[Inliner] Discard empty COMDAT groups
[oota-llvm.git] / lib / Transforms / IPO / Inliner.cpp
1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the mechanics required to implement inlining without
11 // missing any calls and updating the call graph.  The decisions of which calls
12 // are profitable to inline are implemented elsewhere.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/IPO/InlinerPass.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CallGraph.h"
22 #include "llvm/Analysis/InlineCost.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DiagnosticInfo.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/Cloning.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "inline"
38
39 STATISTIC(NumInlined, "Number of functions inlined");
40 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
41 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
42 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
43
44 // This weirdly named statistic tracks the number of times that, when attempting
45 // to inline a function A into B, we analyze the callers of B in order to see
46 // if those would be more profitable and blocked inline steps.
47 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
48
49 static cl::opt<int>
50 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
51         cl::desc("Control the amount of inlining to perform (default = 225)"));
52
53 static cl::opt<int>
54 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
55               cl::desc("Threshold for inlining functions with inline hint"));
56
57 // We instroduce this threshold to help performance of instrumentation based
58 // PGO before we actually hook up inliner with analysis passes such as BPI and
59 // BFI.
60 static cl::opt<int>
61 ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225),
62               cl::desc("Threshold for inlining functions with cold attribute"));
63
64 // Threshold to use when optsize is specified (and there is no -inline-limit).
65 const int OptSizeThreshold = 75;
66
67 Inliner::Inliner(char &ID) 
68   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
69
70 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
71   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
72                                           InlineLimit : Threshold),
73     InsertLifetime(InsertLifetime) {}
74
75 /// For this class, we declare that we require and preserve the call graph.
76 /// If the derived class implements this method, it should
77 /// always explicitly call the implementation here.
78 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
79   AU.addRequired<AliasAnalysis>();
80   AU.addRequired<AssumptionCacheTracker>();
81   CallGraphSCCPass::getAnalysisUsage(AU);
82 }
83
84
85 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
86 InlinedArrayAllocasTy;
87
88 /// \brief If the inlined function had a higher stack protection level than the
89 /// calling function, then bump up the caller's stack protection level.
90 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) {
91   // If upgrading the SSP attribute, clear out the old SSP Attributes first.
92   // Having multiple SSP attributes doesn't actually hurt, but it adds useless
93   // clutter to the IR.
94   AttrBuilder B;
95   B.addAttribute(Attribute::StackProtect)
96     .addAttribute(Attribute::StackProtectStrong);
97   AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(),
98                                               AttributeSet::FunctionIndex,
99                                               B);
100
101   if (Callee->hasFnAttribute(Attribute::StackProtectReq)) {
102     Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
103     Caller->addFnAttr(Attribute::StackProtectReq);
104   } else if (Callee->hasFnAttribute(Attribute::StackProtectStrong) &&
105              !Caller->hasFnAttribute(Attribute::StackProtectReq)) {
106     Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
107     Caller->addFnAttr(Attribute::StackProtectStrong);
108   } else if (Callee->hasFnAttribute(Attribute::StackProtect) &&
109              !Caller->hasFnAttribute(Attribute::StackProtectReq) &&
110              !Caller->hasFnAttribute(Attribute::StackProtectStrong))
111     Caller->addFnAttr(Attribute::StackProtect);
112 }
113
114 /// If it is possible to inline the specified call site,
115 /// do so and update the CallGraph for this operation.
116 ///
117 /// This function also does some basic book-keeping to update the IR.  The
118 /// InlinedArrayAllocas map keeps track of any allocas that are already
119 /// available from other functions inlined into the caller.  If we are able to
120 /// inline this call site we attempt to reuse already available allocas or add
121 /// any new allocas to the set if not possible.
122 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
123                                  InlinedArrayAllocasTy &InlinedArrayAllocas,
124                                  int InlineHistory, bool InsertLifetime) {
125   Function *Callee = CS.getCalledFunction();
126   Function *Caller = CS.getCaller();
127
128   // Try to inline the function.  Get the list of static allocas that were
129   // inlined.
130   if (!InlineFunction(CS, IFI, InsertLifetime))
131     return false;
132
133   AdjustCallerSSPLevel(Caller, Callee);
134
135   // Look at all of the allocas that we inlined through this call site.  If we
136   // have already inlined other allocas through other calls into this function,
137   // then we know that they have disjoint lifetimes and that we can merge them.
138   //
139   // There are many heuristics possible for merging these allocas, and the
140   // different options have different tradeoffs.  One thing that we *really*
141   // don't want to hurt is SRoA: once inlining happens, often allocas are no
142   // longer address taken and so they can be promoted.
143   //
144   // Our "solution" for that is to only merge allocas whose outermost type is an
145   // array type.  These are usually not promoted because someone is using a
146   // variable index into them.  These are also often the most important ones to
147   // merge.
148   //
149   // A better solution would be to have real memory lifetime markers in the IR
150   // and not have the inliner do any merging of allocas at all.  This would
151   // allow the backend to do proper stack slot coloring of all allocas that
152   // *actually make it to the backend*, which is really what we want.
153   //
154   // Because we don't have this information, we do this simple and useful hack.
155   //
156   SmallPtrSet<AllocaInst*, 16> UsedAllocas;
157   
158   // When processing our SCC, check to see if CS was inlined from some other
159   // call site.  For example, if we're processing "A" in this code:
160   //   A() { B() }
161   //   B() { x = alloca ... C() }
162   //   C() { y = alloca ... }
163   // Assume that C was not inlined into B initially, and so we're processing A
164   // and decide to inline B into A.  Doing this makes an alloca available for
165   // reuse and makes a callsite (C) available for inlining.  When we process
166   // the C call site we don't want to do any alloca merging between X and Y
167   // because their scopes are not disjoint.  We could make this smarter by
168   // keeping track of the inline history for each alloca in the
169   // InlinedArrayAllocas but this isn't likely to be a significant win.
170   if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
171     return true;
172   
173   // Loop over all the allocas we have so far and see if they can be merged with
174   // a previously inlined alloca.  If not, remember that we had it.
175   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
176        AllocaNo != e; ++AllocaNo) {
177     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
178     
179     // Don't bother trying to merge array allocations (they will usually be
180     // canonicalized to be an allocation *of* an array), or allocations whose
181     // type is not itself an array (because we're afraid of pessimizing SRoA).
182     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
183     if (!ATy || AI->isArrayAllocation())
184       continue;
185     
186     // Get the list of all available allocas for this array type.
187     std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
188     
189     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
190     // that we have to be careful not to reuse the same "available" alloca for
191     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
192     // set to keep track of which "available" allocas are being used by this
193     // function.  Also, AllocasForType can be empty of course!
194     bool MergedAwayAlloca = false;
195     for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
196       AllocaInst *AvailableAlloca = AllocasForType[i];
197
198       unsigned Align1 = AI->getAlignment(),
199                Align2 = AvailableAlloca->getAlignment();
200       
201       // The available alloca has to be in the right function, not in some other
202       // function in this SCC.
203       if (AvailableAlloca->getParent() != AI->getParent())
204         continue;
205       
206       // If the inlined function already uses this alloca then we can't reuse
207       // it.
208       if (!UsedAllocas.insert(AvailableAlloca).second)
209         continue;
210       
211       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
212       // success!
213       DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
214                    << *AvailableAlloca << '\n');
215       
216       AI->replaceAllUsesWith(AvailableAlloca);
217
218       if (Align1 != Align2) {
219         if (!Align1 || !Align2) {
220           const DataLayout &DL = Caller->getParent()->getDataLayout();
221           unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
222
223           Align1 = Align1 ? Align1 : TypeAlign;
224           Align2 = Align2 ? Align2 : TypeAlign;
225         }
226
227         if (Align1 > Align2)
228           AvailableAlloca->setAlignment(AI->getAlignment());
229       }
230
231       AI->eraseFromParent();
232       MergedAwayAlloca = true;
233       ++NumMergedAllocas;
234       IFI.StaticAllocas[AllocaNo] = nullptr;
235       break;
236     }
237
238     // If we already nuked the alloca, we're done with it.
239     if (MergedAwayAlloca)
240       continue;
241     
242     // If we were unable to merge away the alloca either because there are no
243     // allocas of the right type available or because we reused them all
244     // already, remember that this alloca came from an inlined function and mark
245     // it used so we don't reuse it for other allocas from this inline
246     // operation.
247     AllocasForType.push_back(AI);
248     UsedAllocas.insert(AI);
249   }
250   
251   return true;
252 }
253
254 unsigned Inliner::getInlineThreshold(CallSite CS) const {
255   int thres = InlineThreshold; // -inline-threshold or else selected by
256                                // overall opt level
257
258   // If -inline-threshold is not given, listen to the optsize attribute when it
259   // would decrease the threshold.
260   Function *Caller = CS.getCaller();
261   bool OptSize = Caller && !Caller->isDeclaration() &&
262                  Caller->hasFnAttribute(Attribute::OptimizeForSize);
263   if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
264       OptSizeThreshold < thres)
265     thres = OptSizeThreshold;
266
267   // Listen to the inlinehint attribute when it would increase the threshold
268   // and the caller does not need to minimize its size.
269   Function *Callee = CS.getCalledFunction();
270   bool InlineHint = Callee && !Callee->isDeclaration() &&
271                     Callee->hasFnAttribute(Attribute::InlineHint);
272   if (InlineHint && HintThreshold > thres &&
273       !Caller->hasFnAttribute(Attribute::MinSize))
274     thres = HintThreshold;
275
276   // Listen to the cold attribute when it would decrease the threshold.
277   bool ColdCallee = Callee && !Callee->isDeclaration() &&
278                     Callee->hasFnAttribute(Attribute::Cold);
279   // Command line argument for InlineLimit will override the default
280   // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold,
281   // do not use the default cold threshold even if it is smaller.
282   if ((InlineLimit.getNumOccurrences() == 0 ||
283        ColdThreshold.getNumOccurrences() > 0) && ColdCallee &&
284       ColdThreshold < thres)
285     thres = ColdThreshold;
286
287   return thres;
288 }
289
290 static void emitAnalysis(CallSite CS, const Twine &Msg) {
291   Function *Caller = CS.getCaller();
292   LLVMContext &Ctx = Caller->getContext();
293   DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
294   emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg);
295 }
296
297 /// Return true if the inliner should attempt to inline at the given CallSite.
298 bool Inliner::shouldInline(CallSite CS) {
299   InlineCost IC = getInlineCost(CS);
300   
301   if (IC.isAlways()) {
302     DEBUG(dbgs() << "    Inlining: cost=always"
303           << ", Call: " << *CS.getInstruction() << "\n");
304     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) +
305                          " should always be inlined (cost=always)");
306     return true;
307   }
308   
309   if (IC.isNever()) {
310     DEBUG(dbgs() << "    NOT Inlining: cost=never"
311           << ", Call: " << *CS.getInstruction() << "\n");
312     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
313                            " should never be inlined (cost=never)"));
314     return false;
315   }
316   
317   Function *Caller = CS.getCaller();
318   if (!IC) {
319     DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
320           << ", thres=" << (IC.getCostDelta() + IC.getCost())
321           << ", Call: " << *CS.getInstruction() << "\n");
322     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
323                            " too costly to inline (cost=") +
324                          Twine(IC.getCost()) + ", threshold=" +
325                          Twine(IC.getCostDelta() + IC.getCost()) + ")");
326     return false;
327   }
328   
329   // Try to detect the case where the current inlining candidate caller (call
330   // it B) is a static or linkonce-ODR function and is an inlining candidate
331   // elsewhere, and the current candidate callee (call it C) is large enough
332   // that inlining it into B would make B too big to inline later. In these
333   // circumstances it may be best not to inline C into B, but to inline B into
334   // its callers.
335   //
336   // This only applies to static and linkonce-ODR functions because those are
337   // expected to be available for inlining in the translation units where they
338   // are used. Thus we will always have the opportunity to make local inlining
339   // decisions. Importantly the linkonce-ODR linkage covers inline functions
340   // and templates in C++.
341   //
342   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
343   // the internal implementation of the inline cost metrics rather than
344   // treating them as truly abstract units etc.
345   if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) {
346     int TotalSecondaryCost = 0;
347     // The candidate cost to be imposed upon the current function.
348     int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
349     // This bool tracks what happens if we do NOT inline C into B.
350     bool callerWillBeRemoved = Caller->hasLocalLinkage();
351     // This bool tracks what happens if we DO inline C into B.
352     bool inliningPreventsSomeOuterInline = false;
353     for (User *U : Caller->users()) {
354       CallSite CS2(U);
355
356       // If this isn't a call to Caller (it could be some other sort
357       // of reference) skip it.  Such references will prevent the caller
358       // from being removed.
359       if (!CS2 || CS2.getCalledFunction() != Caller) {
360         callerWillBeRemoved = false;
361         continue;
362       }
363
364       InlineCost IC2 = getInlineCost(CS2);
365       ++NumCallerCallersAnalyzed;
366       if (!IC2) {
367         callerWillBeRemoved = false;
368         continue;
369       }
370       if (IC2.isAlways())
371         continue;
372
373       // See if inlining or original callsite would erase the cost delta of
374       // this callsite. We subtract off the penalty for the call instruction,
375       // which we would be deleting.
376       if (IC2.getCostDelta() <= CandidateCost) {
377         inliningPreventsSomeOuterInline = true;
378         TotalSecondaryCost += IC2.getCost();
379       }
380     }
381     // If all outer calls to Caller would get inlined, the cost for the last
382     // one is set very low by getInlineCost, in anticipation that Caller will
383     // be removed entirely.  We did not account for this above unless there
384     // is only one caller of Caller.
385     if (callerWillBeRemoved && !Caller->use_empty())
386       TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
387
388     if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
389       DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
390            " Cost = " << IC.getCost() <<
391            ", outer Cost = " << TotalSecondaryCost << '\n');
392       emitAnalysis(
393           CS, Twine("Not inlining. Cost of inlining " +
394                     CS.getCalledFunction()->getName() +
395                     " increases the cost of inlining " +
396                     CS.getCaller()->getName() + " in other contexts"));
397       return false;
398     }
399   }
400
401   DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
402         << ", thres=" << (IC.getCostDelta() + IC.getCost())
403         << ", Call: " << *CS.getInstruction() << '\n');
404   emitAnalysis(
405       CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") +
406               CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) +
407               " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")");
408   return true;
409 }
410
411 /// Return true if the specified inline history ID
412 /// indicates an inline history that includes the specified function.
413 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
414             const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
415   while (InlineHistoryID != -1) {
416     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
417            "Invalid inline history ID");
418     if (InlineHistory[InlineHistoryID].first == F)
419       return true;
420     InlineHistoryID = InlineHistory[InlineHistoryID].second;
421   }
422   return false;
423 }
424
425 bool Inliner::runOnSCC(CallGraphSCC &SCC) {
426   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
427   AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>();
428   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
429   const TargetLibraryInfo *TLI = TLIP ? &TLIP->getTLI() : nullptr;
430   AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
431
432   SmallPtrSet<Function*, 8> SCCFunctions;
433   DEBUG(dbgs() << "Inliner visiting SCC:");
434   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
435     Function *F = (*I)->getFunction();
436     if (F) SCCFunctions.insert(F);
437     DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
438   }
439
440   // Scan through and identify all call sites ahead of time so that we only
441   // inline call sites in the original functions, not call sites that result
442   // from inlining other functions.
443   SmallVector<std::pair<CallSite, int>, 16> CallSites;
444   
445   // When inlining a callee produces new call sites, we want to keep track of
446   // the fact that they were inlined from the callee.  This allows us to avoid
447   // infinite inlining in some obscure cases.  To represent this, we use an
448   // index into the InlineHistory vector.
449   SmallVector<std::pair<Function*, int>, 8> InlineHistory;
450
451   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
452     Function *F = (*I)->getFunction();
453     if (!F) continue;
454     
455     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
456       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
457         CallSite CS(cast<Value>(I));
458         // If this isn't a call, or it is a call to an intrinsic, it can
459         // never be inlined.
460         if (!CS || isa<IntrinsicInst>(I))
461           continue;
462         
463         // If this is a direct call to an external function, we can never inline
464         // it.  If it is an indirect call, inlining may resolve it to be a
465         // direct call, so we keep it.
466         if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
467           continue;
468         
469         CallSites.push_back(std::make_pair(CS, -1));
470       }
471   }
472
473   DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
474
475   // If there are no calls in this function, exit early.
476   if (CallSites.empty())
477     return false;
478   
479   // Now that we have all of the call sites, move the ones to functions in the
480   // current SCC to the end of the list.
481   unsigned FirstCallInSCC = CallSites.size();
482   for (unsigned i = 0; i < FirstCallInSCC; ++i)
483     if (Function *F = CallSites[i].first.getCalledFunction())
484       if (SCCFunctions.count(F))
485         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
486
487   
488   InlinedArrayAllocasTy InlinedArrayAllocas;
489   InlineFunctionInfo InlineInfo(&CG, AA, ACT);
490
491   // Now that we have all of the call sites, loop over them and inline them if
492   // it looks profitable to do so.
493   bool Changed = false;
494   bool LocalChange;
495   do {
496     LocalChange = false;
497     // Iterate over the outer loop because inlining functions can cause indirect
498     // calls to become direct calls.
499     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
500       CallSite CS = CallSites[CSi].first;
501       
502       Function *Caller = CS.getCaller();
503       Function *Callee = CS.getCalledFunction();
504
505       // If this call site is dead and it is to a readonly function, we should
506       // just delete the call instead of trying to inline it, regardless of
507       // size.  This happens because IPSCCP propagates the result out of the
508       // call and then we're left with the dead call.
509       if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) {
510         DEBUG(dbgs() << "    -> Deleting dead call: "
511                      << *CS.getInstruction() << "\n");
512         // Update the call graph by deleting the edge from Callee to Caller.
513         CG[Caller]->removeCallEdgeFor(CS);
514         CS.getInstruction()->eraseFromParent();
515         ++NumCallsDeleted;
516       } else {
517         // We can only inline direct calls to non-declarations.
518         if (!Callee || Callee->isDeclaration()) continue;
519       
520         // If this call site was obtained by inlining another function, verify
521         // that the include path for the function did not include the callee
522         // itself.  If so, we'd be recursively inlining the same function,
523         // which would provide the same callsites, which would cause us to
524         // infinitely inline.
525         int InlineHistoryID = CallSites[CSi].second;
526         if (InlineHistoryID != -1 &&
527             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
528           continue;
529         
530         LLVMContext &CallerCtx = Caller->getContext();
531
532         // Get DebugLoc to report. CS will be invalid after Inliner.
533         DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
534
535         // If the policy determines that we should inline this function,
536         // try to do so.
537         if (!shouldInline(CS)) {
538           emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
539                                        Twine(Callee->getName() +
540                                              " will not be inlined into " +
541                                              Caller->getName()));
542           continue;
543         }
544
545         // Attempt to inline the function.
546         if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
547                                   InlineHistoryID, InsertLifetime)) {
548           emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
549                                        Twine(Callee->getName() +
550                                              " will not be inlined into " +
551                                              Caller->getName()));
552           continue;
553         }
554         ++NumInlined;
555
556         // Report the inline decision.
557         emitOptimizationRemark(
558             CallerCtx, DEBUG_TYPE, *Caller, DLoc,
559             Twine(Callee->getName() + " inlined into " + Caller->getName()));
560
561         // If inlining this function gave us any new call sites, throw them
562         // onto our worklist to process.  They are useful inline candidates.
563         if (!InlineInfo.InlinedCalls.empty()) {
564           // Create a new inline history entry for this, so that we remember
565           // that these new callsites came about due to inlining Callee.
566           int NewHistoryID = InlineHistory.size();
567           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
568
569           for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
570                i != e; ++i) {
571             Value *Ptr = InlineInfo.InlinedCalls[i];
572             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
573           }
574         }
575       }
576       
577       // If we inlined or deleted the last possible call site to the function,
578       // delete the function body now.
579       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
580           // TODO: Can remove if in SCC now.
581           !SCCFunctions.count(Callee) &&
582           
583           // The function may be apparently dead, but if there are indirect
584           // callgraph references to the node, we cannot delete it yet, this
585           // could invalidate the CGSCC iterator.
586           CG[Callee]->getNumReferences() == 0) {
587         DEBUG(dbgs() << "    -> Deleting dead function: "
588               << Callee->getName() << "\n");
589         CallGraphNode *CalleeNode = CG[Callee];
590         
591         // Remove any call graph edges from the callee to its callees.
592         CalleeNode->removeAllCalledFunctions();
593         
594         // Removing the node for callee from the call graph and delete it.
595         delete CG.removeFunctionFromModule(CalleeNode);
596         ++NumDeleted;
597       }
598
599       // Remove this call site from the list.  If possible, use 
600       // swap/pop_back for efficiency, but do not use it if doing so would
601       // move a call site to a function in this SCC before the
602       // 'FirstCallInSCC' barrier.
603       if (SCC.isSingular()) {
604         CallSites[CSi] = CallSites.back();
605         CallSites.pop_back();
606       } else {
607         CallSites.erase(CallSites.begin()+CSi);
608       }
609       --CSi;
610
611       Changed = true;
612       LocalChange = true;
613     }
614   } while (LocalChange);
615
616   return Changed;
617 }
618
619 /// Remove now-dead linkonce functions at the end of
620 /// processing to avoid breaking the SCC traversal.
621 bool Inliner::doFinalization(CallGraph &CG) {
622   return removeDeadFunctions(CG);
623 }
624
625 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
626 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
627   SmallVector<CallGraphNode*, 16> FunctionsToRemove;
628   SmallVector<CallGraphNode *, 16> DeadFunctionsInComdats;
629   SmallDenseMap<const Comdat *, int, 16> ComdatEntriesAlive;
630
631   auto RemoveCGN = [&](CallGraphNode *CGN) {
632     // Remove any call graph edges from the function to its callees.
633     CGN->removeAllCalledFunctions();
634
635     // Remove any edges from the external node to the function's call graph
636     // node.  These edges might have been made irrelegant due to
637     // optimization of the program.
638     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
639
640     // Removing the node for callee from the call graph and delete it.
641     FunctionsToRemove.push_back(CGN);
642   };
643
644   // Scan for all of the functions, looking for ones that should now be removed
645   // from the program.  Insert the dead ones in the FunctionsToRemove set.
646   for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
647     CallGraphNode *CGN = I->second;
648     Function *F = CGN->getFunction();
649     if (!F || F->isDeclaration())
650       continue;
651
652     // Handle the case when this function is called and we only want to care
653     // about always-inline functions. This is a bit of a hack to share code
654     // between here and the InlineAlways pass.
655     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
656       continue;
657
658     // If the only remaining users of the function are dead constants, remove
659     // them.
660     F->removeDeadConstantUsers();
661
662     if (!F->isDefTriviallyDead())
663       continue;
664
665     // It is unsafe to drop a function with discardable linkage from a COMDAT
666     // without also dropping the other members of the COMDAT.
667     // The inliner doesn't visit non-function entities which are in COMDAT
668     // groups so it is unsafe to do so *unless* the linkage is local.
669     if (!F->hasLocalLinkage()) {
670       if (const Comdat *C = F->getComdat()) {
671         --ComdatEntriesAlive[C];
672         DeadFunctionsInComdats.push_back(CGN);
673         continue;
674       }
675     }
676
677     RemoveCGN(CGN);
678   }
679   if (!DeadFunctionsInComdats.empty()) {
680     // Count up all the entities in COMDAT groups
681     auto ComdatGroupReferenced = [&](const Comdat *C) {
682       auto I = ComdatEntriesAlive.find(C);
683       if (I != ComdatEntriesAlive.end())
684         ++(I->getSecond());
685     };
686     for (const Function &F : CG.getModule())
687       if (const Comdat *C = F.getComdat())
688         ComdatGroupReferenced(C);
689     for (const GlobalVariable &GV : CG.getModule().globals())
690       if (const Comdat *C = GV.getComdat())
691         ComdatGroupReferenced(C);
692     for (const GlobalAlias &GA : CG.getModule().aliases())
693       if (const Comdat *C = GA.getComdat())
694         ComdatGroupReferenced(C);
695     for (CallGraphNode *CGN : DeadFunctionsInComdats) {
696       Function *F = CGN->getFunction();
697       const Comdat *C = F->getComdat();
698       int NumAlive = ComdatEntriesAlive[C];
699       // We can remove functions in a COMDAT group if the entire group is dead.
700       assert(NumAlive >= 0);
701       if (NumAlive > 0)
702         continue;
703
704       RemoveCGN(CGN);
705     }
706   }
707
708   if (FunctionsToRemove.empty())
709     return false;
710
711   // Now that we know which functions to delete, do so.  We didn't want to do
712   // this inline, because that would invalidate our CallGraph::iterator
713   // objects. :(
714   //
715   // Note that it doesn't matter that we are iterating over a non-stable order
716   // here to do this, it doesn't matter which order the functions are deleted
717   // in.
718   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
719   FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
720                                       FunctionsToRemove.end()),
721                           FunctionsToRemove.end());
722   for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
723                                                   E = FunctionsToRemove.end();
724        I != E; ++I) {
725     delete CG.removeFunctionFromModule(*I);
726     ++NumDeleted;
727   }
728   return true;
729 }