Introduce MCCodeGenInfo, which keeps information that can affect codegen
[oota-llvm.git] / lib / Target / X86 / X86TargetMachine.cpp
1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86 specific subclass of TargetMachine.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86TargetMachine.h"
15 #include "X86.h"
16 #include "llvm/PassManager.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCStreamer.h"
21 #include "llvm/Support/FormattedStream.h"
22 #include "llvm/Target/TargetOptions.h"
23 #include "llvm/Target/TargetRegistry.h"
24 using namespace llvm;
25
26 static MCStreamer *createMCStreamer(const Target &T, const std::string &TT,
27                                     MCContext &Ctx, TargetAsmBackend &TAB,
28                                     raw_ostream &_OS,
29                                     MCCodeEmitter *_Emitter,
30                                     bool RelaxAll,
31                                     bool NoExecStack) {
32   Triple TheTriple(TT);
33
34   if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
35     return createMachOStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll);
36
37   if (TheTriple.isOSWindows())
38     return createWinCOFFStreamer(Ctx, TAB, *_Emitter, _OS, RelaxAll);
39
40   return createELFStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll, NoExecStack);
41 }
42
43 extern "C" void LLVMInitializeX86Target() {
44   // Register the target.
45   RegisterTargetMachine<X86_32TargetMachine> X(TheX86_32Target);
46   RegisterTargetMachine<X86_64TargetMachine> Y(TheX86_64Target);
47
48   // Register the code emitter.
49   TargetRegistry::RegisterCodeEmitter(TheX86_32Target,
50                                       createX86MCCodeEmitter);
51   TargetRegistry::RegisterCodeEmitter(TheX86_64Target,
52                                       createX86MCCodeEmitter);
53
54   // Register the asm backend.
55   TargetRegistry::RegisterAsmBackend(TheX86_32Target,
56                                      createX86_32AsmBackend);
57   TargetRegistry::RegisterAsmBackend(TheX86_64Target,
58                                      createX86_64AsmBackend);
59
60   // Register the object streamer.
61   TargetRegistry::RegisterObjectStreamer(TheX86_32Target,
62                                          createMCStreamer);
63   TargetRegistry::RegisterObjectStreamer(TheX86_64Target,
64                                          createMCStreamer);
65 }
66
67
68 X86_32TargetMachine::X86_32TargetMachine(const Target &T, StringRef TT,
69                                          StringRef CPU, StringRef FS,
70                                          Reloc::Model RM)
71   : X86TargetMachine(T, TT, CPU, FS, RM, false),
72     DataLayout(getSubtargetImpl()->isTargetDarwin() ?
73                "e-p:32:32-f64:32:64-i64:32:64-f80:128:128-f128:128:128-n8:16:32" :
74                (getSubtargetImpl()->isTargetCygMing() ||
75                 getSubtargetImpl()->isTargetWindows()) ?
76                "e-p:32:32-f64:64:64-i64:64:64-f80:32:32-f128:128:128-n8:16:32" :
77                "e-p:32:32-f64:32:64-i64:32:64-f80:32:32-f128:128:128-n8:16:32"),
78     InstrInfo(*this),
79     TSInfo(*this),
80     TLInfo(*this),
81     JITInfo(*this) {
82 }
83
84
85 X86_64TargetMachine::X86_64TargetMachine(const Target &T, StringRef TT,
86                                          StringRef CPU, StringRef FS,
87                                          Reloc::Model RM)
88   : X86TargetMachine(T, TT, CPU, FS, RM, true),
89     DataLayout("e-p:64:64-s:64-f64:64:64-i64:64:64-f80:128:128-f128:128:128-n8:16:32:64"),
90     InstrInfo(*this),
91     TSInfo(*this),
92     TLInfo(*this),
93     JITInfo(*this) {
94 }
95
96 /// X86TargetMachine ctor - Create an X86 target.
97 ///
98 X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT,
99                                    StringRef CPU, StringRef FS,
100                                    Reloc::Model RM, bool is64Bit)
101   : LLVMTargetMachine(T, TT, CPU, FS, RM),
102     Subtarget(TT, CPU, FS, StackAlignmentOverride, is64Bit),
103     FrameLowering(*this, Subtarget),
104     ELFWriterInfo(is64Bit, true) {
105   // Determine the PICStyle based on the target selected.
106   if (getRelocationModel() == Reloc::Static) {
107     // Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
108     Subtarget.setPICStyle(PICStyles::None);
109   } else if (Subtarget.is64Bit()) {
110     // PIC in 64 bit mode is always rip-rel.
111     Subtarget.setPICStyle(PICStyles::RIPRel);
112   } else if (Subtarget.isTargetCygMing()) {
113     Subtarget.setPICStyle(PICStyles::None);
114   } else if (Subtarget.isTargetDarwin()) {
115     if (getRelocationModel() == Reloc::PIC_)
116       Subtarget.setPICStyle(PICStyles::StubPIC);
117     else {
118       assert(getRelocationModel() == Reloc::DynamicNoPIC);
119       Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC);
120     }
121   } else if (Subtarget.isTargetELF()) {
122     Subtarget.setPICStyle(PICStyles::GOT);
123   }
124
125   // default to hard float ABI
126   if (FloatABIType == FloatABI::Default)
127     FloatABIType = FloatABI::Hard;    
128 }
129
130 //===----------------------------------------------------------------------===//
131 // Pass Pipeline Configuration
132 //===----------------------------------------------------------------------===//
133
134 bool X86TargetMachine::addInstSelector(PassManagerBase &PM,
135                                        CodeGenOpt::Level OptLevel) {
136   // Install an instruction selector.
137   PM.add(createX86ISelDag(*this, OptLevel));
138
139   // For 32-bit, prepend instructions to set the "global base reg" for PIC.
140   if (!Subtarget.is64Bit())
141     PM.add(createGlobalBaseRegPass());
142
143   return false;
144 }
145
146 bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM,
147                                       CodeGenOpt::Level OptLevel) {
148   PM.add(createX86MaxStackAlignmentHeuristicPass());
149   return false;  // -print-machineinstr shouldn't print after this.
150 }
151
152 bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM,
153                                        CodeGenOpt::Level OptLevel) {
154   PM.add(createX86FloatingPointStackifierPass());
155   return true;  // -print-machineinstr should print after this.
156 }
157
158 bool X86TargetMachine::addPreEmitPass(PassManagerBase &PM,
159                                       CodeGenOpt::Level OptLevel) {
160   if (OptLevel != CodeGenOpt::None && Subtarget.hasSSE2()) {
161     PM.add(createSSEDomainFixPass());
162     return true;
163   }
164   return false;
165 }
166
167 bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
168                                       CodeGenOpt::Level OptLevel,
169                                       JITCodeEmitter &JCE) {
170   PM.add(createX86JITCodeEmitterPass(*this, JCE));
171
172   return false;
173 }
174
175 void X86TargetMachine::setCodeModelForStatic() {
176
177     if (getCodeModel() != CodeModel::Default) return;
178
179     // For static codegen, if we're not already set, use Small codegen.
180     setCodeModel(CodeModel::Small);
181 }
182
183
184 void X86TargetMachine::setCodeModelForJIT() {
185
186   if (getCodeModel() != CodeModel::Default) return;
187
188   // 64-bit JIT places everything in the same buffer except external functions.
189   if (Subtarget.is64Bit())
190     setCodeModel(CodeModel::Large);
191   else
192     setCodeModel(CodeModel::Small);
193 }