C1;
2749           if (Op0I->hasOneUse() &&
2750               (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
2751               E1->getOpcode() == Instruction::Xor &&
2752               (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
2753             // fold (C1 >> C2) ^ C3
2754             ConstantInt *C2 = Op0CI, *C3 = RHS;
2755             APInt FoldConst = C1->getValue().lshr(C2->getValue());
2756             FoldConst ^= C3->getValue();
2757             // Prepare the two operands.
2758             Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
2759             Opnd0->takeName(Op0I);
2760             cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
2761             Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
2762
2763             return BinaryOperator::CreateXor(Opnd0, FoldVal);
2764           }
2765         }
2766       }
2767     }
2768
2769     // Try to fold constant and into select arguments.
2770     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2771       if (Instruction *R = FoldOpIntoSelect(I, SI))
2772         return R;
2773     if (isa<PHINode>(Op0))
2774       if (Instruction *NV = FoldOpIntoPhi(I))
2775         return NV;
2776   }
2777
2778   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2779   if (Op1I) {
2780     Value *A, *B;
2781     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2782       if (A == Op0) {              // B^(B|A) == (A|B)^B
2783         Op1I->swapOperands();
2784         I.swapOperands();
2785         std::swap(Op0, Op1);
2786       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
2787         I.swapOperands();     // Simplified below.
2788         std::swap(Op0, Op1);
2789       }
2790     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2791                Op1I->hasOneUse()){
2792       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
2793         Op1I->swapOperands();
2794         std::swap(A, B);
2795       }
2796       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
2797         I.swapOperands();     // Simplified below.
2798         std::swap(Op0, Op1);
2799       }
2800     }
2801   }
2802
2803   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2804   if (Op0I) {
2805     Value *A, *B;
2806     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2807         Op0I->hasOneUse()) {
2808       if (A == Op1)                                  // (B|A)^B == (A|B)^B
2809         std::swap(A, B);
2810       if (B == Op1)                                  // (A|B)^B == A & ~B
2811         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
2812     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2813                Op0I->hasOneUse()){
2814       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
2815         std::swap(A, B);
2816       if (B == Op1 &&                                      // (B&A)^A == ~B & A
2817           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
2818         return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
2819       }
2820     }
2821   }
2822
2823   if (Op0I && Op1I) {
2824     Value *A, *B, *C, *D;
2825     // (A & B)^(A | B) -> A ^ B
2826     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2827         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2828       if ((A == C && B == D) || (A == D && B == C))
2829         return BinaryOperator::CreateXor(A, B);
2830     }
2831     // (A | B)^(A & B) -> A ^ B
2832     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2833         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2834       if ((A == C && B == D) || (A == D && B == C))
2835         return BinaryOperator::CreateXor(A, B);
2836     }
2837     // (A | ~B) ^ (~A | B) -> A ^ B
2838     if (match(Op0I, m_Or(m_Value(A), m_Not(m_Value(B)))) &&
2839         match(Op1I, m_Or(m_Not(m_Specific(A)), m_Specific(B)))) {
2840       return BinaryOperator::CreateXor(A, B);
2841     }
2842     // (~A | B) ^ (A | ~B) -> A ^ B
2843     if (match(Op0I, m_Or(m_Not(m_Value(A)), m_Value(B))) &&
2844         match(Op1I, m_Or(m_Specific(A), m_Not(m_Specific(B))))) {
2845       return BinaryOperator::CreateXor(A, B);
2846     }
2847     // (A & ~B) ^ (~A & B) -> A ^ B
2848     if (match(Op0I, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2849         match(Op1I, m_And(m_Not(m_Specific(A)), m_Specific(B)))) {
2850       return BinaryOperator::CreateXor(A, B);
2851     }
2852     // (~A & B) ^ (A & ~B) -> A ^ B
2853     if (match(Op0I, m_And(m_Not(m_Value(A)), m_Value(B))) &&
2854         match(Op1I, m_And(m_Specific(A), m_Not(m_Specific(B))))) {
2855       return BinaryOperator::CreateXor(A, B);
2856     }
2857     // (A ^ C)^(A | B) -> ((~A) & B) ^ C
2858     if (match(Op0I, m_Xor(m_Value(D), m_Value(C))) &&
2859         match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2860       if (D == A)
2861         return BinaryOperator::CreateXor(
2862             Builder->CreateAnd(Builder->CreateNot(A), B), C);
2863       if (D == B)
2864         return BinaryOperator::CreateXor(
2865             Builder->CreateAnd(Builder->CreateNot(B), A), C);
2866     }
2867     // (A | B)^(A ^ C) -> ((~A) & B) ^ C
2868     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2869         match(Op1I, m_Xor(m_Value(D), m_Value(C)))) {
2870       if (D == A)
2871         return BinaryOperator::CreateXor(
2872             Builder->CreateAnd(Builder->CreateNot(A), B), C);
2873       if (D == B)
2874         return BinaryOperator::CreateXor(
2875             Builder->CreateAnd(Builder->CreateNot(B), A), C);
2876     }
2877     // (A & B) ^ (A ^ B) -> (A | B)
2878     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2879         match(Op1I, m_Xor(m_Specific(A), m_Specific(B))))
2880       return BinaryOperator::CreateOr(A, B);
2881     // (A ^ B) ^ (A & B) -> (A | B)
2882     if (match(Op0I, m_Xor(m_Value(A), m_Value(B))) &&
2883         match(Op1I, m_And(m_Specific(A), m_Specific(B))))
2884       return BinaryOperator::CreateOr(A, B);
2885   }
2886
2887   Value *A = nullptr, *B = nullptr;
2888   // (A & ~B) ^ (~A) -> ~(A & B)
2889   if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2890       match(Op1, m_Not(m_Specific(A))))
2891     return BinaryOperator::CreateNot(Builder->CreateAnd(A, B));
2892
2893   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2894   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2895     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2896       if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2897         if (LHS->getOperand(0) == RHS->getOperand(1) &&
2898             LHS->getOperand(1) == RHS->getOperand(0))
2899           LHS->swapOperands();
2900         if (LHS->getOperand(0) == RHS->getOperand(0) &&
2901             LHS->getOperand(1) == RHS->getOperand(1)) {
2902           Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2903           unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2904           bool isSigned = LHS->isSigned() || RHS->isSigned();
2905           return ReplaceInstUsesWith(I,
2906                                getNewICmpValue(isSigned, Code, Op0, Op1,
2907                                                Builder));
2908         }
2909       }
2910
2911   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2912   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2913     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2914       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
2915         Type *SrcTy = Op0C->getOperand(0)->getType();
2916         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
2917             // Only do this if the casts both really cause code to be generated.
2918             ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2919                                I.getType()) &&
2920             ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2921                                I.getType())) {
2922           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2923                                             Op1C->getOperand(0), I.getName());
2924           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2925         }
2926       }
2927   }
2928
2929   return Changed ? &I : nullptr;
2930 }