1 //===-- X86InstrSSE.td - SSE Instruction Set ---------------*- tablegen -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file describes the X86 SSE instruction set, defining the instructions,
11 // and properties of the instructions which are needed for code generation,
12 // machine code emission, and analysis.
14 //===----------------------------------------------------------------------===//
16 class OpndItins<InstrItinClass arg_rr, InstrItinClass arg_rm> {
17 InstrItinClass rr = arg_rr;
18 InstrItinClass rm = arg_rm;
19 // InstrSchedModel info.
20 X86FoldableSchedWrite Sched = WriteFAdd;
23 class SizeItins<OpndItins arg_s, OpndItins arg_d> {
29 class ShiftOpndItins<InstrItinClass arg_rr, InstrItinClass arg_rm,
30 InstrItinClass arg_ri> {
31 InstrItinClass rr = arg_rr;
32 InstrItinClass rm = arg_rm;
33 InstrItinClass ri = arg_ri;
38 let Sched = WriteFAdd in {
39 def SSE_ALU_F32S : OpndItins<
40 IIC_SSE_ALU_F32S_RR, IIC_SSE_ALU_F32S_RM
43 def SSE_ALU_F64S : OpndItins<
44 IIC_SSE_ALU_F64S_RR, IIC_SSE_ALU_F64S_RM
48 def SSE_ALU_ITINS_S : SizeItins<
49 SSE_ALU_F32S, SSE_ALU_F64S
52 let Sched = WriteFMul in {
53 def SSE_MUL_F32S : OpndItins<
54 IIC_SSE_MUL_F32S_RR, IIC_SSE_MUL_F64S_RM
57 def SSE_MUL_F64S : OpndItins<
58 IIC_SSE_MUL_F64S_RR, IIC_SSE_MUL_F64S_RM
62 def SSE_MUL_ITINS_S : SizeItins<
63 SSE_MUL_F32S, SSE_MUL_F64S
66 let Sched = WriteFDiv in {
67 def SSE_DIV_F32S : OpndItins<
68 IIC_SSE_DIV_F32S_RR, IIC_SSE_DIV_F64S_RM
71 def SSE_DIV_F64S : OpndItins<
72 IIC_SSE_DIV_F64S_RR, IIC_SSE_DIV_F64S_RM
76 def SSE_DIV_ITINS_S : SizeItins<
77 SSE_DIV_F32S, SSE_DIV_F64S
81 let Sched = WriteFAdd in {
82 def SSE_ALU_F32P : OpndItins<
83 IIC_SSE_ALU_F32P_RR, IIC_SSE_ALU_F32P_RM
86 def SSE_ALU_F64P : OpndItins<
87 IIC_SSE_ALU_F64P_RR, IIC_SSE_ALU_F64P_RM
91 def SSE_ALU_ITINS_P : SizeItins<
92 SSE_ALU_F32P, SSE_ALU_F64P
95 let Sched = WriteFMul in {
96 def SSE_MUL_F32P : OpndItins<
97 IIC_SSE_MUL_F32P_RR, IIC_SSE_MUL_F64P_RM
100 def SSE_MUL_F64P : OpndItins<
101 IIC_SSE_MUL_F64P_RR, IIC_SSE_MUL_F64P_RM
105 def SSE_MUL_ITINS_P : SizeItins<
106 SSE_MUL_F32P, SSE_MUL_F64P
109 let Sched = WriteFDiv in {
110 def SSE_DIV_F32P : OpndItins<
111 IIC_SSE_DIV_F32P_RR, IIC_SSE_DIV_F64P_RM
114 def SSE_DIV_F64P : OpndItins<
115 IIC_SSE_DIV_F64P_RR, IIC_SSE_DIV_F64P_RM
119 def SSE_DIV_ITINS_P : SizeItins<
120 SSE_DIV_F32P, SSE_DIV_F64P
123 let Sched = WriteVecLogic in
124 def SSE_VEC_BIT_ITINS_P : OpndItins<
125 IIC_SSE_BIT_P_RR, IIC_SSE_BIT_P_RM
128 def SSE_BIT_ITINS_P : OpndItins<
129 IIC_SSE_BIT_P_RR, IIC_SSE_BIT_P_RM
132 let Sched = WriteVecALU in {
133 def SSE_INTALU_ITINS_P : OpndItins<
134 IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
137 def SSE_INTALUQ_ITINS_P : OpndItins<
138 IIC_SSE_INTALUQ_P_RR, IIC_SSE_INTALUQ_P_RM
142 let Sched = WriteVecIMul in
143 def SSE_INTMUL_ITINS_P : OpndItins<
144 IIC_SSE_INTMUL_P_RR, IIC_SSE_INTMUL_P_RM
147 def SSE_INTSHIFT_ITINS_P : ShiftOpndItins<
148 IIC_SSE_INTSH_P_RR, IIC_SSE_INTSH_P_RM, IIC_SSE_INTSH_P_RI
151 def SSE_MOVA_ITINS : OpndItins<
152 IIC_SSE_MOVA_P_RR, IIC_SSE_MOVA_P_RM
155 def SSE_MOVU_ITINS : OpndItins<
156 IIC_SSE_MOVU_P_RR, IIC_SSE_MOVU_P_RM
159 def SSE_DPPD_ITINS : OpndItins<
160 IIC_SSE_DPPD_RR, IIC_SSE_DPPD_RM
163 def SSE_DPPS_ITINS : OpndItins<
164 IIC_SSE_DPPS_RR, IIC_SSE_DPPD_RM
167 def DEFAULT_ITINS : OpndItins<
168 IIC_ALU_NONMEM, IIC_ALU_MEM
171 def SSE_EXTRACT_ITINS : OpndItins<
172 IIC_SSE_EXTRACTPS_RR, IIC_SSE_EXTRACTPS_RM
175 def SSE_INSERT_ITINS : OpndItins<
176 IIC_SSE_INSERTPS_RR, IIC_SSE_INSERTPS_RM
179 let Sched = WriteMPSAD in
180 def SSE_MPSADBW_ITINS : OpndItins<
181 IIC_SSE_MPSADBW_RR, IIC_SSE_MPSADBW_RM
184 let Sched = WriteVecIMul in
185 def SSE_PMULLD_ITINS : OpndItins<
186 IIC_SSE_PMULLD_RR, IIC_SSE_PMULLD_RM
189 // Definitions for backward compatibility.
190 // The instructions mapped on these definitions uses a different itinerary
191 // than the actual scheduling model.
192 let Sched = WriteShuffle in
193 def DEFAULT_ITINS_SHUFFLESCHED : OpndItins<
194 IIC_ALU_NONMEM, IIC_ALU_MEM
197 let Sched = WriteVecIMul in
198 def DEFAULT_ITINS_VECIMULSCHED : OpndItins<
199 IIC_ALU_NONMEM, IIC_ALU_MEM
202 let Sched = WriteShuffle in
203 def SSE_INTALU_ITINS_SHUFF_P : OpndItins<
204 IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
207 let Sched = WriteMPSAD in
208 def DEFAULT_ITINS_MPSADSCHED : OpndItins<
209 IIC_ALU_NONMEM, IIC_ALU_MEM
212 let Sched = WriteFBlend in
213 def DEFAULT_ITINS_FBLENDSCHED : OpndItins<
214 IIC_ALU_NONMEM, IIC_ALU_MEM
217 let Sched = WriteBlend in
218 def DEFAULT_ITINS_BLENDSCHED : OpndItins<
219 IIC_ALU_NONMEM, IIC_ALU_MEM
222 let Sched = WriteVarBlend in
223 def DEFAULT_ITINS_VARBLENDSCHED : OpndItins<
224 IIC_ALU_NONMEM, IIC_ALU_MEM
227 let Sched = WriteFBlend in
228 def SSE_INTALU_ITINS_FBLEND_P : OpndItins<
229 IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
232 let Sched = WriteBlend in
233 def SSE_INTALU_ITINS_BLEND_P : OpndItins<
234 IIC_SSE_INTALU_P_RR, IIC_SSE_INTALU_P_RM
237 //===----------------------------------------------------------------------===//
238 // SSE 1 & 2 Instructions Classes
239 //===----------------------------------------------------------------------===//
241 /// sse12_fp_scalar - SSE 1 & 2 scalar instructions class
242 multiclass sse12_fp_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode,
243 RegisterClass RC, X86MemOperand x86memop,
244 Domain d, OpndItins itins, bit Is2Addr = 1> {
245 let isCommutable = 1 in {
246 def rr : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
248 !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
249 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
250 [(set RC:$dst, (OpNode RC:$src1, RC:$src2))], itins.rr, d>,
251 Sched<[itins.Sched]>;
253 def rm : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
255 !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
256 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
257 [(set RC:$dst, (OpNode RC:$src1, (load addr:$src2)))], itins.rm, d>,
258 Sched<[itins.Sched.Folded, ReadAfterLd]>;
261 /// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class
262 multiclass sse12_fp_scalar_int<bits<8> opc, string OpcodeStr, RegisterClass RC,
263 string asm, string SSEVer, string FPSizeStr,
264 Operand memopr, ComplexPattern mem_cpat,
265 Domain d, OpndItins itins, bit Is2Addr = 1> {
266 let isCodeGenOnly = 1 in {
267 def rr_Int : SI_Int<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
269 !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
270 !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
271 [(set RC:$dst, (!cast<Intrinsic>(
272 !strconcat("int_x86_sse", SSEVer, "_", OpcodeStr, FPSizeStr))
273 RC:$src1, RC:$src2))], itins.rr, d>,
274 Sched<[itins.Sched]>;
275 def rm_Int : SI_Int<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, memopr:$src2),
277 !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
278 !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
279 [(set RC:$dst, (!cast<Intrinsic>(!strconcat("int_x86_sse",
280 SSEVer, "_", OpcodeStr, FPSizeStr))
281 RC:$src1, mem_cpat:$src2))], itins.rm, d>,
282 Sched<[itins.Sched.Folded, ReadAfterLd]>;
286 /// sse12_fp_packed - SSE 1 & 2 packed instructions class
287 multiclass sse12_fp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
288 RegisterClass RC, ValueType vt,
289 X86MemOperand x86memop, PatFrag mem_frag,
290 Domain d, OpndItins itins, bit Is2Addr = 1> {
291 let isCommutable = 1 in
292 def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
294 !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
295 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
296 [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], itins.rr, d>,
297 Sched<[itins.Sched]>;
299 def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
301 !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
302 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
303 [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2)))],
305 Sched<[itins.Sched.Folded, ReadAfterLd]>;
308 /// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class
309 multiclass sse12_fp_packed_logical_rm<bits<8> opc, RegisterClass RC, Domain d,
310 string OpcodeStr, X86MemOperand x86memop,
311 list<dag> pat_rr, list<dag> pat_rm,
313 let isCommutable = 1, hasSideEffects = 0 in
314 def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
316 !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
317 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
318 pat_rr, NoItinerary, d>,
319 Sched<[WriteVecLogic]>;
320 def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
322 !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
323 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
324 pat_rm, NoItinerary, d>,
325 Sched<[WriteVecLogicLd, ReadAfterLd]>;
328 //===----------------------------------------------------------------------===//
329 // Non-instruction patterns
330 //===----------------------------------------------------------------------===//
332 // A vector extract of the first f32/f64 position is a subregister copy
333 def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
334 (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32)>;
335 def : Pat<(f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))),
336 (COPY_TO_REGCLASS (v2f64 VR128:$src), FR64)>;
338 // A 128-bit subvector extract from the first 256-bit vector position
339 // is a subregister copy that needs no instruction.
340 def : Pat<(v4i32 (extract_subvector (v8i32 VR256:$src), (iPTR 0))),
341 (v4i32 (EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm))>;
342 def : Pat<(v4f32 (extract_subvector (v8f32 VR256:$src), (iPTR 0))),
343 (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm))>;
345 def : Pat<(v2i64 (extract_subvector (v4i64 VR256:$src), (iPTR 0))),
346 (v2i64 (EXTRACT_SUBREG (v4i64 VR256:$src), sub_xmm))>;
347 def : Pat<(v2f64 (extract_subvector (v4f64 VR256:$src), (iPTR 0))),
348 (v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src), sub_xmm))>;
350 def : Pat<(v8i16 (extract_subvector (v16i16 VR256:$src), (iPTR 0))),
351 (v8i16 (EXTRACT_SUBREG (v16i16 VR256:$src), sub_xmm))>;
352 def : Pat<(v16i8 (extract_subvector (v32i8 VR256:$src), (iPTR 0))),
353 (v16i8 (EXTRACT_SUBREG (v32i8 VR256:$src), sub_xmm))>;
355 // A 128-bit subvector insert to the first 256-bit vector position
356 // is a subregister copy that needs no instruction.
357 let AddedComplexity = 25 in { // to give priority over vinsertf128rm
358 def : Pat<(insert_subvector undef, (v2i64 VR128:$src), (iPTR 0)),
359 (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
360 def : Pat<(insert_subvector undef, (v2f64 VR128:$src), (iPTR 0)),
361 (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
362 def : Pat<(insert_subvector undef, (v4i32 VR128:$src), (iPTR 0)),
363 (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
364 def : Pat<(insert_subvector undef, (v4f32 VR128:$src), (iPTR 0)),
365 (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
366 def : Pat<(insert_subvector undef, (v8i16 VR128:$src), (iPTR 0)),
367 (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
368 def : Pat<(insert_subvector undef, (v16i8 VR128:$src), (iPTR 0)),
369 (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128:$src, sub_xmm)>;
372 // Implicitly promote a 32-bit scalar to a vector.
373 def : Pat<(v4f32 (scalar_to_vector FR32:$src)),
374 (COPY_TO_REGCLASS FR32:$src, VR128)>;
375 def : Pat<(v8f32 (scalar_to_vector FR32:$src)),
376 (COPY_TO_REGCLASS FR32:$src, VR128)>;
377 // Implicitly promote a 64-bit scalar to a vector.
378 def : Pat<(v2f64 (scalar_to_vector FR64:$src)),
379 (COPY_TO_REGCLASS FR64:$src, VR128)>;
380 def : Pat<(v4f64 (scalar_to_vector FR64:$src)),
381 (COPY_TO_REGCLASS FR64:$src, VR128)>;
383 // Bitcasts between 128-bit vector types. Return the original type since
384 // no instruction is needed for the conversion
385 let Predicates = [HasSSE2] in {
386 def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
387 def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
388 def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
389 def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
390 def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
391 def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
392 def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
393 def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
394 def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
395 def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
396 def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
397 def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
398 def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
399 def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
400 def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
401 def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
402 def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
403 def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
404 def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
405 def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
406 def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
407 def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
408 def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
409 def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
410 def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
411 def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
412 def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
413 def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
414 def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
415 def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
418 // Bitcasts between 256-bit vector types. Return the original type since
419 // no instruction is needed for the conversion
420 let Predicates = [HasAVX] in {
421 def : Pat<(v4f64 (bitconvert (v8f32 VR256:$src))), (v4f64 VR256:$src)>;
422 def : Pat<(v4f64 (bitconvert (v8i32 VR256:$src))), (v4f64 VR256:$src)>;
423 def : Pat<(v4f64 (bitconvert (v4i64 VR256:$src))), (v4f64 VR256:$src)>;
424 def : Pat<(v4f64 (bitconvert (v16i16 VR256:$src))), (v4f64 VR256:$src)>;
425 def : Pat<(v4f64 (bitconvert (v32i8 VR256:$src))), (v4f64 VR256:$src)>;
426 def : Pat<(v8f32 (bitconvert (v8i32 VR256:$src))), (v8f32 VR256:$src)>;
427 def : Pat<(v8f32 (bitconvert (v4i64 VR256:$src))), (v8f32 VR256:$src)>;
428 def : Pat<(v8f32 (bitconvert (v4f64 VR256:$src))), (v8f32 VR256:$src)>;
429 def : Pat<(v8f32 (bitconvert (v32i8 VR256:$src))), (v8f32 VR256:$src)>;
430 def : Pat<(v8f32 (bitconvert (v16i16 VR256:$src))), (v8f32 VR256:$src)>;
431 def : Pat<(v4i64 (bitconvert (v8f32 VR256:$src))), (v4i64 VR256:$src)>;
432 def : Pat<(v4i64 (bitconvert (v8i32 VR256:$src))), (v4i64 VR256:$src)>;
433 def : Pat<(v4i64 (bitconvert (v4f64 VR256:$src))), (v4i64 VR256:$src)>;
434 def : Pat<(v4i64 (bitconvert (v32i8 VR256:$src))), (v4i64 VR256:$src)>;
435 def : Pat<(v4i64 (bitconvert (v16i16 VR256:$src))), (v4i64 VR256:$src)>;
436 def : Pat<(v32i8 (bitconvert (v4f64 VR256:$src))), (v32i8 VR256:$src)>;
437 def : Pat<(v32i8 (bitconvert (v4i64 VR256:$src))), (v32i8 VR256:$src)>;
438 def : Pat<(v32i8 (bitconvert (v8f32 VR256:$src))), (v32i8 VR256:$src)>;
439 def : Pat<(v32i8 (bitconvert (v8i32 VR256:$src))), (v32i8 VR256:$src)>;
440 def : Pat<(v32i8 (bitconvert (v16i16 VR256:$src))), (v32i8 VR256:$src)>;
441 def : Pat<(v8i32 (bitconvert (v32i8 VR256:$src))), (v8i32 VR256:$src)>;
442 def : Pat<(v8i32 (bitconvert (v16i16 VR256:$src))), (v8i32 VR256:$src)>;
443 def : Pat<(v8i32 (bitconvert (v8f32 VR256:$src))), (v8i32 VR256:$src)>;
444 def : Pat<(v8i32 (bitconvert (v4i64 VR256:$src))), (v8i32 VR256:$src)>;
445 def : Pat<(v8i32 (bitconvert (v4f64 VR256:$src))), (v8i32 VR256:$src)>;
446 def : Pat<(v16i16 (bitconvert (v8f32 VR256:$src))), (v16i16 VR256:$src)>;
447 def : Pat<(v16i16 (bitconvert (v8i32 VR256:$src))), (v16i16 VR256:$src)>;
448 def : Pat<(v16i16 (bitconvert (v4i64 VR256:$src))), (v16i16 VR256:$src)>;
449 def : Pat<(v16i16 (bitconvert (v4f64 VR256:$src))), (v16i16 VR256:$src)>;
450 def : Pat<(v16i16 (bitconvert (v32i8 VR256:$src))), (v16i16 VR256:$src)>;
453 // Alias instructions that map fld0 to xorps for sse or vxorps for avx.
454 // This is expanded by ExpandPostRAPseudos.
455 let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
456 isPseudo = 1, SchedRW = [WriteZero] in {
457 def FsFLD0SS : I<0, Pseudo, (outs FR32:$dst), (ins), "",
458 [(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1]>;
459 def FsFLD0SD : I<0, Pseudo, (outs FR64:$dst), (ins), "",
460 [(set FR64:$dst, fpimm0)]>, Requires<[HasSSE2]>;
463 //===----------------------------------------------------------------------===//
464 // AVX & SSE - Zero/One Vectors
465 //===----------------------------------------------------------------------===//
467 // Alias instruction that maps zero vector to pxor / xorp* for sse.
468 // This is expanded by ExpandPostRAPseudos to an xorps / vxorps, and then
469 // swizzled by ExecutionDepsFix to pxor.
470 // We set canFoldAsLoad because this can be converted to a constant-pool
471 // load of an all-zeros value if folding it would be beneficial.
472 let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
473 isPseudo = 1, SchedRW = [WriteZero] in {
474 def V_SET0 : I<0, Pseudo, (outs VR128:$dst), (ins), "",
475 [(set VR128:$dst, (v4f32 immAllZerosV))]>;
478 def : Pat<(v2f64 immAllZerosV), (V_SET0)>;
479 def : Pat<(v4i32 immAllZerosV), (V_SET0)>;
480 def : Pat<(v2i64 immAllZerosV), (V_SET0)>;
481 def : Pat<(v8i16 immAllZerosV), (V_SET0)>;
482 def : Pat<(v16i8 immAllZerosV), (V_SET0)>;
485 // The same as done above but for AVX. The 256-bit AVX1 ISA doesn't support PI,
486 // and doesn't need it because on sandy bridge the register is set to zero
487 // at the rename stage without using any execution unit, so SET0PSY
488 // and SET0PDY can be used for vector int instructions without penalty
489 let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
490 isPseudo = 1, Predicates = [HasAVX], SchedRW = [WriteZero] in {
491 def AVX_SET0 : I<0, Pseudo, (outs VR256:$dst), (ins), "",
492 [(set VR256:$dst, (v8f32 immAllZerosV))]>;
495 let Predicates = [HasAVX] in
496 def : Pat<(v4f64 immAllZerosV), (AVX_SET0)>;
498 let Predicates = [HasAVX2] in {
499 def : Pat<(v4i64 immAllZerosV), (AVX_SET0)>;
500 def : Pat<(v8i32 immAllZerosV), (AVX_SET0)>;
501 def : Pat<(v16i16 immAllZerosV), (AVX_SET0)>;
502 def : Pat<(v32i8 immAllZerosV), (AVX_SET0)>;
505 // AVX1 has no support for 256-bit integer instructions, but since the 128-bit
506 // VPXOR instruction writes zero to its upper part, it's safe build zeros.
507 let Predicates = [HasAVX1Only] in {
508 def : Pat<(v32i8 immAllZerosV), (SUBREG_TO_REG (i8 0), (V_SET0), sub_xmm)>;
509 def : Pat<(bc_v32i8 (v8f32 immAllZerosV)),
510 (SUBREG_TO_REG (i8 0), (V_SET0), sub_xmm)>;
512 def : Pat<(v16i16 immAllZerosV), (SUBREG_TO_REG (i16 0), (V_SET0), sub_xmm)>;
513 def : Pat<(bc_v16i16 (v8f32 immAllZerosV)),
514 (SUBREG_TO_REG (i16 0), (V_SET0), sub_xmm)>;
516 def : Pat<(v8i32 immAllZerosV), (SUBREG_TO_REG (i32 0), (V_SET0), sub_xmm)>;
517 def : Pat<(bc_v8i32 (v8f32 immAllZerosV)),
518 (SUBREG_TO_REG (i32 0), (V_SET0), sub_xmm)>;
520 def : Pat<(v4i64 immAllZerosV), (SUBREG_TO_REG (i64 0), (V_SET0), sub_xmm)>;
521 def : Pat<(bc_v4i64 (v8f32 immAllZerosV)),
522 (SUBREG_TO_REG (i64 0), (V_SET0), sub_xmm)>;
525 // We set canFoldAsLoad because this can be converted to a constant-pool
526 // load of an all-ones value if folding it would be beneficial.
527 let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
528 isPseudo = 1, SchedRW = [WriteZero] in {
529 def V_SETALLONES : I<0, Pseudo, (outs VR128:$dst), (ins), "",
530 [(set VR128:$dst, (v4i32 immAllOnesV))]>;
531 let Predicates = [HasAVX2] in
532 def AVX2_SETALLONES : I<0, Pseudo, (outs VR256:$dst), (ins), "",
533 [(set VR256:$dst, (v8i32 immAllOnesV))]>;
537 //===----------------------------------------------------------------------===//
538 // SSE 1 & 2 - Move FP Scalar Instructions
540 // Move Instructions. Register-to-register movss/movsd is not used for FR32/64
541 // register copies because it's a partial register update; Register-to-register
542 // movss/movsd is not modeled as an INSERT_SUBREG because INSERT_SUBREG requires
543 // that the insert be implementable in terms of a copy, and just mentioned, we
544 // don't use movss/movsd for copies.
545 //===----------------------------------------------------------------------===//
547 multiclass sse12_move_rr<RegisterClass RC, SDNode OpNode, ValueType vt,
548 X86MemOperand x86memop, string base_opc,
549 string asm_opr, Domain d = GenericDomain> {
550 def rr : SI<0x10, MRMSrcReg, (outs VR128:$dst),
551 (ins VR128:$src1, RC:$src2),
552 !strconcat(base_opc, asm_opr),
553 [(set VR128:$dst, (vt (OpNode VR128:$src1,
554 (scalar_to_vector RC:$src2))))],
555 IIC_SSE_MOV_S_RR, d>, Sched<[WriteFShuffle]>;
557 // For the disassembler
558 let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
559 def rr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst),
560 (ins VR128:$src1, RC:$src2),
561 !strconcat(base_opc, asm_opr),
562 [], IIC_SSE_MOV_S_RR>, Sched<[WriteFShuffle]>;
565 multiclass sse12_move<RegisterClass RC, SDNode OpNode, ValueType vt,
566 X86MemOperand x86memop, string OpcodeStr,
567 Domain d = GenericDomain> {
569 defm V#NAME : sse12_move_rr<RC, OpNode, vt, x86memop, OpcodeStr,
570 "\t{$src2, $src1, $dst|$dst, $src1, $src2}", d>,
573 def V#NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
574 !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
575 [(store RC:$src, addr:$dst)], IIC_SSE_MOV_S_MR, d>,
576 VEX, VEX_LIG, Sched<[WriteStore]>;
578 let Constraints = "$src1 = $dst" in {
579 defm NAME : sse12_move_rr<RC, OpNode, vt, x86memop, OpcodeStr,
580 "\t{$src2, $dst|$dst, $src2}", d>;
583 def NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
584 !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
585 [(store RC:$src, addr:$dst)], IIC_SSE_MOV_S_MR, d>,
589 // Loading from memory automatically zeroing upper bits.
590 multiclass sse12_move_rm<RegisterClass RC, X86MemOperand x86memop,
591 PatFrag mem_pat, string OpcodeStr,
592 Domain d = GenericDomain> {
593 def V#NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
594 !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
595 [(set RC:$dst, (mem_pat addr:$src))],
596 IIC_SSE_MOV_S_RM, d>, VEX, VEX_LIG, Sched<[WriteLoad]>;
597 def NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
598 !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
599 [(set RC:$dst, (mem_pat addr:$src))],
600 IIC_SSE_MOV_S_RM, d>, Sched<[WriteLoad]>;
603 defm MOVSS : sse12_move<FR32, X86Movss, v4f32, f32mem, "movss",
604 SSEPackedSingle>, XS;
605 defm MOVSD : sse12_move<FR64, X86Movsd, v2f64, f64mem, "movsd",
606 SSEPackedDouble>, XD;
608 let canFoldAsLoad = 1, isReMaterializable = 1 in {
609 defm MOVSS : sse12_move_rm<FR32, f32mem, loadf32, "movss",
610 SSEPackedSingle>, XS;
612 let AddedComplexity = 20 in
613 defm MOVSD : sse12_move_rm<FR64, f64mem, loadf64, "movsd",
614 SSEPackedDouble>, XD;
618 let Predicates = [UseAVX] in {
619 let AddedComplexity = 20 in {
620 // MOVSSrm zeros the high parts of the register; represent this
621 // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
622 def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
623 (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
624 def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))),
625 (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
626 def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
627 (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
629 // MOVSDrm zeros the high parts of the register; represent this
630 // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
631 def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
632 (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
633 def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))),
634 (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
635 def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
636 (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
637 def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
638 (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
639 def : Pat<(v2f64 (X86vzload addr:$src)),
640 (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
642 // Represent the same patterns above but in the form they appear for
644 def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
645 (v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))),
646 (SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>;
647 def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
648 (v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))),
649 (SUBREG_TO_REG (i32 0), (VMOVSDrm addr:$src), sub_xmm)>;
652 // Extract and store.
653 def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
655 (VMOVSSmr addr:$dst, (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32))>;
656 def : Pat<(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))),
658 (VMOVSDmr addr:$dst, (COPY_TO_REGCLASS (v2f64 VR128:$src), FR64))>;
660 // Shuffle with VMOVSS
661 def : Pat<(v4i32 (X86Movss VR128:$src1, VR128:$src2)),
662 (VMOVSSrr (v4i32 VR128:$src1),
663 (COPY_TO_REGCLASS (v4i32 VR128:$src2), FR32))>;
664 def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)),
665 (VMOVSSrr (v4f32 VR128:$src1),
666 (COPY_TO_REGCLASS (v4f32 VR128:$src2), FR32))>;
669 def : Pat<(v8i32 (X86Movss VR256:$src1, VR256:$src2)),
670 (SUBREG_TO_REG (i32 0),
671 (VMOVSSrr (EXTRACT_SUBREG (v8i32 VR256:$src1), sub_xmm),
672 (EXTRACT_SUBREG (v8i32 VR256:$src2), sub_xmm)),
674 def : Pat<(v8f32 (X86Movss VR256:$src1, VR256:$src2)),
675 (SUBREG_TO_REG (i32 0),
676 (VMOVSSrr (EXTRACT_SUBREG (v8f32 VR256:$src1), sub_xmm),
677 (EXTRACT_SUBREG (v8f32 VR256:$src2), sub_xmm)),
680 // Shuffle with VMOVSD
681 def : Pat<(v2i64 (X86Movsd VR128:$src1, VR128:$src2)),
682 (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
683 def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)),
684 (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
685 def : Pat<(v4f32 (X86Movsd VR128:$src1, VR128:$src2)),
686 (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
687 def : Pat<(v4i32 (X86Movsd VR128:$src1, VR128:$src2)),
688 (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
691 def : Pat<(v4i64 (X86Movsd VR256:$src1, VR256:$src2)),
692 (SUBREG_TO_REG (i32 0),
693 (VMOVSDrr (EXTRACT_SUBREG (v4i64 VR256:$src1), sub_xmm),
694 (EXTRACT_SUBREG (v4i64 VR256:$src2), sub_xmm)),
696 def : Pat<(v4f64 (X86Movsd VR256:$src1, VR256:$src2)),
697 (SUBREG_TO_REG (i32 0),
698 (VMOVSDrr (EXTRACT_SUBREG (v4f64 VR256:$src1), sub_xmm),
699 (EXTRACT_SUBREG (v4f64 VR256:$src2), sub_xmm)),
702 // FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem
703 // is during lowering, where it's not possible to recognize the fold cause
704 // it has two uses through a bitcast. One use disappears at isel time and the
705 // fold opportunity reappears.
706 def : Pat<(v2f64 (X86Movlpd VR128:$src1, VR128:$src2)),
707 (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
708 def : Pat<(v2i64 (X86Movlpd VR128:$src1, VR128:$src2)),
709 (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
710 def : Pat<(v4f32 (X86Movlps VR128:$src1, VR128:$src2)),
711 (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
712 def : Pat<(v4i32 (X86Movlps VR128:$src1, VR128:$src2)),
713 (VMOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
716 let Predicates = [UseSSE1] in {
717 let Predicates = [NoSSE41], AddedComplexity = 15 in {
718 // Move scalar to XMM zero-extended, zeroing a VR128 then do a
719 // MOVSS to the lower bits.
720 def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))),
721 (MOVSSrr (v4f32 (V_SET0)), FR32:$src)>;
722 def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
723 (MOVSSrr (v4f32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
724 def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
725 (MOVSSrr (v4i32 (V_SET0)), (COPY_TO_REGCLASS VR128:$src, FR32))>;
728 let AddedComplexity = 20 in {
729 // MOVSSrm already zeros the high parts of the register.
730 def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
731 (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
732 def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))),
733 (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
734 def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
735 (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
738 // Extract and store.
739 def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
741 (MOVSSmr addr:$dst, (COPY_TO_REGCLASS VR128:$src, FR32))>;
743 // Shuffle with MOVSS
744 def : Pat<(v4i32 (X86Movss VR128:$src1, VR128:$src2)),
745 (MOVSSrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR32))>;
746 def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)),
747 (MOVSSrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR32))>;
750 let Predicates = [UseSSE2] in {
751 let Predicates = [NoSSE41], AddedComplexity = 15 in {
752 // Move scalar to XMM zero-extended, zeroing a VR128 then do a
753 // MOVSD to the lower bits.
754 def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))),
755 (MOVSDrr (v2f64 (V_SET0)), FR64:$src)>;
758 let AddedComplexity = 20 in {
759 // MOVSDrm already zeros the high parts of the register.
760 def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
761 (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
762 def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))),
763 (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
764 def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
765 (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
766 def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
767 (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
768 def : Pat<(v2f64 (X86vzload addr:$src)),
769 (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
772 // Extract and store.
773 def : Pat<(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))),
775 (MOVSDmr addr:$dst, (COPY_TO_REGCLASS VR128:$src, FR64))>;
777 // Shuffle with MOVSD
778 def : Pat<(v2i64 (X86Movsd VR128:$src1, VR128:$src2)),
779 (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
780 def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)),
781 (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
782 def : Pat<(v4f32 (X86Movsd VR128:$src1, VR128:$src2)),
783 (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
784 def : Pat<(v4i32 (X86Movsd VR128:$src1, VR128:$src2)),
785 (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
787 // FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem
788 // is during lowering, where it's not possible to recognize the fold because
789 // it has two uses through a bitcast. One use disappears at isel time and the
790 // fold opportunity reappears.
791 def : Pat<(v2f64 (X86Movlpd VR128:$src1, VR128:$src2)),
792 (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
793 def : Pat<(v2i64 (X86Movlpd VR128:$src1, VR128:$src2)),
794 (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
795 def : Pat<(v4f32 (X86Movlps VR128:$src1, VR128:$src2)),
796 (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
797 def : Pat<(v4i32 (X86Movlps VR128:$src1, VR128:$src2)),
798 (MOVSDrr VR128:$src1, (COPY_TO_REGCLASS VR128:$src2, FR64))>;
801 //===----------------------------------------------------------------------===//
802 // SSE 1 & 2 - Move Aligned/Unaligned FP Instructions
803 //===----------------------------------------------------------------------===//
805 multiclass sse12_mov_packed<bits<8> opc, RegisterClass RC,
806 X86MemOperand x86memop, PatFrag ld_frag,
807 string asm, Domain d,
809 bit IsReMaterializable = 1> {
810 let hasSideEffects = 0 in
811 def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
812 !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], itins.rr, d>,
813 Sched<[WriteFShuffle]>;
814 let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in
815 def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
816 !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
817 [(set RC:$dst, (ld_frag addr:$src))], itins.rm, d>,
821 let Predicates = [HasAVX, NoVLX] in {
822 defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
823 "movaps", SSEPackedSingle, SSE_MOVA_ITINS>,
825 defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
826 "movapd", SSEPackedDouble, SSE_MOVA_ITINS>,
828 defm VMOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32,
829 "movups", SSEPackedSingle, SSE_MOVU_ITINS>,
831 defm VMOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64,
832 "movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>,
835 defm VMOVAPSY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv8f32,
836 "movaps", SSEPackedSingle, SSE_MOVA_ITINS>,
838 defm VMOVAPDY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv4f64,
839 "movapd", SSEPackedDouble, SSE_MOVA_ITINS>,
841 defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32,
842 "movups", SSEPackedSingle, SSE_MOVU_ITINS>,
844 defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64,
845 "movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>,
849 let Predicates = [UseSSE1] in {
850 defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32,
851 "movaps", SSEPackedSingle, SSE_MOVA_ITINS>,
853 defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32,
854 "movups", SSEPackedSingle, SSE_MOVU_ITINS>,
857 let Predicates = [UseSSE2] in {
858 defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64,
859 "movapd", SSEPackedDouble, SSE_MOVA_ITINS>,
861 defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64,
862 "movupd", SSEPackedDouble, SSE_MOVU_ITINS, 0>,
866 let SchedRW = [WriteStore], Predicates = [HasAVX, NoVLX] in {
867 def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
868 "movaps\t{$src, $dst|$dst, $src}",
869 [(alignedstore (v4f32 VR128:$src), addr:$dst)],
870 IIC_SSE_MOVA_P_MR>, VEX;
871 def VMOVAPDmr : VPDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
872 "movapd\t{$src, $dst|$dst, $src}",
873 [(alignedstore (v2f64 VR128:$src), addr:$dst)],
874 IIC_SSE_MOVA_P_MR>, VEX;
875 def VMOVUPSmr : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
876 "movups\t{$src, $dst|$dst, $src}",
877 [(store (v4f32 VR128:$src), addr:$dst)],
878 IIC_SSE_MOVU_P_MR>, VEX;
879 def VMOVUPDmr : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
880 "movupd\t{$src, $dst|$dst, $src}",
881 [(store (v2f64 VR128:$src), addr:$dst)],
882 IIC_SSE_MOVU_P_MR>, VEX;
883 def VMOVAPSYmr : VPSI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
884 "movaps\t{$src, $dst|$dst, $src}",
885 [(alignedstore256 (v8f32 VR256:$src), addr:$dst)],
886 IIC_SSE_MOVA_P_MR>, VEX, VEX_L;
887 def VMOVAPDYmr : VPDI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
888 "movapd\t{$src, $dst|$dst, $src}",
889 [(alignedstore256 (v4f64 VR256:$src), addr:$dst)],
890 IIC_SSE_MOVA_P_MR>, VEX, VEX_L;
891 def VMOVUPSYmr : VPSI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
892 "movups\t{$src, $dst|$dst, $src}",
893 [(store (v8f32 VR256:$src), addr:$dst)],
894 IIC_SSE_MOVU_P_MR>, VEX, VEX_L;
895 def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
896 "movupd\t{$src, $dst|$dst, $src}",
897 [(store (v4f64 VR256:$src), addr:$dst)],
898 IIC_SSE_MOVU_P_MR>, VEX, VEX_L;
902 let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
903 SchedRW = [WriteFShuffle] in {
904 def VMOVAPSrr_REV : VPSI<0x29, MRMDestReg, (outs VR128:$dst),
906 "movaps\t{$src, $dst|$dst, $src}", [],
907 IIC_SSE_MOVA_P_RR>, VEX;
908 def VMOVAPDrr_REV : VPDI<0x29, MRMDestReg, (outs VR128:$dst),
910 "movapd\t{$src, $dst|$dst, $src}", [],
911 IIC_SSE_MOVA_P_RR>, VEX;
912 def VMOVUPSrr_REV : VPSI<0x11, MRMDestReg, (outs VR128:$dst),
914 "movups\t{$src, $dst|$dst, $src}", [],
915 IIC_SSE_MOVU_P_RR>, VEX;
916 def VMOVUPDrr_REV : VPDI<0x11, MRMDestReg, (outs VR128:$dst),
918 "movupd\t{$src, $dst|$dst, $src}", [],
919 IIC_SSE_MOVU_P_RR>, VEX;
920 def VMOVAPSYrr_REV : VPSI<0x29, MRMDestReg, (outs VR256:$dst),
922 "movaps\t{$src, $dst|$dst, $src}", [],
923 IIC_SSE_MOVA_P_RR>, VEX, VEX_L;
924 def VMOVAPDYrr_REV : VPDI<0x29, MRMDestReg, (outs VR256:$dst),
926 "movapd\t{$src, $dst|$dst, $src}", [],
927 IIC_SSE_MOVA_P_RR>, VEX, VEX_L;
928 def VMOVUPSYrr_REV : VPSI<0x11, MRMDestReg, (outs VR256:$dst),
930 "movups\t{$src, $dst|$dst, $src}", [],
931 IIC_SSE_MOVU_P_RR>, VEX, VEX_L;
932 def VMOVUPDYrr_REV : VPDI<0x11, MRMDestReg, (outs VR256:$dst),
934 "movupd\t{$src, $dst|$dst, $src}", [],
935 IIC_SSE_MOVU_P_RR>, VEX, VEX_L;
938 let Predicates = [HasAVX] in {
939 def : Pat<(v8i32 (X86vzmovl
940 (insert_subvector undef, (v4i32 VR128:$src), (iPTR 0)))),
941 (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
942 def : Pat<(v4i64 (X86vzmovl
943 (insert_subvector undef, (v2i64 VR128:$src), (iPTR 0)))),
944 (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
945 def : Pat<(v8f32 (X86vzmovl
946 (insert_subvector undef, (v4f32 VR128:$src), (iPTR 0)))),
947 (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
948 def : Pat<(v4f64 (X86vzmovl
949 (insert_subvector undef, (v2f64 VR128:$src), (iPTR 0)))),
950 (SUBREG_TO_REG (i32 0), (VMOVAPSrr VR128:$src), sub_xmm)>;
954 def : Pat<(int_x86_avx_storeu_ps_256 addr:$dst, VR256:$src),
955 (VMOVUPSYmr addr:$dst, VR256:$src)>;
956 def : Pat<(int_x86_avx_storeu_pd_256 addr:$dst, VR256:$src),
957 (VMOVUPDYmr addr:$dst, VR256:$src)>;
959 let SchedRW = [WriteStore] in {
960 def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
961 "movaps\t{$src, $dst|$dst, $src}",
962 [(alignedstore (v4f32 VR128:$src), addr:$dst)],
964 def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
965 "movapd\t{$src, $dst|$dst, $src}",
966 [(alignedstore (v2f64 VR128:$src), addr:$dst)],
968 def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
969 "movups\t{$src, $dst|$dst, $src}",
970 [(store (v4f32 VR128:$src), addr:$dst)],
972 def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
973 "movupd\t{$src, $dst|$dst, $src}",
974 [(store (v2f64 VR128:$src), addr:$dst)],
979 let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
980 SchedRW = [WriteFShuffle] in {
981 def MOVAPSrr_REV : PSI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
982 "movaps\t{$src, $dst|$dst, $src}", [],
984 def MOVAPDrr_REV : PDI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
985 "movapd\t{$src, $dst|$dst, $src}", [],
987 def MOVUPSrr_REV : PSI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
988 "movups\t{$src, $dst|$dst, $src}", [],
990 def MOVUPDrr_REV : PDI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
991 "movupd\t{$src, $dst|$dst, $src}", [],
995 let Predicates = [HasAVX] in {
996 def : Pat<(int_x86_sse_storeu_ps addr:$dst, VR128:$src),
997 (VMOVUPSmr addr:$dst, VR128:$src)>;
998 def : Pat<(int_x86_sse2_storeu_pd addr:$dst, VR128:$src),
999 (VMOVUPDmr addr:$dst, VR128:$src)>;
1002 let Predicates = [UseSSE1] in
1003 def : Pat<(int_x86_sse_storeu_ps addr:$dst, VR128:$src),
1004 (MOVUPSmr addr:$dst, VR128:$src)>;
1005 let Predicates = [UseSSE2] in
1006 def : Pat<(int_x86_sse2_storeu_pd addr:$dst, VR128:$src),
1007 (MOVUPDmr addr:$dst, VR128:$src)>;
1009 // Use vmovaps/vmovups for AVX integer load/store.
1010 let Predicates = [HasAVX, NoVLX] in {
1011 // 128-bit load/store
1012 def : Pat<(alignedloadv2i64 addr:$src),
1013 (VMOVAPSrm addr:$src)>;
1014 def : Pat<(loadv2i64 addr:$src),
1015 (VMOVUPSrm addr:$src)>;
1017 def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
1018 (VMOVAPSmr addr:$dst, VR128:$src)>;
1019 def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
1020 (VMOVAPSmr addr:$dst, VR128:$src)>;
1021 def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
1022 (VMOVAPSmr addr:$dst, VR128:$src)>;
1023 def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
1024 (VMOVAPSmr addr:$dst, VR128:$src)>;
1025 def : Pat<(store (v2i64 VR128:$src), addr:$dst),
1026 (VMOVUPSmr addr:$dst, VR128:$src)>;
1027 def : Pat<(store (v4i32 VR128:$src), addr:$dst),
1028 (VMOVUPSmr addr:$dst, VR128:$src)>;
1029 def : Pat<(store (v8i16 VR128:$src), addr:$dst),
1030 (VMOVUPSmr addr:$dst, VR128:$src)>;
1031 def : Pat<(store (v16i8 VR128:$src), addr:$dst),
1032 (VMOVUPSmr addr:$dst, VR128:$src)>;
1034 // 256-bit load/store
1035 def : Pat<(alignedloadv4i64 addr:$src),
1036 (VMOVAPSYrm addr:$src)>;
1037 def : Pat<(loadv4i64 addr:$src),
1038 (VMOVUPSYrm addr:$src)>;
1039 def : Pat<(alignedstore256 (v4i64 VR256:$src), addr:$dst),
1040 (VMOVAPSYmr addr:$dst, VR256:$src)>;
1041 def : Pat<(alignedstore256 (v8i32 VR256:$src), addr:$dst),
1042 (VMOVAPSYmr addr:$dst, VR256:$src)>;
1043 def : Pat<(alignedstore256 (v16i16 VR256:$src), addr:$dst),
1044 (VMOVAPSYmr addr:$dst, VR256:$src)>;
1045 def : Pat<(alignedstore256 (v32i8 VR256:$src), addr:$dst),
1046 (VMOVAPSYmr addr:$dst, VR256:$src)>;
1047 def : Pat<(store (v4i64 VR256:$src), addr:$dst),
1048 (VMOVUPSYmr addr:$dst, VR256:$src)>;
1049 def : Pat<(store (v8i32 VR256:$src), addr:$dst),
1050 (VMOVUPSYmr addr:$dst, VR256:$src)>;
1051 def : Pat<(store (v16i16 VR256:$src), addr:$dst),
1052 (VMOVUPSYmr addr:$dst, VR256:$src)>;
1053 def : Pat<(store (v32i8 VR256:$src), addr:$dst),
1054 (VMOVUPSYmr addr:$dst, VR256:$src)>;
1056 // Special patterns for storing subvector extracts of lower 128-bits
1057 // Its cheaper to just use VMOVAPS/VMOVUPS instead of VEXTRACTF128mr
1058 def : Pat<(alignedstore (v2f64 (extract_subvector
1059 (v4f64 VR256:$src), (iPTR 0))), addr:$dst),
1060 (VMOVAPDmr addr:$dst, (v2f64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1061 def : Pat<(alignedstore (v4f32 (extract_subvector
1062 (v8f32 VR256:$src), (iPTR 0))), addr:$dst),
1063 (VMOVAPSmr addr:$dst, (v4f32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1064 def : Pat<(alignedstore (v2i64 (extract_subvector
1065 (v4i64 VR256:$src), (iPTR 0))), addr:$dst),
1066 (VMOVAPDmr addr:$dst, (v2i64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1067 def : Pat<(alignedstore (v4i32 (extract_subvector
1068 (v8i32 VR256:$src), (iPTR 0))), addr:$dst),
1069 (VMOVAPSmr addr:$dst, (v4i32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1070 def : Pat<(alignedstore (v8i16 (extract_subvector
1071 (v16i16 VR256:$src), (iPTR 0))), addr:$dst),
1072 (VMOVAPSmr addr:$dst, (v8i16 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1073 def : Pat<(alignedstore (v16i8 (extract_subvector
1074 (v32i8 VR256:$src), (iPTR 0))), addr:$dst),
1075 (VMOVAPSmr addr:$dst, (v16i8 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1077 def : Pat<(store (v2f64 (extract_subvector
1078 (v4f64 VR256:$src), (iPTR 0))), addr:$dst),
1079 (VMOVUPDmr addr:$dst, (v2f64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1080 def : Pat<(store (v4f32 (extract_subvector
1081 (v8f32 VR256:$src), (iPTR 0))), addr:$dst),
1082 (VMOVUPSmr addr:$dst, (v4f32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1083 def : Pat<(store (v2i64 (extract_subvector
1084 (v4i64 VR256:$src), (iPTR 0))), addr:$dst),
1085 (VMOVUPDmr addr:$dst, (v2i64 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1086 def : Pat<(store (v4i32 (extract_subvector
1087 (v8i32 VR256:$src), (iPTR 0))), addr:$dst),
1088 (VMOVUPSmr addr:$dst, (v4i32 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1089 def : Pat<(store (v8i16 (extract_subvector
1090 (v16i16 VR256:$src), (iPTR 0))), addr:$dst),
1091 (VMOVUPSmr addr:$dst, (v8i16 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1092 def : Pat<(store (v16i8 (extract_subvector
1093 (v32i8 VR256:$src), (iPTR 0))), addr:$dst),
1094 (VMOVUPSmr addr:$dst, (v16i8 (EXTRACT_SUBREG VR256:$src,sub_xmm)))>;
1097 // Use movaps / movups for SSE integer load / store (one byte shorter).
1098 // The instructions selected below are then converted to MOVDQA/MOVDQU
1099 // during the SSE domain pass.
1100 let Predicates = [UseSSE1] in {
1101 def : Pat<(alignedloadv2i64 addr:$src),
1102 (MOVAPSrm addr:$src)>;
1103 def : Pat<(loadv2i64 addr:$src),
1104 (MOVUPSrm addr:$src)>;
1106 def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
1107 (MOVAPSmr addr:$dst, VR128:$src)>;
1108 def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
1109 (MOVAPSmr addr:$dst, VR128:$src)>;
1110 def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
1111 (MOVAPSmr addr:$dst, VR128:$src)>;
1112 def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
1113 (MOVAPSmr addr:$dst, VR128:$src)>;
1114 def : Pat<(store (v2i64 VR128:$src), addr:$dst),
1115 (MOVUPSmr addr:$dst, VR128:$src)>;
1116 def : Pat<(store (v4i32 VR128:$src), addr:$dst),
1117 (MOVUPSmr addr:$dst, VR128:$src)>;
1118 def : Pat<(store (v8i16 VR128:$src), addr:$dst),
1119 (MOVUPSmr addr:$dst, VR128:$src)>;
1120 def : Pat<(store (v16i8 VR128:$src), addr:$dst),
1121 (MOVUPSmr addr:$dst, VR128:$src)>;
1124 // Alias instruction to load FR32 or FR64 from f128mem using movaps. Upper
1125 // bits are disregarded. FIXME: Set encoding to pseudo!
1126 let canFoldAsLoad = 1, isReMaterializable = 1, SchedRW = [WriteLoad] in {
1127 let isCodeGenOnly = 1 in {
1128 def FsVMOVAPSrm : VPSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src),
1129 "movaps\t{$src, $dst|$dst, $src}",
1130 [(set FR32:$dst, (alignedloadfsf32 addr:$src))],
1131 IIC_SSE_MOVA_P_RM>, VEX;
1132 def FsVMOVAPDrm : VPDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src),
1133 "movapd\t{$src, $dst|$dst, $src}",
1134 [(set FR64:$dst, (alignedloadfsf64 addr:$src))],
1135 IIC_SSE_MOVA_P_RM>, VEX;
1136 def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src),
1137 "movaps\t{$src, $dst|$dst, $src}",
1138 [(set FR32:$dst, (alignedloadfsf32 addr:$src))],
1140 def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src),
1141 "movapd\t{$src, $dst|$dst, $src}",
1142 [(set FR64:$dst, (alignedloadfsf64 addr:$src))],
1147 //===----------------------------------------------------------------------===//
1148 // SSE 1 & 2 - Move Low packed FP Instructions
1149 //===----------------------------------------------------------------------===//
1151 multiclass sse12_mov_hilo_packed_base<bits<8>opc, SDNode psnode, SDNode pdnode,
1152 string base_opc, string asm_opr,
1153 InstrItinClass itin> {
1154 def PSrm : PI<opc, MRMSrcMem,
1155 (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
1156 !strconcat(base_opc, "s", asm_opr),
1158 (psnode VR128:$src1,
1159 (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))))],
1160 itin, SSEPackedSingle>, PS,
1161 Sched<[WriteFShuffleLd, ReadAfterLd]>;
1163 def PDrm : PI<opc, MRMSrcMem,
1164 (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
1165 !strconcat(base_opc, "d", asm_opr),
1166 [(set VR128:$dst, (v2f64 (pdnode VR128:$src1,
1167 (scalar_to_vector (loadf64 addr:$src2)))))],
1168 itin, SSEPackedDouble>, PD,
1169 Sched<[WriteFShuffleLd, ReadAfterLd]>;
1173 multiclass sse12_mov_hilo_packed<bits<8>opc, SDNode psnode, SDNode pdnode,
1174 string base_opc, InstrItinClass itin> {
1175 defm V#NAME : sse12_mov_hilo_packed_base<opc, psnode, pdnode, base_opc,
1176 "\t{$src2, $src1, $dst|$dst, $src1, $src2}",
1179 let Constraints = "$src1 = $dst" in
1180 defm NAME : sse12_mov_hilo_packed_base<opc, psnode, pdnode, base_opc,
1181 "\t{$src2, $dst|$dst, $src2}",
1185 let AddedComplexity = 20 in {
1186 defm MOVL : sse12_mov_hilo_packed<0x12, X86Movlps, X86Movlpd, "movlp",
1190 let SchedRW = [WriteStore] in {
1191 def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
1192 "movlps\t{$src, $dst|$dst, $src}",
1193 [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
1194 (iPTR 0))), addr:$dst)],
1195 IIC_SSE_MOV_LH>, VEX;
1196 def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
1197 "movlpd\t{$src, $dst|$dst, $src}",
1198 [(store (f64 (vector_extract (v2f64 VR128:$src),
1199 (iPTR 0))), addr:$dst)],
1200 IIC_SSE_MOV_LH>, VEX;
1201 def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
1202 "movlps\t{$src, $dst|$dst, $src}",
1203 [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
1204 (iPTR 0))), addr:$dst)],
1206 def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
1207 "movlpd\t{$src, $dst|$dst, $src}",
1208 [(store (f64 (vector_extract (v2f64 VR128:$src),
1209 (iPTR 0))), addr:$dst)],
1213 let Predicates = [HasAVX] in {
1214 // Shuffle with VMOVLPS
1215 def : Pat<(v4f32 (X86Movlps VR128:$src1, (load addr:$src2))),
1216 (VMOVLPSrm VR128:$src1, addr:$src2)>;
1217 def : Pat<(v4i32 (X86Movlps VR128:$src1, (load addr:$src2))),
1218 (VMOVLPSrm VR128:$src1, addr:$src2)>;
1220 // Shuffle with VMOVLPD
1221 def : Pat<(v2f64 (X86Movlpd VR128:$src1, (load addr:$src2))),
1222 (VMOVLPDrm VR128:$src1, addr:$src2)>;
1223 def : Pat<(v2i64 (X86Movlpd VR128:$src1, (load addr:$src2))),
1224 (VMOVLPDrm VR128:$src1, addr:$src2)>;
1225 def : Pat<(v2f64 (X86Movsd VR128:$src1,
1226 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))),
1227 (VMOVLPDrm VR128:$src1, addr:$src2)>;
1230 def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)),
1232 (VMOVLPSmr addr:$src1, VR128:$src2)>;
1233 def : Pat<(store (v4i32 (X86Movlps
1234 (bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)), addr:$src1),
1235 (VMOVLPSmr addr:$src1, VR128:$src2)>;
1236 def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128:$src2)),
1238 (VMOVLPDmr addr:$src1, VR128:$src2)>;
1239 def : Pat<(store (v2i64 (X86Movlpd (load addr:$src1), VR128:$src2)),
1241 (VMOVLPDmr addr:$src1, VR128:$src2)>;
1244 let Predicates = [UseSSE1] in {
1245 // (store (vector_shuffle (load addr), v2, <4, 5, 2, 3>), addr) using MOVLPS
1246 def : Pat<(store (i64 (vector_extract (bc_v2i64 (v4f32 VR128:$src2)),
1247 (iPTR 0))), addr:$src1),
1248 (MOVLPSmr addr:$src1, VR128:$src2)>;
1250 // Shuffle with MOVLPS
1251 def : Pat<(v4f32 (X86Movlps VR128:$src1, (load addr:$src2))),
1252 (MOVLPSrm VR128:$src1, addr:$src2)>;
1253 def : Pat<(v4i32 (X86Movlps VR128:$src1, (load addr:$src2))),
1254 (MOVLPSrm VR128:$src1, addr:$src2)>;
1255 def : Pat<(X86Movlps VR128:$src1,
1256 (bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
1257 (MOVLPSrm VR128:$src1, addr:$src2)>;
1260 def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)),
1262 (MOVLPSmr addr:$src1, VR128:$src2)>;
1263 def : Pat<(store (v4i32 (X86Movlps
1264 (bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)),
1266 (MOVLPSmr addr:$src1, VR128:$src2)>;
1269 let Predicates = [UseSSE2] in {
1270 // Shuffle with MOVLPD
1271 def : Pat<(v2f64 (X86Movlpd VR128:$src1, (load addr:$src2))),
1272 (MOVLPDrm VR128:$src1, addr:$src2)>;
1273 def : Pat<(v2i64 (X86Movlpd VR128:$src1, (load addr:$src2))),
1274 (MOVLPDrm VR128:$src1, addr:$src2)>;
1275 def : Pat<(v2f64 (X86Movsd VR128:$src1,
1276 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))),
1277 (MOVLPDrm VR128:$src1, addr:$src2)>;
1280 def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128:$src2)),
1282 (MOVLPDmr addr:$src1, VR128:$src2)>;
1283 def : Pat<(store (v2i64 (X86Movlpd (load addr:$src1), VR128:$src2)),
1285 (MOVLPDmr addr:$src1, VR128:$src2)>;
1288 //===----------------------------------------------------------------------===//
1289 // SSE 1 & 2 - Move Hi packed FP Instructions
1290 //===----------------------------------------------------------------------===//
1292 let AddedComplexity = 20 in {
1293 defm MOVH : sse12_mov_hilo_packed<0x16, X86Movlhps, X86Movlhpd, "movhp",
1297 let SchedRW = [WriteStore] in {
1298 // v2f64 extract element 1 is always custom lowered to unpack high to low
1299 // and extract element 0 so the non-store version isn't too horrible.
1300 def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
1301 "movhps\t{$src, $dst|$dst, $src}",
1302 [(store (f64 (vector_extract
1303 (X86Unpckh (bc_v2f64 (v4f32 VR128:$src)),
1304 (bc_v2f64 (v4f32 VR128:$src))),
1305 (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>, VEX;
1306 def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
1307 "movhpd\t{$src, $dst|$dst, $src}",
1308 [(store (f64 (vector_extract
1309 (v2f64 (X86Unpckh VR128:$src, VR128:$src)),
1310 (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>, VEX;
1311 def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
1312 "movhps\t{$src, $dst|$dst, $src}",
1313 [(store (f64 (vector_extract
1314 (X86Unpckh (bc_v2f64 (v4f32 VR128:$src)),
1315 (bc_v2f64 (v4f32 VR128:$src))),
1316 (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>;
1317 def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
1318 "movhpd\t{$src, $dst|$dst, $src}",
1319 [(store (f64 (vector_extract
1320 (v2f64 (X86Unpckh VR128:$src, VR128:$src)),
1321 (iPTR 0))), addr:$dst)], IIC_SSE_MOV_LH>;
1324 let Predicates = [HasAVX] in {
1326 def : Pat<(X86Movlhps VR128:$src1,
1327 (bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
1328 (VMOVHPSrm VR128:$src1, addr:$src2)>;
1329 def : Pat<(X86Movlhps VR128:$src1,
1330 (bc_v4i32 (v2i64 (X86vzload addr:$src2)))),
1331 (VMOVHPSrm VR128:$src1, addr:$src2)>;
1335 // FIXME: Instead of X86Unpckl, there should be a X86Movlhpd here, the problem
1336 // is during lowering, where it's not possible to recognize the load fold
1337 // cause it has two uses through a bitcast. One use disappears at isel time
1338 // and the fold opportunity reappears.
1339 def : Pat<(v2f64 (X86Unpckl VR128:$src1,
1340 (scalar_to_vector (loadf64 addr:$src2)))),
1341 (VMOVHPDrm VR128:$src1, addr:$src2)>;
1342 // Also handle an i64 load because that may get selected as a faster way to
1344 def : Pat<(v2f64 (X86Unpckl VR128:$src1,
1345 (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))),
1346 (VMOVHPDrm VR128:$src1, addr:$src2)>;
1348 def : Pat<(store (f64 (vector_extract
1349 (v2f64 (X86VPermilpi VR128:$src, (i8 1))),
1350 (iPTR 0))), addr:$dst),
1351 (VMOVHPDmr addr:$dst, VR128:$src)>;
1354 let Predicates = [UseSSE1] in {
1356 def : Pat<(X86Movlhps VR128:$src1,
1357 (bc_v4f32 (v2i64 (scalar_to_vector (loadi64 addr:$src2))))),
1358 (MOVHPSrm VR128:$src1, addr:$src2)>;
1359 def : Pat<(X86Movlhps VR128:$src1,
1360 (bc_v4f32 (v2i64 (X86vzload addr:$src2)))),
1361 (MOVHPSrm VR128:$src1, addr:$src2)>;
1364 let Predicates = [UseSSE2] in {
1367 // FIXME: Instead of X86Unpckl, there should be a X86Movlhpd here, the problem
1368 // is during lowering, where it's not possible to recognize the load fold
1369 // cause it has two uses through a bitcast. One use disappears at isel time
1370 // and the fold opportunity reappears.
1371 def : Pat<(v2f64 (X86Unpckl VR128:$src1,
1372 (scalar_to_vector (loadf64 addr:$src2)))),
1373 (MOVHPDrm VR128:$src1, addr:$src2)>;
1374 // Also handle an i64 load because that may get selected as a faster way to
1376 def : Pat<(v2f64 (X86Unpckl VR128:$src1,
1377 (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))),
1378 (MOVHPDrm VR128:$src1, addr:$src2)>;
1380 def : Pat<(store (f64 (vector_extract
1381 (v2f64 (X86Shufp VR128:$src, VR128:$src, (i8 1))),
1382 (iPTR 0))), addr:$dst),
1383 (MOVHPDmr addr:$dst, VR128:$src)>;
1386 //===----------------------------------------------------------------------===//
1387 // SSE 1 & 2 - Move Low to High and High to Low packed FP Instructions
1388 //===----------------------------------------------------------------------===//
1390 let AddedComplexity = 20, Predicates = [UseAVX] in {
1391 def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst),
1392 (ins VR128:$src1, VR128:$src2),
1393 "movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
1395 (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))],
1397 VEX_4V, Sched<[WriteFShuffle]>;
1398 def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst),
1399 (ins VR128:$src1, VR128:$src2),
1400 "movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
1402 (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))],
1404 VEX_4V, Sched<[WriteFShuffle]>;
1406 let Constraints = "$src1 = $dst", AddedComplexity = 20 in {
1407 def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst),
1408 (ins VR128:$src1, VR128:$src2),
1409 "movlhps\t{$src2, $dst|$dst, $src2}",
1411 (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))],
1412 IIC_SSE_MOV_LH>, Sched<[WriteFShuffle]>;
1413 def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst),
1414 (ins VR128:$src1, VR128:$src2),
1415 "movhlps\t{$src2, $dst|$dst, $src2}",
1417 (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))],
1418 IIC_SSE_MOV_LH>, Sched<[WriteFShuffle]>;
1421 let Predicates = [UseAVX] in {
1423 def : Pat<(v4i32 (X86Movlhps VR128:$src1, VR128:$src2)),
1424 (VMOVLHPSrr VR128:$src1, VR128:$src2)>;
1425 def : Pat<(v2i64 (X86Movlhps VR128:$src1, VR128:$src2)),
1426 (VMOVLHPSrr (v2i64 VR128:$src1), VR128:$src2)>;
1429 def : Pat<(v4i32 (X86Movhlps VR128:$src1, VR128:$src2)),
1430 (VMOVHLPSrr VR128:$src1, VR128:$src2)>;
1433 let Predicates = [UseSSE1] in {
1435 def : Pat<(v4i32 (X86Movlhps VR128:$src1, VR128:$src2)),
1436 (MOVLHPSrr VR128:$src1, VR128:$src2)>;
1437 def : Pat<(v2i64 (X86Movlhps VR128:$src1, VR128:$src2)),
1438 (MOVLHPSrr (v2i64 VR128:$src1), VR128:$src2)>;
1441 def : Pat<(v4i32 (X86Movhlps VR128:$src1, VR128:$src2)),
1442 (MOVHLPSrr VR128:$src1, VR128:$src2)>;
1445 //===----------------------------------------------------------------------===//
1446 // SSE 1 & 2 - Conversion Instructions
1447 //===----------------------------------------------------------------------===//
1449 def SSE_CVT_PD : OpndItins<
1450 IIC_SSE_CVT_PD_RR, IIC_SSE_CVT_PD_RM
1453 let Sched = WriteCvtI2F in
1454 def SSE_CVT_PS : OpndItins<
1455 IIC_SSE_CVT_PS_RR, IIC_SSE_CVT_PS_RM
1458 let Sched = WriteCvtI2F in
1459 def SSE_CVT_Scalar : OpndItins<
1460 IIC_SSE_CVT_Scalar_RR, IIC_SSE_CVT_Scalar_RM
1463 let Sched = WriteCvtF2I in
1464 def SSE_CVT_SS2SI_32 : OpndItins<
1465 IIC_SSE_CVT_SS2SI32_RR, IIC_SSE_CVT_SS2SI32_RM
1468 let Sched = WriteCvtF2I in
1469 def SSE_CVT_SS2SI_64 : OpndItins<
1470 IIC_SSE_CVT_SS2SI64_RR, IIC_SSE_CVT_SS2SI64_RM
1473 let Sched = WriteCvtF2I in
1474 def SSE_CVT_SD2SI : OpndItins<
1475 IIC_SSE_CVT_SD2SI_RR, IIC_SSE_CVT_SD2SI_RM
1478 multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
1479 SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
1480 string asm, OpndItins itins> {
1481 def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
1482 [(set DstRC:$dst, (OpNode SrcRC:$src))],
1483 itins.rr>, Sched<[itins.Sched]>;
1484 def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
1485 [(set DstRC:$dst, (OpNode (ld_frag addr:$src)))],
1486 itins.rm>, Sched<[itins.Sched.Folded]>;
1489 multiclass sse12_cvt_p<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
1490 X86MemOperand x86memop, string asm, Domain d,
1492 let hasSideEffects = 0 in {
1493 def rr : I<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
1494 [], itins.rr, d>, Sched<[itins.Sched]>;
1496 def rm : I<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
1497 [], itins.rm, d>, Sched<[itins.Sched.Folded]>;
1501 multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
1502 X86MemOperand x86memop, string asm> {
1503 let hasSideEffects = 0, Predicates = [UseAVX] in {
1504 def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src),
1505 !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
1506 Sched<[WriteCvtI2F]>;
1508 def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
1509 (ins DstRC:$src1, x86memop:$src),
1510 !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
1511 Sched<[WriteCvtI2FLd, ReadAfterLd]>;
1512 } // hasSideEffects = 0
1515 let Predicates = [UseAVX] in {
1516 defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
1517 "cvttss2si\t{$src, $dst|$dst, $src}",
1520 defm VCVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
1521 "cvttss2si\t{$src, $dst|$dst, $src}",
1523 XS, VEX, VEX_W, VEX_LIG;
1524 defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
1525 "cvttsd2si\t{$src, $dst|$dst, $src}",
1528 defm VCVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
1529 "cvttsd2si\t{$src, $dst|$dst, $src}",
1531 XD, VEX, VEX_W, VEX_LIG;
1533 def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}",
1534 (VCVTTSS2SIrr GR32:$dst, FR32:$src), 0>;
1535 def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}",
1536 (VCVTTSS2SIrm GR32:$dst, f32mem:$src), 0>;
1537 def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}",
1538 (VCVTTSD2SIrr GR32:$dst, FR64:$src), 0>;
1539 def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}",
1540 (VCVTTSD2SIrm GR32:$dst, f64mem:$src), 0>;
1541 def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}",
1542 (VCVTTSS2SI64rr GR64:$dst, FR32:$src), 0>;
1543 def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}",
1544 (VCVTTSS2SI64rm GR64:$dst, f32mem:$src), 0>;
1545 def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}",
1546 (VCVTTSD2SI64rr GR64:$dst, FR64:$src), 0>;
1547 def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}",
1548 (VCVTTSD2SI64rm GR64:$dst, f64mem:$src), 0>;
1550 // The assembler can recognize rr 64-bit instructions by seeing a rxx
1551 // register, but the same isn't true when only using memory operands,
1552 // provide other assembly "l" and "q" forms to address this explicitly
1553 // where appropriate to do so.
1554 defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, i32mem, "cvtsi2ss{l}">,
1555 XS, VEX_4V, VEX_LIG;
1556 defm VCVTSI2SS64 : sse12_vcvt_avx<0x2A, GR64, FR32, i64mem, "cvtsi2ss{q}">,
1557 XS, VEX_4V, VEX_W, VEX_LIG;
1558 defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd{l}">,
1559 XD, VEX_4V, VEX_LIG;
1560 defm VCVTSI2SD64 : sse12_vcvt_avx<0x2A, GR64, FR64, i64mem, "cvtsi2sd{q}">,
1561 XD, VEX_4V, VEX_W, VEX_LIG;
1563 let Predicates = [UseAVX] in {
1564 def : InstAlias<"vcvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}",
1565 (VCVTSI2SSrm FR64:$dst, FR64:$src1, i32mem:$src), 0>;
1566 def : InstAlias<"vcvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}",
1567 (VCVTSI2SDrm FR64:$dst, FR64:$src1, i32mem:$src), 0>;
1569 def : Pat<(f32 (sint_to_fp (loadi32 addr:$src))),
1570 (VCVTSI2SSrm (f32 (IMPLICIT_DEF)), addr:$src)>;
1571 def : Pat<(f32 (sint_to_fp (loadi64 addr:$src))),
1572 (VCVTSI2SS64rm (f32 (IMPLICIT_DEF)), addr:$src)>;
1573 def : Pat<(f64 (sint_to_fp (loadi32 addr:$src))),
1574 (VCVTSI2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>;
1575 def : Pat<(f64 (sint_to_fp (loadi64 addr:$src))),
1576 (VCVTSI2SD64rm (f64 (IMPLICIT_DEF)), addr:$src)>;
1578 def : Pat<(f32 (sint_to_fp GR32:$src)),
1579 (VCVTSI2SSrr (f32 (IMPLICIT_DEF)), GR32:$src)>;
1580 def : Pat<(f32 (sint_to_fp GR64:$src)),
1581 (VCVTSI2SS64rr (f32 (IMPLICIT_DEF)), GR64:$src)>;
1582 def : Pat<(f64 (sint_to_fp GR32:$src)),
1583 (VCVTSI2SDrr (f64 (IMPLICIT_DEF)), GR32:$src)>;
1584 def : Pat<(f64 (sint_to_fp GR64:$src)),
1585 (VCVTSI2SD64rr (f64 (IMPLICIT_DEF)), GR64:$src)>;
1588 defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
1589 "cvttss2si\t{$src, $dst|$dst, $src}",
1590 SSE_CVT_SS2SI_32>, XS;
1591 defm CVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
1592 "cvttss2si\t{$src, $dst|$dst, $src}",
1593 SSE_CVT_SS2SI_64>, XS, REX_W;
1594 defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
1595 "cvttsd2si\t{$src, $dst|$dst, $src}",
1597 defm CVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
1598 "cvttsd2si\t{$src, $dst|$dst, $src}",
1599 SSE_CVT_SD2SI>, XD, REX_W;
1600 defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32,
1601 "cvtsi2ss{l}\t{$src, $dst|$dst, $src}",
1602 SSE_CVT_Scalar>, XS;
1603 defm CVTSI2SS64 : sse12_cvt_s<0x2A, GR64, FR32, sint_to_fp, i64mem, loadi64,
1604 "cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
1605 SSE_CVT_Scalar>, XS, REX_W;
1606 defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32,
1607 "cvtsi2sd{l}\t{$src, $dst|$dst, $src}",
1608 SSE_CVT_Scalar>, XD;
1609 defm CVTSI2SD64 : sse12_cvt_s<0x2A, GR64, FR64, sint_to_fp, i64mem, loadi64,
1610 "cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
1611 SSE_CVT_Scalar>, XD, REX_W;
1613 def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}",
1614 (CVTTSS2SIrr GR32:$dst, FR32:$src), 0>;
1615 def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}",
1616 (CVTTSS2SIrm GR32:$dst, f32mem:$src), 0>;
1617 def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}",
1618 (CVTTSD2SIrr GR32:$dst, FR64:$src), 0>;
1619 def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}",
1620 (CVTTSD2SIrm GR32:$dst, f64mem:$src), 0>;
1621 def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}",
1622 (CVTTSS2SI64rr GR64:$dst, FR32:$src), 0>;
1623 def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}",
1624 (CVTTSS2SI64rm GR64:$dst, f32mem:$src), 0>;
1625 def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
1626 (CVTTSD2SI64rr GR64:$dst, FR64:$src), 0>;
1627 def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
1628 (CVTTSD2SI64rm GR64:$dst, f64mem:$src), 0>;
1630 def : InstAlias<"cvtsi2ss\t{$src, $dst|$dst, $src}",
1631 (CVTSI2SSrm FR64:$dst, i32mem:$src), 0>;
1632 def : InstAlias<"cvtsi2sd\t{$src, $dst|$dst, $src}",
1633 (CVTSI2SDrm FR64:$dst, i32mem:$src), 0>;
1635 // Conversion Instructions Intrinsics - Match intrinsics which expect MM
1636 // and/or XMM operand(s).
1638 multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
1639 Intrinsic Int, Operand memop, ComplexPattern mem_cpat,
1640 string asm, OpndItins itins> {
1641 def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
1642 !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
1643 [(set DstRC:$dst, (Int SrcRC:$src))], itins.rr>,
1644 Sched<[itins.Sched]>;
1645 def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins memop:$src),
1646 !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
1647 [(set DstRC:$dst, (Int mem_cpat:$src))], itins.rm>,
1648 Sched<[itins.Sched.Folded]>;
1651 multiclass sse12_cvt_sint_3addr<bits<8> opc, RegisterClass SrcRC,
1652 RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop,
1653 PatFrag ld_frag, string asm, OpndItins itins,
1655 def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src2),
1657 !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
1658 !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
1659 [(set DstRC:$dst, (Int DstRC:$src1, SrcRC:$src2))],
1660 itins.rr>, Sched<[itins.Sched]>;
1661 def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
1662 (ins DstRC:$src1, x86memop:$src2),
1664 !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
1665 !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
1666 [(set DstRC:$dst, (Int DstRC:$src1, (ld_frag addr:$src2)))],
1667 itins.rm>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
1670 let Predicates = [UseAVX] in {
1671 defm VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32,
1672 int_x86_sse2_cvtsd2si, sdmem, sse_load_f64, "cvtsd2si",
1673 SSE_CVT_SD2SI>, XD, VEX, VEX_LIG;
1674 defm VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64,
1675 int_x86_sse2_cvtsd2si64, sdmem, sse_load_f64, "cvtsd2si",
1676 SSE_CVT_SD2SI>, XD, VEX, VEX_W, VEX_LIG;
1678 defm CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si,
1679 sdmem, sse_load_f64, "cvtsd2si", SSE_CVT_SD2SI>, XD;
1680 defm CVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse2_cvtsd2si64,
1681 sdmem, sse_load_f64, "cvtsd2si", SSE_CVT_SD2SI>, XD, REX_W;
1684 let isCodeGenOnly = 1 in {
1685 let Predicates = [UseAVX] in {
1686 defm Int_VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
1687 int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss{l}",
1688 SSE_CVT_Scalar, 0>, XS, VEX_4V;
1689 defm Int_VCVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
1690 int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss{q}",
1691 SSE_CVT_Scalar, 0>, XS, VEX_4V,
1693 defm Int_VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
1694 int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd{l}",
1695 SSE_CVT_Scalar, 0>, XD, VEX_4V;
1696 defm Int_VCVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
1697 int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd{q}",
1698 SSE_CVT_Scalar, 0>, XD,
1701 let Constraints = "$src1 = $dst" in {
1702 defm Int_CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
1703 int_x86_sse_cvtsi2ss, i32mem, loadi32,
1704 "cvtsi2ss{l}", SSE_CVT_Scalar>, XS;
1705 defm Int_CVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
1706 int_x86_sse_cvtsi642ss, i64mem, loadi64,
1707 "cvtsi2ss{q}", SSE_CVT_Scalar>, XS, REX_W;
1708 defm Int_CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
1709 int_x86_sse2_cvtsi2sd, i32mem, loadi32,
1710 "cvtsi2sd{l}", SSE_CVT_Scalar>, XD;
1711 defm Int_CVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
1712 int_x86_sse2_cvtsi642sd, i64mem, loadi64,
1713 "cvtsi2sd{q}", SSE_CVT_Scalar>, XD, REX_W;
1715 } // isCodeGenOnly = 1
1719 // Aliases for intrinsics
1720 let isCodeGenOnly = 1 in {
1721 let Predicates = [UseAVX] in {
1722 defm Int_VCVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
1723 ssmem, sse_load_f32, "cvttss2si",
1724 SSE_CVT_SS2SI_32>, XS, VEX;
1725 defm Int_VCVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
1726 int_x86_sse_cvttss2si64, ssmem, sse_load_f32,
1727 "cvttss2si", SSE_CVT_SS2SI_64>,
1729 defm Int_VCVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
1730 sdmem, sse_load_f64, "cvttsd2si",
1731 SSE_CVT_SD2SI>, XD, VEX;
1732 defm Int_VCVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
1733 int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64,
1734 "cvttsd2si", SSE_CVT_SD2SI>,
1737 defm Int_CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
1738 ssmem, sse_load_f32, "cvttss2si",
1739 SSE_CVT_SS2SI_32>, XS;
1740 defm Int_CVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
1741 int_x86_sse_cvttss2si64, ssmem, sse_load_f32,
1742 "cvttss2si", SSE_CVT_SS2SI_64>, XS, REX_W;
1743 defm Int_CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
1744 sdmem, sse_load_f64, "cvttsd2si",
1746 defm Int_CVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
1747 int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64,
1748 "cvttsd2si", SSE_CVT_SD2SI>, XD, REX_W;
1749 } // isCodeGenOnly = 1
1751 let Predicates = [UseAVX] in {
1752 defm VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
1753 ssmem, sse_load_f32, "cvtss2si",
1754 SSE_CVT_SS2SI_32>, XS, VEX, VEX_LIG;
1755 defm VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64,
1756 ssmem, sse_load_f32, "cvtss2si",
1757 SSE_CVT_SS2SI_64>, XS, VEX, VEX_W, VEX_LIG;
1759 defm CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
1760 ssmem, sse_load_f32, "cvtss2si",
1761 SSE_CVT_SS2SI_32>, XS;
1762 defm CVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64,
1763 ssmem, sse_load_f32, "cvtss2si",
1764 SSE_CVT_SS2SI_64>, XS, REX_W;
1766 defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, i128mem,
1767 "vcvtdq2ps\t{$src, $dst|$dst, $src}",
1768 SSEPackedSingle, SSE_CVT_PS>,
1769 PS, VEX, Requires<[HasAVX]>;
1770 defm VCVTDQ2PSY : sse12_cvt_p<0x5B, VR256, VR256, i256mem,
1771 "vcvtdq2ps\t{$src, $dst|$dst, $src}",
1772 SSEPackedSingle, SSE_CVT_PS>,
1773 PS, VEX, VEX_L, Requires<[HasAVX]>;
1775 defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, i128mem,
1776 "cvtdq2ps\t{$src, $dst|$dst, $src}",
1777 SSEPackedSingle, SSE_CVT_PS>,
1778 PS, Requires<[UseSSE2]>;
1780 let Predicates = [UseAVX] in {
1781 def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}",
1782 (VCVTSS2SIrr GR32:$dst, VR128:$src), 0>;
1783 def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}",
1784 (VCVTSS2SIrm GR32:$dst, ssmem:$src), 0>;
1785 def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}",
1786 (VCVTSD2SIrr GR32:$dst, VR128:$src), 0>;
1787 def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}",
1788 (VCVTSD2SIrm GR32:$dst, sdmem:$src), 0>;
1789 def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}",
1790 (VCVTSS2SI64rr GR64:$dst, VR128:$src), 0>;
1791 def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}",
1792 (VCVTSS2SI64rm GR64:$dst, ssmem:$src), 0>;
1793 def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}",
1794 (VCVTSD2SI64rr GR64:$dst, VR128:$src), 0>;
1795 def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}",
1796 (VCVTSD2SI64rm GR64:$dst, sdmem:$src), 0>;
1799 def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}",
1800 (CVTSS2SIrr GR32:$dst, VR128:$src), 0>;
1801 def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}",
1802 (CVTSS2SIrm GR32:$dst, ssmem:$src), 0>;
1803 def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}",
1804 (CVTSD2SIrr GR32:$dst, VR128:$src), 0>;
1805 def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}",
1806 (CVTSD2SIrm GR32:$dst, sdmem:$src), 0>;
1807 def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}",
1808 (CVTSS2SI64rr GR64:$dst, VR128:$src), 0>;
1809 def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}",
1810 (CVTSS2SI64rm GR64:$dst, ssmem:$src), 0>;
1811 def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
1812 (CVTSD2SI64rr GR64:$dst, VR128:$src), 0>;
1813 def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
1814 (CVTSD2SI64rm GR64:$dst, sdmem:$src)>;
1818 // Convert scalar double to scalar single
1819 let hasSideEffects = 0, Predicates = [UseAVX] in {
1820 def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst),
1821 (ins FR64:$src1, FR64:$src2),
1822 "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", [],
1823 IIC_SSE_CVT_Scalar_RR>, VEX_4V, VEX_LIG,
1824 Sched<[WriteCvtF2F]>;
1826 def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst),
1827 (ins FR64:$src1, f64mem:$src2),
1828 "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
1829 [], IIC_SSE_CVT_Scalar_RM>,
1830 XD, Requires<[HasAVX, OptForSize]>, VEX_4V, VEX_LIG,
1831 Sched<[WriteCvtF2FLd, ReadAfterLd]>;
1834 def : Pat<(f32 (fround FR64:$src)), (VCVTSD2SSrr FR64:$src, FR64:$src)>,
1837 def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src),
1838 "cvtsd2ss\t{$src, $dst|$dst, $src}",
1839 [(set FR32:$dst, (fround FR64:$src))],
1840 IIC_SSE_CVT_Scalar_RR>, Sched<[WriteCvtF2F]>;
1841 def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src),
1842 "cvtsd2ss\t{$src, $dst|$dst, $src}",
1843 [(set FR32:$dst, (fround (loadf64 addr:$src)))],
1844 IIC_SSE_CVT_Scalar_RM>,
1846 Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtF2FLd]>;
1848 let isCodeGenOnly = 1 in {
1849 def Int_VCVTSD2SSrr: I<0x5A, MRMSrcReg,
1850 (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
1851 "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
1853 (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))],
1854 IIC_SSE_CVT_Scalar_RR>, XD, VEX_4V, Requires<[HasAVX]>,
1855 Sched<[WriteCvtF2F]>;
1856 def Int_VCVTSD2SSrm: I<0x5A, MRMSrcReg,
1857 (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
1858 "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
1859 [(set VR128:$dst, (int_x86_sse2_cvtsd2ss
1860 VR128:$src1, sse_load_f64:$src2))],
1861 IIC_SSE_CVT_Scalar_RM>, XD, VEX_4V, Requires<[HasAVX]>,
1862 Sched<[WriteCvtF2FLd, ReadAfterLd]>;
1864 let Constraints = "$src1 = $dst" in {
1865 def Int_CVTSD2SSrr: I<0x5A, MRMSrcReg,
1866 (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
1867 "cvtsd2ss\t{$src2, $dst|$dst, $src2}",
1869 (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))],
1870 IIC_SSE_CVT_Scalar_RR>, XD, Requires<[UseSSE2]>,
1871 Sched<[WriteCvtF2F]>;
1872 def Int_CVTSD2SSrm: I<0x5A, MRMSrcReg,
1873 (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
1874 "cvtsd2ss\t{$src2, $dst|$dst, $src2}",
1875 [(set VR128:$dst, (int_x86_sse2_cvtsd2ss
1876 VR128:$src1, sse_load_f64:$src2))],
1877 IIC_SSE_CVT_Scalar_RM>, XD, Requires<[UseSSE2]>,
1878 Sched<[WriteCvtF2FLd, ReadAfterLd]>;
1880 } // isCodeGenOnly = 1
1882 // Convert scalar single to scalar double
1883 // SSE2 instructions with XS prefix
1884 let hasSideEffects = 0, Predicates = [UseAVX] in {
1885 def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst),
1886 (ins FR32:$src1, FR32:$src2),
1887 "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
1888 [], IIC_SSE_CVT_Scalar_RR>,
1889 XS, Requires<[HasAVX]>, VEX_4V, VEX_LIG,
1890 Sched<[WriteCvtF2F]>;
1892 def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst),
1893 (ins FR32:$src1, f32mem:$src2),
1894 "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
1895 [], IIC_SSE_CVT_Scalar_RM>,
1896 XS, VEX_4V, VEX_LIG, Requires<[HasAVX, OptForSize]>,
1897 Sched<[WriteCvtF2FLd, ReadAfterLd]>;
1900 def : Pat<(f64 (fextend FR32:$src)),
1901 (VCVTSS2SDrr FR32:$src, FR32:$src)>, Requires<[UseAVX]>;
1902 def : Pat<(fextend (loadf32 addr:$src)),
1903 (VCVTSS2SDrm (f32 (IMPLICIT_DEF)), addr:$src)>, Requires<[UseAVX]>;
1905 def : Pat<(extloadf32 addr:$src),
1906 (VCVTSS2SDrm (f32 (IMPLICIT_DEF)), addr:$src)>,
1907 Requires<[UseAVX, OptForSize]>;
1908 def : Pat<(extloadf32 addr:$src),
1909 (VCVTSS2SDrr (f32 (IMPLICIT_DEF)), (VMOVSSrm addr:$src))>,
1910 Requires<[UseAVX, OptForSpeed]>;
1912 def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src),
1913 "cvtss2sd\t{$src, $dst|$dst, $src}",
1914 [(set FR64:$dst, (fextend FR32:$src))],
1915 IIC_SSE_CVT_Scalar_RR>, XS,
1916 Requires<[UseSSE2]>, Sched<[WriteCvtF2F]>;
1917 def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src),
1918 "cvtss2sd\t{$src, $dst|$dst, $src}",
1919 [(set FR64:$dst, (extloadf32 addr:$src))],
1920 IIC_SSE_CVT_Scalar_RM>, XS,
1921 Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtF2FLd]>;
1923 // extload f32 -> f64. This matches load+fextend because we have a hack in
1924 // the isel (PreprocessForFPConvert) that can introduce loads after dag
1926 // Since these loads aren't folded into the fextend, we have to match it
1928 def : Pat<(fextend (loadf32 addr:$src)),
1929 (CVTSS2SDrm addr:$src)>, Requires<[UseSSE2]>;
1930 def : Pat<(extloadf32 addr:$src),
1931 (CVTSS2SDrr (MOVSSrm addr:$src))>, Requires<[UseSSE2, OptForSpeed]>;
1933 let isCodeGenOnly = 1 in {
1934 def Int_VCVTSS2SDrr: I<0x5A, MRMSrcReg,
1935 (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
1936 "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
1938 (int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))],
1939 IIC_SSE_CVT_Scalar_RR>, XS, VEX_4V, Requires<[HasAVX]>,
1940 Sched<[WriteCvtF2F]>;
1941 def Int_VCVTSS2SDrm: I<0x5A, MRMSrcMem,
1942 (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
1943 "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
1945 (int_x86_sse2_cvtss2sd VR128:$src1, sse_load_f32:$src2))],
1946 IIC_SSE_CVT_Scalar_RM>, XS, VEX_4V, Requires<[HasAVX]>,
1947 Sched<[WriteCvtF2FLd, ReadAfterLd]>;
1948 let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix
1949 def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg,
1950 (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
1951 "cvtss2sd\t{$src2, $dst|$dst, $src2}",
1953 (int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))],
1954 IIC_SSE_CVT_Scalar_RR>, XS, Requires<[UseSSE2]>,
1955 Sched<[WriteCvtF2F]>;
1956 def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem,
1957 (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
1958 "cvtss2sd\t{$src2, $dst|$dst, $src2}",
1960 (int_x86_sse2_cvtss2sd VR128:$src1, sse_load_f32:$src2))],
1961 IIC_SSE_CVT_Scalar_RM>, XS, Requires<[UseSSE2]>,
1962 Sched<[WriteCvtF2FLd, ReadAfterLd]>;
1964 } // isCodeGenOnly = 1
1966 // Convert packed single/double fp to doubleword
1967 def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
1968 "cvtps2dq\t{$src, $dst|$dst, $src}",
1969 [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))],
1970 IIC_SSE_CVT_PS_RR>, VEX, Sched<[WriteCvtF2I]>;
1971 def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
1972 "cvtps2dq\t{$src, $dst|$dst, $src}",
1974 (int_x86_sse2_cvtps2dq (loadv4f32 addr:$src)))],
1975 IIC_SSE_CVT_PS_RM>, VEX, Sched<[WriteCvtF2ILd]>;
1976 def VCVTPS2DQYrr : VPDI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
1977 "cvtps2dq\t{$src, $dst|$dst, $src}",
1979 (int_x86_avx_cvt_ps2dq_256 VR256:$src))],
1980 IIC_SSE_CVT_PS_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>;
1981 def VCVTPS2DQYrm : VPDI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
1982 "cvtps2dq\t{$src, $dst|$dst, $src}",
1984 (int_x86_avx_cvt_ps2dq_256 (loadv8f32 addr:$src)))],
1985 IIC_SSE_CVT_PS_RM>, VEX, VEX_L, Sched<[WriteCvtF2ILd]>;
1986 def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
1987 "cvtps2dq\t{$src, $dst|$dst, $src}",
1988 [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))],
1989 IIC_SSE_CVT_PS_RR>, Sched<[WriteCvtF2I]>;
1990 def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
1991 "cvtps2dq\t{$src, $dst|$dst, $src}",
1993 (int_x86_sse2_cvtps2dq (memopv4f32 addr:$src)))],
1994 IIC_SSE_CVT_PS_RM>, Sched<[WriteCvtF2ILd]>;
1997 // Convert Packed Double FP to Packed DW Integers
1998 let Predicates = [HasAVX] in {
1999 // The assembler can recognize rr 256-bit instructions by seeing a ymm
2000 // register, but the same isn't true when using memory operands instead.
2001 // Provide other assembly rr and rm forms to address this explicitly.
2002 def VCVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2003 "vcvtpd2dq\t{$src, $dst|$dst, $src}",
2004 [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>,
2005 VEX, Sched<[WriteCvtF2I]>;
2008 def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}",
2009 (VCVTPD2DQrr VR128:$dst, VR128:$src), 0>;
2010 def VCVTPD2DQXrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
2011 "vcvtpd2dqx\t{$src, $dst|$dst, $src}",
2013 (int_x86_sse2_cvtpd2dq (loadv2f64 addr:$src)))]>, VEX,
2014 Sched<[WriteCvtF2ILd]>;
2017 def VCVTPD2DQYrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
2018 "vcvtpd2dq{y}\t{$src, $dst|$dst, $src}",
2020 (int_x86_avx_cvt_pd2dq_256 VR256:$src))]>, VEX, VEX_L,
2021 Sched<[WriteCvtF2I]>;
2022 def VCVTPD2DQYrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
2023 "vcvtpd2dq{y}\t{$src, $dst|$dst, $src}",
2025 (int_x86_avx_cvt_pd2dq_256 (loadv4f64 addr:$src)))]>,
2026 VEX, VEX_L, Sched<[WriteCvtF2ILd]>;
2027 def : InstAlias<"vcvtpd2dq\t{$src, $dst|$dst, $src}",
2028 (VCVTPD2DQYrr VR128:$dst, VR256:$src), 0>;
2031 def CVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
2032 "cvtpd2dq\t{$src, $dst|$dst, $src}",
2034 (int_x86_sse2_cvtpd2dq (memopv2f64 addr:$src)))],
2035 IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtF2ILd]>;
2036 def CVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2037 "cvtpd2dq\t{$src, $dst|$dst, $src}",
2038 [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))],
2039 IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2I]>;
2041 // Convert with truncation packed single/double fp to doubleword
2042 // SSE2 packed instructions with XS prefix
2043 def VCVTTPS2DQrr : VS2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2044 "cvttps2dq\t{$src, $dst|$dst, $src}",
2046 (int_x86_sse2_cvttps2dq VR128:$src))],
2047 IIC_SSE_CVT_PS_RR>, VEX, Sched<[WriteCvtF2I]>;
2048 def VCVTTPS2DQrm : VS2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
2049 "cvttps2dq\t{$src, $dst|$dst, $src}",
2050 [(set VR128:$dst, (int_x86_sse2_cvttps2dq
2051 (loadv4f32 addr:$src)))],
2052 IIC_SSE_CVT_PS_RM>, VEX, Sched<[WriteCvtF2ILd]>;
2053 def VCVTTPS2DQYrr : VS2SI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
2054 "cvttps2dq\t{$src, $dst|$dst, $src}",
2056 (int_x86_avx_cvtt_ps2dq_256 VR256:$src))],
2057 IIC_SSE_CVT_PS_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>;
2058 def VCVTTPS2DQYrm : VS2SI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
2059 "cvttps2dq\t{$src, $dst|$dst, $src}",
2060 [(set VR256:$dst, (int_x86_avx_cvtt_ps2dq_256
2061 (loadv8f32 addr:$src)))],
2062 IIC_SSE_CVT_PS_RM>, VEX, VEX_L,
2063 Sched<[WriteCvtF2ILd]>;
2065 def CVTTPS2DQrr : S2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2066 "cvttps2dq\t{$src, $dst|$dst, $src}",
2067 [(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))],
2068 IIC_SSE_CVT_PS_RR>, Sched<[WriteCvtF2I]>;
2069 def CVTTPS2DQrm : S2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
2070 "cvttps2dq\t{$src, $dst|$dst, $src}",
2072 (int_x86_sse2_cvttps2dq (memopv4f32 addr:$src)))],
2073 IIC_SSE_CVT_PS_RM>, Sched<[WriteCvtF2ILd]>;
2075 let Predicates = [HasAVX] in {
2076 def : Pat<(int_x86_sse2_cvtdq2ps VR128:$src),
2077 (VCVTDQ2PSrr VR128:$src)>;
2078 def : Pat<(int_x86_sse2_cvtdq2ps (bc_v4i32 (loadv2i64 addr:$src))),
2079 (VCVTDQ2PSrm addr:$src)>;
2082 let Predicates = [HasAVX, NoVLX] in {
2083 def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))),
2084 (VCVTDQ2PSrr VR128:$src)>;
2085 def : Pat<(v4f32 (sint_to_fp (bc_v4i32 (loadv2i64 addr:$src)))),
2086 (VCVTDQ2PSrm addr:$src)>;
2088 def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))),
2089 (VCVTTPS2DQrr VR128:$src)>;
2090 def : Pat<(v4i32 (fp_to_sint (loadv4f32 addr:$src))),
2091 (VCVTTPS2DQrm addr:$src)>;
2093 def : Pat<(v8f32 (sint_to_fp (v8i32 VR256:$src))),
2094 (VCVTDQ2PSYrr VR256:$src)>;
2095 def : Pat<(v8f32 (sint_to_fp (bc_v8i32 (loadv4i64 addr:$src)))),
2096 (VCVTDQ2PSYrm addr:$src)>;
2098 def : Pat<(v8i32 (fp_to_sint (v8f32 VR256:$src))),
2099 (VCVTTPS2DQYrr VR256:$src)>;
2100 def : Pat<(v8i32 (fp_to_sint (loadv8f32 addr:$src))),
2101 (VCVTTPS2DQYrm addr:$src)>;
2104 let Predicates = [UseSSE2] in {
2105 def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))),
2106 (CVTDQ2PSrr VR128:$src)>;
2107 def : Pat<(v4f32 (sint_to_fp (bc_v4i32 (memopv2i64 addr:$src)))),
2108 (CVTDQ2PSrm addr:$src)>;
2110 def : Pat<(int_x86_sse2_cvtdq2ps VR128:$src),
2111 (CVTDQ2PSrr VR128:$src)>;
2112 def : Pat<(int_x86_sse2_cvtdq2ps (bc_v4i32 (memopv2i64 addr:$src))),
2113 (CVTDQ2PSrm addr:$src)>;
2115 def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))),
2116 (CVTTPS2DQrr VR128:$src)>;
2117 def : Pat<(v4i32 (fp_to_sint (memopv4f32 addr:$src))),
2118 (CVTTPS2DQrm addr:$src)>;
2121 def VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2122 "cvttpd2dq\t{$src, $dst|$dst, $src}",
2124 (int_x86_sse2_cvttpd2dq VR128:$src))],
2125 IIC_SSE_CVT_PD_RR>, VEX, Sched<[WriteCvtF2I]>;
2127 // The assembler can recognize rr 256-bit instructions by seeing a ymm
2128 // register, but the same isn't true when using memory operands instead.
2129 // Provide other assembly rr and rm forms to address this explicitly.
2132 def : InstAlias<"vcvttpd2dqx\t{$src, $dst|$dst, $src}",
2133 (VCVTTPD2DQrr VR128:$dst, VR128:$src), 0>;
2134 def VCVTTPD2DQXrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
2135 "cvttpd2dqx\t{$src, $dst|$dst, $src}",
2136 [(set VR128:$dst, (int_x86_sse2_cvttpd2dq
2137 (loadv2f64 addr:$src)))],
2138 IIC_SSE_CVT_PD_RM>, VEX, Sched<[WriteCvtF2ILd]>;
2141 def VCVTTPD2DQYrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
2142 "cvttpd2dq{y}\t{$src, $dst|$dst, $src}",
2144 (int_x86_avx_cvtt_pd2dq_256 VR256:$src))],
2145 IIC_SSE_CVT_PD_RR>, VEX, VEX_L, Sched<[WriteCvtF2I]>;
2146 def VCVTTPD2DQYrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
2147 "cvttpd2dq{y}\t{$src, $dst|$dst, $src}",
2149 (int_x86_avx_cvtt_pd2dq_256 (loadv4f64 addr:$src)))],
2150 IIC_SSE_CVT_PD_RM>, VEX, VEX_L, Sched<[WriteCvtF2ILd]>;
2151 def : InstAlias<"vcvttpd2dq\t{$src, $dst|$dst, $src}",
2152 (VCVTTPD2DQYrr VR128:$dst, VR256:$src), 0>;
2154 let Predicates = [HasAVX, NoVLX] in {
2155 def : Pat<(v4i32 (fp_to_sint (v4f64 VR256:$src))),
2156 (VCVTTPD2DQYrr VR256:$src)>;
2157 def : Pat<(v4i32 (fp_to_sint (loadv4f64 addr:$src))),
2158 (VCVTTPD2DQYrm addr:$src)>;
2159 } // Predicates = [HasAVX]
2161 def CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2162 "cvttpd2dq\t{$src, $dst|$dst, $src}",
2163 [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))],
2164 IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2I]>;
2165 def CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src),
2166 "cvttpd2dq\t{$src, $dst|$dst, $src}",
2167 [(set VR128:$dst, (int_x86_sse2_cvttpd2dq
2168 (memopv2f64 addr:$src)))],
2170 Sched<[WriteCvtF2ILd]>;
2172 // Convert packed single to packed double
2173 let Predicates = [HasAVX] in {
2174 // SSE2 instructions without OpSize prefix
2175 def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2176 "vcvtps2pd\t{$src, $dst|$dst, $src}",
2177 [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))],
2178 IIC_SSE_CVT_PD_RR>, PS, VEX, Sched<[WriteCvtF2F]>;
2179 def VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
2180 "vcvtps2pd\t{$src, $dst|$dst, $src}",
2181 [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))],
2182 IIC_SSE_CVT_PD_RM>, PS, VEX, Sched<[WriteCvtF2FLd]>;
2183 def VCVTPS2PDYrr : I<0x5A, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
2184 "vcvtps2pd\t{$src, $dst|$dst, $src}",
2186 (int_x86_avx_cvt_ps2_pd_256 VR128:$src))],
2187 IIC_SSE_CVT_PD_RR>, PS, VEX, VEX_L, Sched<[WriteCvtF2F]>;
2188 def VCVTPS2PDYrm : I<0x5A, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src),
2189 "vcvtps2pd\t{$src, $dst|$dst, $src}",
2191 (int_x86_avx_cvt_ps2_pd_256 (loadv4f32 addr:$src)))],
2192 IIC_SSE_CVT_PD_RM>, PS, VEX, VEX_L, Sched<[WriteCvtF2FLd]>;
2195 let Predicates = [UseSSE2] in {
2196 def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2197 "cvtps2pd\t{$src, $dst|$dst, $src}",
2198 [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))],
2199 IIC_SSE_CVT_PD_RR>, PS, Sched<[WriteCvtF2F]>;
2200 def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
2201 "cvtps2pd\t{$src, $dst|$dst, $src}",
2202 [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))],
2203 IIC_SSE_CVT_PD_RM>, PS, Sched<[WriteCvtF2FLd]>;
2206 // Convert Packed DW Integers to Packed Double FP
2207 let Predicates = [HasAVX] in {
2208 let hasSideEffects = 0, mayLoad = 1 in
2209 def VCVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
2210 "vcvtdq2pd\t{$src, $dst|$dst, $src}",
2211 []>, VEX, Sched<[WriteCvtI2FLd]>;
2212 def VCVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2213 "vcvtdq2pd\t{$src, $dst|$dst, $src}",
2215 (int_x86_sse2_cvtdq2pd VR128:$src))]>, VEX,
2216 Sched<[WriteCvtI2F]>;
2217 def VCVTDQ2PDYrm : S2SI<0xE6, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src),
2218 "vcvtdq2pd\t{$src, $dst|$dst, $src}",
2220 (int_x86_avx_cvtdq2_pd_256
2221 (bitconvert (loadv2i64 addr:$src))))]>, VEX, VEX_L,
2222 Sched<[WriteCvtI2FLd]>;
2223 def VCVTDQ2PDYrr : S2SI<0xE6, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
2224 "vcvtdq2pd\t{$src, $dst|$dst, $src}",
2226 (int_x86_avx_cvtdq2_pd_256 VR128:$src))]>, VEX, VEX_L,
2227 Sched<[WriteCvtI2F]>;
2230 let hasSideEffects = 0, mayLoad = 1 in
2231 def CVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
2232 "cvtdq2pd\t{$src, $dst|$dst, $src}", [],
2233 IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtI2FLd]>;
2234 def CVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2235 "cvtdq2pd\t{$src, $dst|$dst, $src}",
2236 [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))],
2237 IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtI2F]>;
2239 // AVX register conversion intrinsics
2240 let Predicates = [HasAVX] in {
2241 def : Pat<(v2f64 (X86cvtdq2pd (v4i32 VR128:$src))),
2242 (VCVTDQ2PDrr VR128:$src)>;
2243 def : Pat<(v2f64 (X86cvtdq2pd (bc_v4i32 (loadv2i64 addr:$src)))),
2244 (VCVTDQ2PDrm addr:$src)>;
2246 def : Pat<(v4f64 (sint_to_fp (v4i32 VR128:$src))),
2247 (VCVTDQ2PDYrr VR128:$src)>;
2248 def : Pat<(v4f64 (sint_to_fp (bc_v4i32 (loadv2i64 addr:$src)))),
2249 (VCVTDQ2PDYrm addr:$src)>;
2250 } // Predicates = [HasAVX]
2252 // SSE2 register conversion intrinsics
2253 let Predicates = [HasSSE2] in {
2254 def : Pat<(v2f64 (X86cvtdq2pd (v4i32 VR128:$src))),
2255 (CVTDQ2PDrr VR128:$src)>;
2256 def : Pat<(v2f64 (X86cvtdq2pd (bc_v4i32 (loadv2i64 addr:$src)))),
2257 (CVTDQ2PDrm addr:$src)>;
2258 } // Predicates = [HasSSE2]
2260 // Convert packed double to packed single
2261 // The assembler can recognize rr 256-bit instructions by seeing a ymm
2262 // register, but the same isn't true when using memory operands instead.
2263 // Provide other assembly rr and rm forms to address this explicitly.
2264 def VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2265 "cvtpd2ps\t{$src, $dst|$dst, $src}",
2266 [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))],
2267 IIC_SSE_CVT_PD_RR>, VEX, Sched<[WriteCvtF2F]>;
2270 def : InstAlias<"vcvtpd2psx\t{$src, $dst|$dst, $src}",
2271 (VCVTPD2PSrr VR128:$dst, VR128:$src), 0>;
2272 def VCVTPD2PSXrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
2273 "cvtpd2psx\t{$src, $dst|$dst, $src}",
2275 (int_x86_sse2_cvtpd2ps (loadv2f64 addr:$src)))],
2276 IIC_SSE_CVT_PD_RM>, VEX, Sched<[WriteCvtF2FLd]>;
2279 def VCVTPD2PSYrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
2280 "cvtpd2ps{y}\t{$src, $dst|$dst, $src}",
2282 (int_x86_avx_cvt_pd2_ps_256 VR256:$src))],
2283 IIC_SSE_CVT_PD_RR>, VEX, VEX_L, Sched<[WriteCvtF2F]>;
2284 def VCVTPD2PSYrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
2285 "cvtpd2ps{y}\t{$src, $dst|$dst, $src}",
2287 (int_x86_avx_cvt_pd2_ps_256 (loadv4f64 addr:$src)))],
2288 IIC_SSE_CVT_PD_RM>, VEX, VEX_L, Sched<[WriteCvtF2FLd]>;
2289 def : InstAlias<"vcvtpd2ps\t{$src, $dst|$dst, $src}",
2290 (VCVTPD2PSYrr VR128:$dst, VR256:$src), 0>;
2292 def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
2293 "cvtpd2ps\t{$src, $dst|$dst, $src}",
2294 [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))],
2295 IIC_SSE_CVT_PD_RR>, Sched<[WriteCvtF2F]>;
2296 def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
2297 "cvtpd2ps\t{$src, $dst|$dst, $src}",
2299 (int_x86_sse2_cvtpd2ps (memopv2f64 addr:$src)))],
2300 IIC_SSE_CVT_PD_RM>, Sched<[WriteCvtF2FLd]>;
2303 // AVX 256-bit register conversion intrinsics
2304 // FIXME: Migrate SSE conversion intrinsics matching to use patterns as below
2305 // whenever possible to avoid declaring two versions of each one.
2306 let Predicates = [HasAVX] in {
2307 def : Pat<(int_x86_avx_cvtdq2_ps_256 VR256:$src),
2308 (VCVTDQ2PSYrr VR256:$src)>;
2309 def : Pat<(int_x86_avx_cvtdq2_ps_256 (bitconvert (loadv4i64 addr:$src))),
2310 (VCVTDQ2PSYrm addr:$src)>;
2313 let Predicates = [HasAVX, NoVLX] in {
2314 // Match fround and fextend for 128/256-bit conversions
2315 def : Pat<(v4f32 (X86vfpround (v2f64 VR128:$src))),
2316 (VCVTPD2PSrr VR128:$src)>;
2317 def : Pat<(v4f32 (X86vfpround (loadv2f64 addr:$src))),
2318 (VCVTPD2PSXrm addr:$src)>;
2319 def : Pat<(v4f32 (fround (v4f64 VR256:$src))),
2320 (VCVTPD2PSYrr VR256:$src)>;
2321 def : Pat<(v4f32 (fround (loadv4f64 addr:$src))),
2322 (VCVTPD2PSYrm addr:$src)>;
2324 def : Pat<(v2f64 (X86vfpext (v4f32 VR128:$src))),
2325 (VCVTPS2PDrr VR128:$src)>;
2326 def : Pat<(v4f64 (fextend (v4f32 VR128:$src))),
2327 (VCVTPS2PDYrr VR128:$src)>;
2328 def : Pat<(v4f64 (extloadv4f32 addr:$src)),
2329 (VCVTPS2PDYrm addr:$src)>;
2332 let Predicates = [UseSSE2] in {
2333 // Match fround and fextend for 128 conversions
2334 def : Pat<(v4f32 (X86vfpround (v2f64 VR128:$src))),
2335 (CVTPD2PSrr VR128:$src)>;
2336 def : Pat<(v4f32 (X86vfpround (memopv2f64 addr:$src))),
2337 (CVTPD2PSrm addr:$src)>;
2339 def : Pat<(v2f64 (X86vfpext (v4f32 VR128:$src))),
2340 (CVTPS2PDrr VR128:$src)>;
2343 //===----------------------------------------------------------------------===//
2344 // SSE 1 & 2 - Compare Instructions
2345 //===----------------------------------------------------------------------===//
2347 // sse12_cmp_scalar - sse 1 & 2 compare scalar instructions
2348 multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop,
2349 Operand CC, SDNode OpNode, ValueType VT,
2350 PatFrag ld_frag, string asm, string asm_alt,
2351 OpndItins itins, ImmLeaf immLeaf> {
2352 def rr : SIi8<0xC2, MRMSrcReg,
2353 (outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
2354 [(set RC:$dst, (OpNode (VT RC:$src1), RC:$src2, immLeaf:$cc))],
2355 itins.rr>, Sched<[itins.Sched]>;
2356 def rm : SIi8<0xC2, MRMSrcMem,
2357 (outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
2358 [(set RC:$dst, (OpNode (VT RC:$src1),
2359 (ld_frag addr:$src2), immLeaf:$cc))],
2361 Sched<[itins.Sched.Folded, ReadAfterLd]>;
2363 // Accept explicit immediate argument form instead of comparison code.
2364 let isAsmParserOnly = 1, hasSideEffects = 0 in {
2365 def rr_alt : SIi8<0xC2, MRMSrcReg, (outs RC:$dst),
2366 (ins RC:$src1, RC:$src2, u8imm:$cc), asm_alt, [],
2367 IIC_SSE_ALU_F32S_RR>, Sched<[itins.Sched]>;
2369 def rm_alt : SIi8<0xC2, MRMSrcMem, (outs RC:$dst),
2370 (ins RC:$src1, x86memop:$src2, u8imm:$cc), asm_alt, [],
2371 IIC_SSE_ALU_F32S_RM>,
2372 Sched<[itins.Sched.Folded, ReadAfterLd]>;
2376 defm VCMPSS : sse12_cmp_scalar<FR32, f32mem, AVXCC, X86cmps, f32, loadf32,
2377 "cmp${cc}ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2378 "cmpss\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
2379 SSE_ALU_F32S, i8immZExt5>, XS, VEX_4V, VEX_LIG;
2380 defm VCMPSD : sse12_cmp_scalar<FR64, f64mem, AVXCC, X86cmps, f64, loadf64,
2381 "cmp${cc}sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2382 "cmpsd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
2383 SSE_ALU_F32S, i8immZExt5>, // same latency as 32 bit compare
2384 XD, VEX_4V, VEX_LIG;
2386 let Constraints = "$src1 = $dst" in {
2387 defm CMPSS : sse12_cmp_scalar<FR32, f32mem, SSECC, X86cmps, f32, loadf32,
2388 "cmp${cc}ss\t{$src2, $dst|$dst, $src2}",
2389 "cmpss\t{$cc, $src2, $dst|$dst, $src2, $cc}", SSE_ALU_F32S,
2391 defm CMPSD : sse12_cmp_scalar<FR64, f64mem, SSECC, X86cmps, f64, loadf64,
2392 "cmp${cc}sd\t{$src2, $dst|$dst, $src2}",
2393 "cmpsd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
2394 SSE_ALU_F64S, i8immZExt3>, XD;
2397 multiclass sse12_cmp_scalar_int<X86MemOperand x86memop, Operand CC,
2398 Intrinsic Int, string asm, OpndItins itins,
2400 def rr : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst),
2401 (ins VR128:$src1, VR128:$src, CC:$cc), asm,
2402 [(set VR128:$dst, (Int VR128:$src1,
2403 VR128:$src, immLeaf:$cc))],
2405 Sched<[itins.Sched]>;
2406 def rm : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst),
2407 (ins VR128:$src1, x86memop:$src, CC:$cc), asm,
2408 [(set VR128:$dst, (Int VR128:$src1,
2409 (load addr:$src), immLeaf:$cc))],
2411 Sched<[itins.Sched.Folded, ReadAfterLd]>;
2414 let isCodeGenOnly = 1 in {
2415 // Aliases to match intrinsics which expect XMM operand(s).
2416 defm Int_VCMPSS : sse12_cmp_scalar_int<f32mem, AVXCC, int_x86_sse_cmp_ss,
2417 "cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}",
2418 SSE_ALU_F32S, i8immZExt5>,
2420 defm Int_VCMPSD : sse12_cmp_scalar_int<f64mem, AVXCC, int_x86_sse2_cmp_sd,
2421 "cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}",
2422 SSE_ALU_F32S, i8immZExt5>, // same latency as f32
2424 let Constraints = "$src1 = $dst" in {
2425 defm Int_CMPSS : sse12_cmp_scalar_int<f32mem, SSECC, int_x86_sse_cmp_ss,
2426 "cmp${cc}ss\t{$src, $dst|$dst, $src}",
2427 SSE_ALU_F32S, i8immZExt3>, XS;
2428 defm Int_CMPSD : sse12_cmp_scalar_int<f64mem, SSECC, int_x86_sse2_cmp_sd,
2429 "cmp${cc}sd\t{$src, $dst|$dst, $src}",
2430 SSE_ALU_F64S, i8immZExt3>,
2436 // sse12_ord_cmp - Unordered/Ordered scalar fp compare and set EFLAGS
2437 multiclass sse12_ord_cmp<bits<8> opc, RegisterClass RC, SDNode OpNode,
2438 ValueType vt, X86MemOperand x86memop,
2439 PatFrag ld_frag, string OpcodeStr> {
2440 def rr: SI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
2441 !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
2442 [(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))],
2445 def rm: SI<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2),
2446 !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
2447 [(set EFLAGS, (OpNode (vt RC:$src1),
2448 (ld_frag addr:$src2)))],
2450 Sched<[WriteFAddLd, ReadAfterLd]>;
2453 let Defs = [EFLAGS] in {
2454 defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
2455 "ucomiss">, PS, VEX, VEX_LIG;
2456 defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
2457 "ucomisd">, PD, VEX, VEX_LIG;
2458 let Pattern = []<dag> in {
2459 defm VCOMISS : sse12_ord_cmp<0x2F, FR32, undef, f32, f32mem, loadf32,
2460 "comiss">, PS, VEX, VEX_LIG;
2461 defm VCOMISD : sse12_ord_cmp<0x2F, FR64, undef, f64, f64mem, loadf64,
2462 "comisd">, PD, VEX, VEX_LIG;
2465 let isCodeGenOnly = 1 in {
2466 defm Int_VUCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem,
2467 load, "ucomiss">, PS, VEX;
2468 defm Int_VUCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem,
2469 load, "ucomisd">, PD, VEX;
2471 defm Int_VCOMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem,
2472 load, "comiss">, PS, VEX;
2473 defm Int_VCOMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem,
2474 load, "comisd">, PD, VEX;
2476 defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
2478 defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
2481 let Pattern = []<dag> in {
2482 defm COMISS : sse12_ord_cmp<0x2F, FR32, undef, f32, f32mem, loadf32,
2484 defm COMISD : sse12_ord_cmp<0x2F, FR64, undef, f64, f64mem, loadf64,
2488 let isCodeGenOnly = 1 in {
2489 defm Int_UCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem,
2490 load, "ucomiss">, PS;
2491 defm Int_UCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem,
2492 load, "ucomisd">, PD;
2494 defm Int_COMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, load,
2496 defm Int_COMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, load,
2499 } // Defs = [EFLAGS]
2501 // sse12_cmp_packed - sse 1 & 2 compare packed instructions
2502 multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop,
2503 Operand CC, Intrinsic Int, string asm,
2504 string asm_alt, Domain d, ImmLeaf immLeaf,
2505 PatFrag ld_frag, OpndItins itins = SSE_ALU_F32P> {
2506 let isCommutable = 1 in
2507 def rri : PIi8<0xC2, MRMSrcReg,
2508 (outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
2509 [(set RC:$dst, (Int RC:$src1, RC:$src2, immLeaf:$cc))],
2512 def rmi : PIi8<0xC2, MRMSrcMem,
2513 (outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
2514 [(set RC:$dst, (Int RC:$src1, (ld_frag addr:$src2), immLeaf:$cc))],
2516 Sched<[WriteFAddLd, ReadAfterLd]>;
2518 // Accept explicit immediate argument form instead of comparison code.
2519 let isAsmParserOnly = 1, hasSideEffects = 0 in {
2520 def rri_alt : PIi8<0xC2, MRMSrcReg,
2521 (outs RC:$dst), (ins RC:$src1, RC:$src2, u8imm:$cc),
2522 asm_alt, [], itins.rr, d>, Sched<[WriteFAdd]>;
2524 def rmi_alt : PIi8<0xC2, MRMSrcMem,
2525 (outs RC:$dst), (ins RC:$src1, x86memop:$src2, u8imm:$cc),
2526 asm_alt, [], itins.rm, d>,
2527 Sched<[WriteFAddLd, ReadAfterLd]>;
2531 defm VCMPPS : sse12_cmp_packed<VR128, f128mem, AVXCC, int_x86_sse_cmp_ps,
2532 "cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2533 "cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
2534 SSEPackedSingle, i8immZExt5, loadv4f32>, PS, VEX_4V;
2535 defm VCMPPD : sse12_cmp_packed<VR128, f128mem, AVXCC, int_x86_sse2_cmp_pd,
2536 "cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2537 "cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
2538 SSEPackedDouble, i8immZExt5, loadv2f64>, PD, VEX_4V;
2539 defm VCMPPSY : sse12_cmp_packed<VR256, f256mem, AVXCC, int_x86_avx_cmp_ps_256,
2540 "cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2541 "cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
2542 SSEPackedSingle, i8immZExt5, loadv8f32>, PS, VEX_4V, VEX_L;
2543 defm VCMPPDY : sse12_cmp_packed<VR256, f256mem, AVXCC, int_x86_avx_cmp_pd_256,
2544 "cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2545 "cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
2546 SSEPackedDouble, i8immZExt5, loadv4f64>, PD, VEX_4V, VEX_L;
2547 let Constraints = "$src1 = $dst" in {
2548 defm CMPPS : sse12_cmp_packed<VR128, f128mem, SSECC, int_x86_sse_cmp_ps,
2549 "cmp${cc}ps\t{$src2, $dst|$dst, $src2}",
2550 "cmpps\t{$cc, $src2, $dst|$dst, $src2, $cc}",
2551 SSEPackedSingle, i8immZExt5, memopv4f32, SSE_ALU_F32P>, PS;
2552 defm CMPPD : sse12_cmp_packed<VR128, f128mem, SSECC, int_x86_sse2_cmp_pd,
2553 "cmp${cc}pd\t{$src2, $dst|$dst, $src2}",
2554 "cmppd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
2555 SSEPackedDouble, i8immZExt5, memopv2f64, SSE_ALU_F64P>, PD;
2558 let Predicates = [HasAVX] in {
2559 def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), VR128:$src2, imm:$cc)),
2560 (VCMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>;
2561 def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), (loadv4f32 addr:$src2), imm:$cc)),
2562 (VCMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>;
2563 def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), VR128:$src2, imm:$cc)),
2564 (VCMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>;
2565 def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), (loadv2f64 addr:$src2), imm:$cc)),
2566 (VCMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
2568 def : Pat<(v8i32 (X86cmpp (v8f32 VR256:$src1), VR256:$src2, imm:$cc)),
2569 (VCMPPSYrri (v8f32 VR256:$src1), (v8f32 VR256:$src2), imm:$cc)>;
2570 def : Pat<(v8i32 (X86cmpp (v8f32 VR256:$src1), (loadv8f32 addr:$src2), imm:$cc)),
2571 (VCMPPSYrmi (v8f32 VR256:$src1), addr:$src2, imm:$cc)>;
2572 def : Pat<(v4i64 (X86cmpp (v4f64 VR256:$src1), VR256:$src2, imm:$cc)),
2573 (VCMPPDYrri VR256:$src1, VR256:$src2, imm:$cc)>;
2574 def : Pat<(v4i64 (X86cmpp (v4f64 VR256:$src1), (loadv4f64 addr:$src2), imm:$cc)),
2575 (VCMPPDYrmi VR256:$src1, addr:$src2, imm:$cc)>;
2578 let Predicates = [UseSSE1] in {
2579 def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), VR128:$src2, imm:$cc)),
2580 (CMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>;
2581 def : Pat<(v4i32 (X86cmpp (v4f32 VR128:$src1), (memopv4f32 addr:$src2), imm:$cc)),
2582 (CMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>;
2585 let Predicates = [UseSSE2] in {
2586 def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), VR128:$src2, imm:$cc)),
2587 (CMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>;
2588 def : Pat<(v2i64 (X86cmpp (v2f64 VR128:$src1), (memopv2f64 addr:$src2), imm:$cc)),
2589 (CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
2592 //===----------------------------------------------------------------------===//
2593 // SSE 1 & 2 - Shuffle Instructions
2594 //===----------------------------------------------------------------------===//
2596 /// sse12_shuffle - sse 1 & 2 fp shuffle instructions
2597 multiclass sse12_shuffle<RegisterClass RC, X86MemOperand x86memop,
2598 ValueType vt, string asm, PatFrag mem_frag,
2600 def rmi : PIi8<0xC6, MRMSrcMem, (outs RC:$dst),
2601 (ins RC:$src1, x86memop:$src2, u8imm:$src3), asm,
2602 [(set RC:$dst, (vt (X86Shufp RC:$src1, (mem_frag addr:$src2),
2603 (i8 imm:$src3))))], IIC_SSE_SHUFP, d>,
2604 Sched<[WriteFShuffleLd, ReadAfterLd]>;
2605 def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst),
2606 (ins RC:$src1, RC:$src2, u8imm:$src3), asm,
2607 [(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2,
2608 (i8 imm:$src3))))], IIC_SSE_SHUFP, d>,
2609 Sched<[WriteFShuffle]>;
2612 let Predicates = [HasAVX, NoVLX] in {
2613 defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
2614 "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
2615 loadv4f32, SSEPackedSingle>, PS, VEX_4V;
2616 defm VSHUFPSY : sse12_shuffle<VR256, f256mem, v8f32,
2617 "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
2618 loadv8f32, SSEPackedSingle>, PS, VEX_4V, VEX_L;
2619 defm VSHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
2620 "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
2621 loadv2f64, SSEPackedDouble>, PD, VEX_4V;
2622 defm VSHUFPDY : sse12_shuffle<VR256, f256mem, v4f64,
2623 "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
2624 loadv4f64, SSEPackedDouble>, PD, VEX_4V, VEX_L;
2626 let Constraints = "$src1 = $dst" in {
2627 defm SHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
2628 "shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
2629 memopv4f32, SSEPackedSingle>, PS;
2630 defm SHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
2631 "shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
2632 memopv2f64, SSEPackedDouble>, PD;
2635 let Predicates = [HasAVX, NoVLX] in {
2636 def : Pat<(v4i32 (X86Shufp VR128:$src1,
2637 (bc_v4i32 (loadv2i64 addr:$src2)), (i8 imm:$imm))),
2638 (VSHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>;
2639 def : Pat<(v4i32 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
2640 (VSHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>;
2642 def : Pat<(v2i64 (X86Shufp VR128:$src1,
2643 (loadv2i64 addr:$src2), (i8 imm:$imm))),
2644 (VSHUFPDrmi VR128:$src1, addr:$src2, imm:$imm)>;
2645 def : Pat<(v2i64 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
2646 (VSHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>;
2649 def : Pat<(v8i32 (X86Shufp VR256:$src1, VR256:$src2, (i8 imm:$imm))),
2650 (VSHUFPSYrri VR256:$src1, VR256:$src2, imm:$imm)>;
2651 def : Pat<(v8i32 (X86Shufp VR256:$src1,
2652 (bc_v8i32 (loadv4i64 addr:$src2)), (i8 imm:$imm))),
2653 (VSHUFPSYrmi VR256:$src1, addr:$src2, imm:$imm)>;
2655 def : Pat<(v4i64 (X86Shufp VR256:$src1, VR256:$src2, (i8 imm:$imm))),
2656 (VSHUFPDYrri VR256:$src1, VR256:$src2, imm:$imm)>;
2657 def : Pat<(v4i64 (X86Shufp VR256:$src1,
2658 (loadv4i64 addr:$src2), (i8 imm:$imm))),
2659 (VSHUFPDYrmi VR256:$src1, addr:$src2, imm:$imm)>;
2662 let Predicates = [UseSSE1] in {
2663 def : Pat<(v4i32 (X86Shufp VR128:$src1,
2664 (bc_v4i32 (memopv2i64 addr:$src2)), (i8 imm:$imm))),
2665 (SHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>;
2666 def : Pat<(v4i32 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
2667 (SHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>;
2670 let Predicates = [UseSSE2] in {
2671 // Generic SHUFPD patterns
2672 def : Pat<(v2i64 (X86Shufp VR128:$src1,
2673 (memopv2i64 addr:$src2), (i8 imm:$imm))),
2674 (SHUFPDrmi VR128:$src1, addr:$src2, imm:$imm)>;
2675 def : Pat<(v2i64 (X86Shufp VR128:$src1, VR128:$src2, (i8 imm:$imm))),
2676 (SHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>;
2679 //===----------------------------------------------------------------------===//
2680 // SSE 1 & 2 - Unpack FP Instructions
2681 //===----------------------------------------------------------------------===//
2683 /// sse12_unpack_interleave - sse 1 & 2 fp unpack and interleave
2684 multiclass sse12_unpack_interleave<bits<8> opc, SDNode OpNode, ValueType vt,
2685 PatFrag mem_frag, RegisterClass RC,
2686 X86MemOperand x86memop, string asm,
2688 def rr : PI<opc, MRMSrcReg,
2689 (outs RC:$dst), (ins RC:$src1, RC:$src2),
2691 (vt (OpNode RC:$src1, RC:$src2)))],
2692 IIC_SSE_UNPCK, d>, Sched<[WriteFShuffle]>;
2693 def rm : PI<opc, MRMSrcMem,
2694 (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
2696 (vt (OpNode RC:$src1,
2697 (mem_frag addr:$src2))))],
2699 Sched<[WriteFShuffleLd, ReadAfterLd]>;
2702 let Predicates = [HasAVX, NoVLX] in {
2703 defm VUNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, loadv4f32,
2704 VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2705 SSEPackedSingle>, PS, VEX_4V;
2706 defm VUNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, loadv2f64,
2707 VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2708 SSEPackedDouble>, PD, VEX_4V;
2709 defm VUNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, loadv4f32,
2710 VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2711 SSEPackedSingle>, PS, VEX_4V;
2712 defm VUNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, loadv2f64,
2713 VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2714 SSEPackedDouble>, PD, VEX_4V;
2716 defm VUNPCKHPSY: sse12_unpack_interleave<0x15, X86Unpckh, v8f32, loadv8f32,
2717 VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2718 SSEPackedSingle>, PS, VEX_4V, VEX_L;
2719 defm VUNPCKHPDY: sse12_unpack_interleave<0x15, X86Unpckh, v4f64, loadv4f64,
2720 VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2721 SSEPackedDouble>, PD, VEX_4V, VEX_L;
2722 defm VUNPCKLPSY: sse12_unpack_interleave<0x14, X86Unpckl, v8f32, loadv8f32,
2723 VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2724 SSEPackedSingle>, PS, VEX_4V, VEX_L;
2725 defm VUNPCKLPDY: sse12_unpack_interleave<0x14, X86Unpckl, v4f64, loadv4f64,
2726 VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
2727 SSEPackedDouble>, PD, VEX_4V, VEX_L;
2728 }// Predicates = [HasAVX, NoVLX]
2729 let Constraints = "$src1 = $dst" in {
2730 defm UNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, memopv4f32,
2731 VR128, f128mem, "unpckhps\t{$src2, $dst|$dst, $src2}",
2732 SSEPackedSingle>, PS;
2733 defm UNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, memopv2f64,
2734 VR128, f128mem, "unpckhpd\t{$src2, $dst|$dst, $src2}",
2735 SSEPackedDouble>, PD;
2736 defm UNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, memopv4f32,
2737 VR128, f128mem, "unpcklps\t{$src2, $dst|$dst, $src2}",
2738 SSEPackedSingle>, PS;
2739 defm UNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, memopv2f64,
2740 VR128, f128mem, "unpcklpd\t{$src2, $dst|$dst, $src2}",
2741 SSEPackedDouble>, PD;
2742 } // Constraints = "$src1 = $dst"
2744 let Predicates = [HasAVX1Only] in {
2745 def : Pat<(v8i32 (X86Unpckl VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))),
2746 (VUNPCKLPSYrm VR256:$src1, addr:$src2)>;
2747 def : Pat<(v8i32 (X86Unpckl VR256:$src1, VR256:$src2)),
2748 (VUNPCKLPSYrr VR256:$src1, VR256:$src2)>;
2749 def : Pat<(v8i32 (X86Unpckh VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))),
2750 (VUNPCKHPSYrm VR256:$src1, addr:$src2)>;
2751 def : Pat<(v8i32 (X86Unpckh VR256:$src1, VR256:$src2)),
2752 (VUNPCKHPSYrr VR256:$src1, VR256:$src2)>;
2754 def : Pat<(v4i64 (X86Unpckl VR256:$src1, (loadv4i64 addr:$src2))),
2755 (VUNPCKLPDYrm VR256:$src1, addr:$src2)>;
2756 def : Pat<(v4i64 (X86Unpckl VR256:$src1, VR256:$src2)),
2757 (VUNPCKLPDYrr VR256:$src1, VR256:$src2)>;
2758 def : Pat<(v4i64 (X86Unpckh VR256:$src1, (loadv4i64 addr:$src2))),
2759 (VUNPCKHPDYrm VR256:$src1, addr:$src2)>;
2760 def : Pat<(v4i64 (X86Unpckh VR256:$src1, VR256:$src2)),
2761 (VUNPCKHPDYrr VR256:$src1, VR256:$src2)>;
2764 //===----------------------------------------------------------------------===//
2765 // SSE 1 & 2 - Extract Floating-Point Sign mask
2766 //===----------------------------------------------------------------------===//
2768 /// sse12_extr_sign_mask - sse 1 & 2 unpack and interleave
2769 multiclass sse12_extr_sign_mask<RegisterClass RC, Intrinsic Int, string asm,
2771 def rr : PI<0x50, MRMSrcReg, (outs GR32orGR64:$dst), (ins RC:$src),
2772 !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
2773 [(set GR32orGR64:$dst, (Int RC:$src))], IIC_SSE_MOVMSK, d>,
2774 Sched<[WriteVecLogic]>;
2777 let Predicates = [HasAVX] in {
2778 defm VMOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps,
2779 "movmskps", SSEPackedSingle>, PS, VEX;
2780 defm VMOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd,
2781 "movmskpd", SSEPackedDouble>, PD, VEX;
2782 defm VMOVMSKPSY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_ps_256,
2783 "movmskps", SSEPackedSingle>, PS,
2785 defm VMOVMSKPDY : sse12_extr_sign_mask<VR256, int_x86_avx_movmsk_pd_256,
2786 "movmskpd", SSEPackedDouble>, PD,
2789 def : Pat<(i32 (X86fgetsign FR32:$src)),
2790 (VMOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128))>;
2791 def : Pat<(i64 (X86fgetsign FR32:$src)),
2792 (SUBREG_TO_REG (i64 0),
2793 (VMOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128)), sub_32bit)>;
2794 def : Pat<(i32 (X86fgetsign FR64:$src)),
2795 (VMOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128))>;
2796 def : Pat<(i64 (X86fgetsign FR64:$src)),
2797 (SUBREG_TO_REG (i64 0),
2798 (VMOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128)), sub_32bit)>;
2801 defm MOVMSKPS : sse12_extr_sign_mask<VR128, int_x86_sse_movmsk_ps, "movmskps",
2802 SSEPackedSingle>, PS;
2803 defm MOVMSKPD : sse12_extr_sign_mask<VR128, int_x86_sse2_movmsk_pd, "movmskpd",
2804 SSEPackedDouble>, PD;
2806 def : Pat<(i32 (X86fgetsign FR32:$src)),
2807 (MOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128))>,
2808 Requires<[UseSSE1]>;
2809 def : Pat<(i64 (X86fgetsign FR32:$src)),
2810 (SUBREG_TO_REG (i64 0),
2811 (MOVMSKPSrr (COPY_TO_REGCLASS FR32:$src, VR128)), sub_32bit)>,
2812 Requires<[UseSSE1]>;
2813 def : Pat<(i32 (X86fgetsign FR64:$src)),
2814 (MOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128))>,
2815 Requires<[UseSSE2]>;
2816 def : Pat<(i64 (X86fgetsign FR64:$src)),
2817 (SUBREG_TO_REG (i64 0),
2818 (MOVMSKPDrr (COPY_TO_REGCLASS FR64:$src, VR128)), sub_32bit)>,
2819 Requires<[UseSSE2]>;
2821 //===---------------------------------------------------------------------===//
2822 // SSE2 - Packed Integer Logical Instructions
2823 //===---------------------------------------------------------------------===//
2825 let ExeDomain = SSEPackedInt in { // SSE integer instructions
2827 /// PDI_binop_rm - Simple SSE2 binary operator.
2828 multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
2829 ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
2830 X86MemOperand x86memop, OpndItins itins,
2831 bit IsCommutable, bit Is2Addr> {
2832 let isCommutable = IsCommutable in
2833 def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
2834 (ins RC:$src1, RC:$src2),
2836 !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
2837 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
2838 [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))], itins.rr>,
2839 Sched<[itins.Sched]>;
2840 def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
2841 (ins RC:$src1, x86memop:$src2),
2843 !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
2844 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
2845 [(set RC:$dst, (OpVT (OpNode RC:$src1,
2846 (bitconvert (memop_frag addr:$src2)))))],
2848 Sched<[itins.Sched.Folded, ReadAfterLd]>;
2850 } // ExeDomain = SSEPackedInt
2852 multiclass PDI_binop_all<bits<8> opc, string OpcodeStr, SDNode Opcode,
2853 ValueType OpVT128, ValueType OpVT256,
2854 OpndItins itins, bit IsCommutable = 0, Predicate prd> {
2855 let Predicates = [HasAVX, prd] in
2856 defm V#NAME : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode, OpVT128,
2857 VR128, loadv2i64, i128mem, itins, IsCommutable, 0>, VEX_4V;
2859 let Constraints = "$src1 = $dst" in
2860 defm NAME : PDI_binop_rm<opc, OpcodeStr, Opcode, OpVT128, VR128,
2861 memopv2i64, i128mem, itins, IsCommutable, 1>;
2863 let Predicates = [HasAVX2, prd] in
2864 defm V#NAME#Y : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode,
2865 OpVT256, VR256, loadv4i64, i256mem, itins,
2866 IsCommutable, 0>, VEX_4V, VEX_L;
2869 // These are ordered here for pattern ordering requirements with the fp versions
2871 defm PAND : PDI_binop_all<0xDB, "pand", and, v2i64, v4i64,
2872 SSE_VEC_BIT_ITINS_P, 1, NoVLX>;
2873 defm POR : PDI_binop_all<0xEB, "por", or, v2i64, v4i64,
2874 SSE_VEC_BIT_ITINS_P, 1, NoVLX>;
2875 defm PXOR : PDI_binop_all<0xEF, "pxor", xor, v2i64, v4i64,
2876 SSE_VEC_BIT_ITINS_P, 1, NoVLX>;
2877 defm PANDN : PDI_binop_all<0xDF, "pandn", X86andnp, v2i64, v4i64,
2878 SSE_VEC_BIT_ITINS_P, 0, NoVLX>;
2880 //===----------------------------------------------------------------------===//
2881 // SSE 1 & 2 - Logical Instructions
2882 //===----------------------------------------------------------------------===//
2884 // Multiclass for scalars using the X86 logical operation aliases for FP.
2885 multiclass sse12_fp_packed_scalar_logical_alias<
2886 bits<8> opc, string OpcodeStr, SDNode OpNode, OpndItins itins> {
2887 defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
2888 FR32, f32, f128mem, loadf32_128, SSEPackedSingle, itins, 0>,
2891 defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
2892 FR64, f64, f128mem, loadf64_128, SSEPackedDouble, itins, 0>,
2895 let Constraints = "$src1 = $dst" in {
2896 defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, FR32,
2897 f32, f128mem, memopfsf32_128, SSEPackedSingle, itins>, PS;
2899 defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, FR64,
2900 f64, f128mem, memopfsf64_128, SSEPackedDouble, itins>, PD;
2904 let isCodeGenOnly = 1 in {
2905 defm FsAND : sse12_fp_packed_scalar_logical_alias<0x54, "and", X86fand,
2907 defm FsOR : sse12_fp_packed_scalar_logical_alias<0x56, "or", X86for,
2909 defm FsXOR : sse12_fp_packed_scalar_logical_alias<0x57, "xor", X86fxor,
2912 let isCommutable = 0 in
2913 defm FsANDN : sse12_fp_packed_scalar_logical_alias<0x55, "andn", X86fandn,
2917 // Multiclass for vectors using the X86 logical operation aliases for FP.
2918 multiclass sse12_fp_packed_vector_logical_alias<
2919 bits<8> opc, string OpcodeStr, SDNode OpNode, OpndItins itins> {
2920 let Predicates = [HasAVX, NoVLX] in {
2921 defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
2922 VR128, v4f32, f128mem, loadv4f32, SSEPackedSingle, itins, 0>,
2925 defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
2926 VR128, v2f64, f128mem, loadv2f64, SSEPackedDouble, itins, 0>,
2929 defm V#NAME#PSY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
2930 VR256, v8f32, f256mem, loadv8f32, SSEPackedSingle, itins, 0>,
2933 defm V#NAME#PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
2934 VR256, v4f64, f256mem, loadv4f64, SSEPackedDouble, itins, 0>,
2938 let Constraints = "$src1 = $dst" in {
2939 defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR128,
2940 v4f32, f128mem, memopv4f32, SSEPackedSingle, itins>,
2943 defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR128,
2944 v2f64, f128mem, memopv2f64, SSEPackedDouble, itins>,
2949 let isCodeGenOnly = 1 in {
2950 defm FvAND : sse12_fp_packed_vector_logical_alias<0x54, "and", X86fand,
2952 defm FvOR : sse12_fp_packed_vector_logical_alias<0x56, "or", X86for,
2954 defm FvXOR : sse12_fp_packed_vector_logical_alias<0x57, "xor", X86fxor,
2957 let isCommutable = 0 in
2958 defm FvANDN : sse12_fp_packed_vector_logical_alias<0x55, "andn", X86fandn,
2962 /// sse12_fp_packed_logical - SSE 1 & 2 packed FP logical ops
2964 multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr,
2966 let Predicates = [HasAVX, NoVLX] in {
2967 defm V#NAME#PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle,
2968 !strconcat(OpcodeStr, "ps"), f256mem,
2969 [(set VR256:$dst, (v4i64 (OpNode VR256:$src1, VR256:$src2)))],
2970 [(set VR256:$dst, (OpNode (bc_v4i64 (v8f32 VR256:$src1)),
2971 (loadv4i64 addr:$src2)))], 0>, PS, VEX_4V, VEX_L;
2973 defm V#NAME#PDY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedDouble,
2974 !strconcat(OpcodeStr, "pd"), f256mem,
2975 [(set VR256:$dst, (OpNode (bc_v4i64 (v4f64 VR256:$src1)),
2976 (bc_v4i64 (v4f64 VR256:$src2))))],
2977 [(set VR256:$dst, (OpNode (bc_v4i64 (v4f64 VR256:$src1)),
2978 (loadv4i64 addr:$src2)))], 0>,
2981 // In AVX no need to add a pattern for 128-bit logical rr ps, because they
2982 // are all promoted to v2i64, and the patterns are covered by the int
2983 // version. This is needed in SSE only, because v2i64 isn't supported on
2984 // SSE1, but only on SSE2.
2985 defm V#NAME#PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
2986 !strconcat(OpcodeStr, "ps"), f128mem, [],
2987 [(set VR128:$dst, (OpNode (bc_v2i64 (v4f32 VR128:$src1)),
2988 (loadv2i64 addr:$src2)))], 0>, PS, VEX_4V;
2990 defm V#NAME#PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
2991 !strconcat(OpcodeStr, "pd"), f128mem,
2992 [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
2993 (bc_v2i64 (v2f64 VR128:$src2))))],
2994 [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
2995 (loadv2i64 addr:$src2)))], 0>,
2999 let Constraints = "$src1 = $dst" in {
3000 defm PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
3001 !strconcat(OpcodeStr, "ps"), f128mem,
3002 [(set VR128:$dst, (v2i64 (OpNode VR128:$src1, VR128:$src2)))],
3003 [(set VR128:$dst, (OpNode (bc_v2i64 (v4f32 VR128:$src1)),
3004 (memopv2i64 addr:$src2)))]>, PS;
3006 defm PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
3007 !strconcat(OpcodeStr, "pd"), f128mem,
3008 [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
3009 (bc_v2i64 (v2f64 VR128:$src2))))],
3010 [(set VR128:$dst, (OpNode (bc_v2i64 (v2f64 VR128:$src1)),
3011 (memopv2i64 addr:$src2)))]>, PD;
3015 defm AND : sse12_fp_packed_logical<0x54, "and", and>;
3016 defm OR : sse12_fp_packed_logical<0x56, "or", or>;
3017 defm XOR : sse12_fp_packed_logical<0x57, "xor", xor>;
3018 let isCommutable = 0 in
3019 defm ANDN : sse12_fp_packed_logical<0x55, "andn", X86andnp>;
3021 // AVX1 requires type coercions in order to fold loads directly into logical
3023 let Predicates = [HasAVX1Only] in {
3024 def : Pat<(bc_v8f32 (and VR256:$src1, (loadv4i64 addr:$src2))),
3025 (VANDPSYrm VR256:$src1, addr:$src2)>;
3026 def : Pat<(bc_v8f32 (or VR256:$src1, (loadv4i64 addr:$src2))),
3027 (VORPSYrm VR256:$src1, addr:$src2)>;
3028 def : Pat<(bc_v8f32 (xor VR256:$src1, (loadv4i64 addr:$src2))),
3029 (VXORPSYrm VR256:$src1, addr:$src2)>;
3030 def : Pat<(bc_v8f32 (X86andnp VR256:$src1, (loadv4i64 addr:$src2))),
3031 (VANDNPSYrm VR256:$src1, addr:$src2)>;
3034 //===----------------------------------------------------------------------===//
3035 // SSE 1 & 2 - Arithmetic Instructions
3036 //===----------------------------------------------------------------------===//
3038 /// basic_sse12_fp_binop_xxx - SSE 1 & 2 binops come in both scalar and
3041 /// In addition, we also have a special variant of the scalar form here to
3042 /// represent the associated intrinsic operation. This form is unlike the
3043 /// plain scalar form, in that it takes an entire vector (instead of a scalar)
3044 /// and leaves the top elements unmodified (therefore these cannot be commuted).
3046 /// These three forms can each be reg+reg or reg+mem.
3049 /// FIXME: once all 256-bit intrinsics are matched, cleanup and refactor those
3051 multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr,
3052 SDNode OpNode, SizeItins itins> {
3053 let Predicates = [HasAVX, NoVLX] in {
3054 defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
3055 VR128, v4f32, f128mem, loadv4f32,
3056 SSEPackedSingle, itins.s, 0>, PS, VEX_4V;
3057 defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
3058 VR128, v2f64, f128mem, loadv2f64,
3059 SSEPackedDouble, itins.d, 0>, PD, VEX_4V;
3061 defm V#NAME#PSY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"),
3062 OpNode, VR256, v8f32, f256mem, loadv8f32,
3063 SSEPackedSingle, itins.s, 0>, PS, VEX_4V, VEX_L;
3064 defm V#NAME#PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"),
3065 OpNode, VR256, v4f64, f256mem, loadv4f64,
3066 SSEPackedDouble, itins.d, 0>, PD, VEX_4V, VEX_L;
3069 let Constraints = "$src1 = $dst" in {
3070 defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR128,
3071 v4f32, f128mem, memopv4f32, SSEPackedSingle,
3073 defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR128,
3074 v2f64, f128mem, memopv2f64, SSEPackedDouble,
3079 multiclass basic_sse12_fp_binop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
3081 defm V#NAME#SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"),
3082 OpNode, FR32, f32mem, SSEPackedSingle, itins.s, 0>,
3083 XS, VEX_4V, VEX_LIG;
3084 defm V#NAME#SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"),
3085 OpNode, FR64, f64mem, SSEPackedDouble, itins.d, 0>,
3086 XD, VEX_4V, VEX_LIG;
3088 let Constraints = "$src1 = $dst" in {
3089 defm SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"),
3090 OpNode, FR32, f32mem, SSEPackedSingle,
3092 defm SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"),
3093 OpNode, FR64, f64mem, SSEPackedDouble,
3098 multiclass basic_sse12_fp_binop_s_int<bits<8> opc, string OpcodeStr,
3100 defm V#NAME#SS : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
3101 !strconcat(OpcodeStr, "ss"), "", "_ss", ssmem, sse_load_f32,
3102 SSEPackedSingle, itins.s, 0>, XS, VEX_4V, VEX_LIG;
3103 defm V#NAME#SD : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
3104 !strconcat(OpcodeStr, "sd"), "2", "_sd", sdmem, sse_load_f64,
3105 SSEPackedDouble, itins.d, 0>, XD, VEX_4V, VEX_LIG;
3107 let Constraints = "$src1 = $dst" in {
3108 defm SS : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
3109 !strconcat(OpcodeStr, "ss"), "", "_ss", ssmem, sse_load_f32,
3110 SSEPackedSingle, itins.s>, XS;
3111 defm SD : sse12_fp_scalar_int<opc, OpcodeStr, VR128,
3112 !strconcat(OpcodeStr, "sd"), "2", "_sd", sdmem, sse_load_f64,
3113 SSEPackedDouble, itins.d>, XD;
3117 // Binary Arithmetic instructions
3118 defm ADD : basic_sse12_fp_binop_p<0x58, "add", fadd, SSE_ALU_ITINS_P>,
3119 basic_sse12_fp_binop_s<0x58, "add", fadd, SSE_ALU_ITINS_S>,
3120 basic_sse12_fp_binop_s_int<0x58, "add", SSE_ALU_ITINS_S>;
3121 defm MUL : basic_sse12_fp_binop_p<0x59, "mul", fmul, SSE_MUL_ITINS_P>,
3122 basic_sse12_fp_binop_s<0x59, "mul", fmul, SSE_MUL_ITINS_S>,
3123 basic_sse12_fp_binop_s_int<0x59, "mul", SSE_MUL_ITINS_S>;
3124 let isCommutable = 0 in {
3125 defm SUB : basic_sse12_fp_binop_p<0x5C, "sub", fsub, SSE_ALU_ITINS_P>,
3126 basic_sse12_fp_binop_s<0x5C, "sub", fsub, SSE_ALU_ITINS_S>,
3127 basic_sse12_fp_binop_s_int<0x5C, "sub", SSE_ALU_ITINS_S>;
3128 defm DIV : basic_sse12_fp_binop_p<0x5E, "div", fdiv, SSE_DIV_ITINS_P>,
3129 basic_sse12_fp_binop_s<0x5E, "div", fdiv, SSE_DIV_ITINS_S>,
3130 basic_sse12_fp_binop_s_int<0x5E, "div", SSE_DIV_ITINS_S>;
3131 defm MAX : basic_sse12_fp_binop_p<0x5F, "max", X86fmax, SSE_ALU_ITINS_P>,
3132 basic_sse12_fp_binop_s<0x5F, "max", X86fmax, SSE_ALU_ITINS_S>,
3133 basic_sse12_fp_binop_s_int<0x5F, "max", SSE_ALU_ITINS_S>;
3134 defm MIN : basic_sse12_fp_binop_p<0x5D, "min", X86fmin, SSE_ALU_ITINS_P>,
3135 basic_sse12_fp_binop_s<0x5D, "min", X86fmin, SSE_ALU_ITINS_S>,
3136 basic_sse12_fp_binop_s_int<0x5D, "min", SSE_ALU_ITINS_S>;
3139 let isCodeGenOnly = 1 in {
3140 defm MAXC: basic_sse12_fp_binop_p<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_P>,
3141 basic_sse12_fp_binop_s<0x5F, "max", X86fmaxc, SSE_ALU_ITINS_S>;
3142 defm MINC: basic_sse12_fp_binop_p<0x5D, "min", X86fminc, SSE_ALU_ITINS_P>,
3143 basic_sse12_fp_binop_s<0x5D, "min", X86fminc, SSE_ALU_ITINS_S>;
3146 // Patterns used to select SSE scalar fp arithmetic instructions from
3149 // (1) a scalar fp operation followed by a blend
3151 // The effect is that the backend no longer emits unnecessary vector
3152 // insert instructions immediately after SSE scalar fp instructions
3153 // like addss or mulss.
3155 // For example, given the following code:
3156 // __m128 foo(__m128 A, __m128 B) {
3161 // Previously we generated:
3162 // addss %xmm0, %xmm1
3163 // movss %xmm1, %xmm0
3166 // addss %xmm1, %xmm0
3168 // (2) a vector packed single/double fp operation followed by a vector insert
3170 // The effect is that the backend converts the packed fp instruction
3171 // followed by a vector insert into a single SSE scalar fp instruction.
3173 // For example, given the following code:
3174 // __m128 foo(__m128 A, __m128 B) {
3175 // __m128 C = A + B;
3176 // return (__m128) {c[0], a[1], a[2], a[3]};
3179 // Previously we generated:
3180 // addps %xmm0, %xmm1
3181 // movss %xmm1, %xmm0
3184 // addss %xmm1, %xmm0
3186 // TODO: Some canonicalization in lowering would simplify the number of
3187 // patterns we have to try to match.
3188 multiclass scalar_math_f32_patterns<SDNode Op, string OpcPrefix> {
3189 let Predicates = [UseSSE1] in {
3190 // extracted scalar math op with insert via movss
3191 def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
3192 (Op (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
3194 (!cast<I>(OpcPrefix#SSrr_Int) v4f32:$dst,
3195 (COPY_TO_REGCLASS FR32:$src, VR128))>;
3197 // vector math op with insert via movss
3198 def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
3199 (Op (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
3200 (!cast<I>(OpcPrefix#SSrr_Int) v4f32:$dst, v4f32:$src)>;
3203 // With SSE 4.1, blendi is preferred to movsd, so match that too.
3204 let Predicates = [UseSSE41] in {
3205 // extracted scalar math op with insert via blend
3206 def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
3207 (Op (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
3208 FR32:$src))), (i8 1))),
3209 (!cast<I>(OpcPrefix#SSrr_Int) v4f32:$dst,
3210 (COPY_TO_REGCLASS FR32:$src, VR128))>;
3212 // vector math op with insert via blend
3213 def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst),
3214 (Op (v4f32 VR128:$dst), (v4f32 VR128:$src)), (i8 1))),
3215 (!cast<I>(OpcPrefix#SSrr_Int)v4f32:$dst, v4f32:$src)>;
3219 // Repeat everything for AVX, except for the movss + scalar combo...
3220 // because that one shouldn't occur with AVX codegen?
3221 let Predicates = [HasAVX] in {
3222 // extracted scalar math op with insert via blend
3223 def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst), (v4f32 (scalar_to_vector
3224 (Op (f32 (vector_extract (v4f32 VR128:$dst), (iPTR 0))),
3225 FR32:$src))), (i8 1))),
3226 (!cast<I>("V"#OpcPrefix#SSrr_Int) v4f32:$dst,
3227 (COPY_TO_REGCLASS FR32:$src, VR128))>;
3229 // vector math op with insert via movss
3230 def : Pat<(v4f32 (X86Movss (v4f32 VR128:$dst),
3231 (Op (v4f32 VR128:$dst), (v4f32 VR128:$src)))),
3232 (!cast<I>("V"#OpcPrefix#SSrr_Int) v4f32:$dst, v4f32:$src)>;
3234 // vector math op with insert via blend
3235 def : Pat<(v4f32 (X86Blendi (v4f32 VR128:$dst),
3236 (Op (v4f32 VR128:$dst), (v4f32 VR128:$src)), (i8 1))),
3237 (!cast<I>("V"#OpcPrefix#SSrr_Int) v4f32:$dst, v4f32:$src)>;
3241 defm : scalar_math_f32_patterns<fadd, "ADD">;
3242 defm : scalar_math_f32_patterns<fsub, "SUB">;
3243 defm : scalar_math_f32_patterns<fmul, "MUL">;
3244 defm : scalar_math_f32_patterns<fdiv, "DIV">;
3246 multiclass scalar_math_f64_patterns<SDNode Op, string OpcPrefix> {
3247 let Predicates = [UseSSE2] in {
3248 // extracted scalar math op with insert via movsd
3249 def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector
3250 (Op (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
3252 (!cast<I>(OpcPrefix#SDrr_Int) v2f64:$dst,
3253 (COPY_TO_REGCLASS FR64:$src, VR128))>;
3255 // vector math op with insert via movsd
3256 def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
3257 (Op (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
3258 (!cast<I>(OpcPrefix#SDrr_Int) v2f64:$dst, v2f64:$src)>;
3261 // With SSE 4.1, blendi is preferred to movsd, so match those too.
3262 let Predicates = [UseSSE41] in {
3263 // extracted scalar math op with insert via blend
3264 def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst), (v2f64 (scalar_to_vector
3265 (Op (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
3266 FR64:$src))), (i8 1))),
3267 (!cast<I>(OpcPrefix#SDrr_Int) v2f64:$dst,
3268 (COPY_TO_REGCLASS FR64:$src, VR128))>;
3270 // vector math op with insert via blend
3271 def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst),
3272 (Op (v2f64 VR128:$dst), (v2f64 VR128:$src)), (i8 1))),
3273 (!cast<I>(OpcPrefix#SDrr_Int) v2f64:$dst, v2f64:$src)>;
3276 // Repeat everything for AVX.
3277 let Predicates = [HasAVX] in {
3278 // extracted scalar math op with insert via movsd
3279 def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst), (v2f64 (scalar_to_vector
3280 (Op (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
3282 (!cast<I>("V"#OpcPrefix#SDrr_Int) v2f64:$dst,
3283 (COPY_TO_REGCLASS FR64:$src, VR128))>;
3285 // extracted scalar math op with insert via blend
3286 def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst), (v2f64 (scalar_to_vector
3287 (Op (f64 (vector_extract (v2f64 VR128:$dst), (iPTR 0))),
3288 FR64:$src))), (i8 1))),
3289 (!cast<I>("V"#OpcPrefix#SDrr_Int) v2f64:$dst,
3290 (COPY_TO_REGCLASS FR64:$src, VR128))>;
3292 // vector math op with insert via movsd
3293 def : Pat<(v2f64 (X86Movsd (v2f64 VR128:$dst),
3294 (Op (v2f64 VR128:$dst), (v2f64 VR128:$src)))),
3295 (!cast<I>("V"#OpcPrefix#SDrr_Int) v2f64:$dst, v2f64:$src)>;
3297 // vector math op with insert via blend
3298 def : Pat<(v2f64 (X86Blendi (v2f64 VR128:$dst),
3299 (Op (v2f64 VR128:$dst), (v2f64 VR128:$src)), (i8 1))),
3300 (!cast<I>("V"#OpcPrefix#SDrr_Int) v2f64:$dst, v2f64:$src)>;
3304 defm : scalar_math_f64_patterns<fadd, "ADD">;
3305 defm : scalar_math_f64_patterns<fsub, "SUB">;
3306 defm : scalar_math_f64_patterns<fmul, "MUL">;
3307 defm : scalar_math_f64_patterns<fdiv, "DIV">;
3311 /// In addition, we also have a special variant of the scalar form here to
3312 /// represent the associated intrinsic operation. This form is unlike the
3313 /// plain scalar form, in that it takes an entire vector (instead of a
3314 /// scalar) and leaves the top elements undefined.
3316 /// And, we have a special variant form for a full-vector intrinsic form.
3318 let Sched = WriteFSqrt in {
3319 def SSE_SQRTPS : OpndItins<
3320 IIC_SSE_SQRTPS_RR, IIC_SSE_SQRTPS_RM
3323 def SSE_SQRTSS : OpndItins<
3324 IIC_SSE_SQRTSS_RR, IIC_SSE_SQRTSS_RM
3327 def SSE_SQRTPD : OpndItins<
3328 IIC_SSE_SQRTPD_RR, IIC_SSE_SQRTPD_RM
3331 def SSE_SQRTSD : OpndItins<
3332 IIC_SSE_SQRTSD_RR, IIC_SSE_SQRTSD_RM
3336 let Sched = WriteFRsqrt in {
3337 def SSE_RSQRTPS : OpndItins<
3338 IIC_SSE_RSQRTPS_RR, IIC_SSE_RSQRTPS_RM
3341 def SSE_RSQRTSS : OpndItins<
3342 IIC_SSE_RSQRTSS_RR, IIC_SSE_RSQRTSS_RM
3346 let Sched = WriteFRcp in {
3347 def SSE_RCPP : OpndItins<
3348 IIC_SSE_RCPP_RR, IIC_SSE_RCPP_RM
3351 def SSE_RCPS : OpndItins<
3352 IIC_SSE_RCPS_RR, IIC_SSE_RCPS_RM
3356 /// sse_fp_unop_s - SSE1 unops in scalar form
3357 /// For the non-AVX defs, we need $src1 to be tied to $dst because
3358 /// the HW instructions are 2 operand / destructive.
3359 multiclass sse_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
3360 ValueType vt, ValueType ScalarVT,
3361 X86MemOperand x86memop, Operand vec_memop,
3362 ComplexPattern mem_cpat, Intrinsic Intr,
3363 SDNode OpNode, Domain d, OpndItins itins,
3364 Predicate target, string Suffix> {
3365 let hasSideEffects = 0 in {
3366 def r : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1),
3367 !strconcat(OpcodeStr, "\t{$src1, $dst|$dst, $src1}"),
3368 [(set RC:$dst, (OpNode RC:$src1))], itins.rr, d>, Sched<[itins.Sched]>,
3371 def m : I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src1),
3372 !strconcat(OpcodeStr, "\t{$src1, $dst|$dst, $src1}"),
3373 [(set RC:$dst, (OpNode (load addr:$src1)))], itins.rm, d>,
3374 Sched<[itins.Sched.Folded, ReadAfterLd]>,
3375 Requires<[target, OptForSize]>;
3377 let isCodeGenOnly = 1, Constraints = "$src1 = $dst" in {
3378 def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
3379 !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
3380 []>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
3382 def m_Int : I<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, vec_memop:$src2),
3383 !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
3384 []>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
3388 let Predicates = [target] in {
3389 def : Pat<(vt (OpNode mem_cpat:$src)),
3390 (vt (COPY_TO_REGCLASS (vt (!cast<Instruction>(NAME#Suffix##m_Int)
3391 (vt (IMPLICIT_DEF)), mem_cpat:$src)), RC))>;
3392 // These are unary operations, but they are modeled as having 2 source operands
3393 // because the high elements of the destination are unchanged in SSE.
3394 def : Pat<(Intr VR128:$src),
3395 (!cast<Instruction>(NAME#Suffix##r_Int) VR128:$src, VR128:$src)>;
3396 def : Pat<(Intr (load addr:$src)),
3397 (vt (COPY_TO_REGCLASS(!cast<Instruction>(NAME#Suffix##m)
3398 addr:$src), VR128))>;
3399 def : Pat<(Intr mem_cpat:$src),
3400 (!cast<Instruction>(NAME#Suffix##m_Int)
3401 (vt (IMPLICIT_DEF)), mem_cpat:$src)>;
3405 multiclass avx_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
3406 ValueType vt, ValueType ScalarVT,
3407 X86MemOperand x86memop, Operand vec_memop,
3408 ComplexPattern mem_cpat,
3409 Intrinsic Intr, SDNode OpNode, Domain d,
3410 OpndItins itins, string Suffix> {
3411 let hasSideEffects = 0 in {
3412 def r : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
3413 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
3414 [], itins.rr, d>, Sched<[itins.Sched]>;
3416 def m : I<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
3417 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
3418 [], itins.rm, d>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
3419 let isCodeGenOnly = 1 in {
3420 def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst),
3421 (ins VR128:$src1, VR128:$src2),
3422 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
3423 []>, Sched<[itins.Sched.Folded]>;
3425 def m_Int : I<opc, MRMSrcMem, (outs VR128:$dst),
3426 (ins VR128:$src1, vec_memop:$src2),
3427 !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
3428 []>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
3432 let Predicates = [UseAVX] in {
3433 def : Pat<(OpNode RC:$src), (!cast<Instruction>("V"#NAME#Suffix##r)
3434 (ScalarVT (IMPLICIT_DEF)), RC:$src)>;
3436 def : Pat<(vt (OpNode mem_cpat:$src)),
3437 (!cast<Instruction>("V"#NAME#Suffix##m_Int) (vt (IMPLICIT_DEF)),
3441 let Predicates = [HasAVX] in {
3442 def : Pat<(Intr VR128:$src),
3443 (!cast<Instruction>("V"#NAME#Suffix##r_Int) (vt (IMPLICIT_DEF)),
3446 def : Pat<(Intr mem_cpat:$src),
3447 (!cast<Instruction>("V"#NAME#Suffix##m_Int)
3448 (vt (IMPLICIT_DEF)), mem_cpat:$src)>;
3450 let Predicates = [UseAVX, OptForSize] in
3451 def : Pat<(ScalarVT (OpNode (load addr:$src))),
3452 (!cast<Instruction>("V"#NAME#Suffix##m) (ScalarVT (IMPLICIT_DEF)),
3456 /// sse1_fp_unop_p - SSE1 unops in packed form.
3457 multiclass sse1_fp_unop_p<bits<8> opc, string OpcodeStr, SDNode OpNode,
3459 let Predicates = [HasAVX] in {
3460 def V#NAME#PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
3461 !strconcat("v", OpcodeStr,
3462 "ps\t{$src, $dst|$dst, $src}"),
3463 [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))],
3464 itins.rr>, VEX, Sched<[itins.Sched]>;
3465 def V#NAME#PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
3466 !strconcat("v", OpcodeStr,
3467 "ps\t{$src, $dst|$dst, $src}"),
3468 [(set VR128:$dst, (OpNode (loadv4f32 addr:$src)))],
3469 itins.rm>, VEX, Sched<[itins.Sched.Folded]>;
3470 def V#NAME#PSYr : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
3471 !strconcat("v", OpcodeStr,
3472 "ps\t{$src, $dst|$dst, $src}"),
3473 [(set VR256:$dst, (v8f32 (OpNode VR256:$src)))],
3474 itins.rr>, VEX, VEX_L, Sched<[itins.Sched]>;
3475 def V#NAME#PSYm : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
3476 !strconcat("v", OpcodeStr,
3477 "ps\t{$src, $dst|$dst, $src}"),
3478 [(set VR256:$dst, (OpNode (loadv8f32 addr:$src)))],
3479 itins.rm>, VEX, VEX_L, Sched<[itins.Sched.Folded]>;
3482 def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
3483 !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
3484 [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))], itins.rr>,
3485 Sched<[itins.Sched]>;
3486 def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
3487 !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
3488 [(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))], itins.rm>,
3489 Sched<[itins.Sched.Folded]>;
3492 /// sse2_fp_unop_p - SSE2 unops in vector forms.
3493 multiclass sse2_fp_unop_p<bits<8> opc, string OpcodeStr,
3494 SDNode OpNode, OpndItins itins> {
3495 let Predicates = [HasAVX] in {
3496 def V#NAME#PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
3497 !strconcat("v", OpcodeStr,
3498 "pd\t{$src, $dst|$dst, $src}"),
3499 [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))],
3500 itins.rr>, VEX, Sched<[itins.Sched]>;
3501 def V#NAME#PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
3502 !strconcat("v", OpcodeStr,
3503 "pd\t{$src, $dst|$dst, $src}"),
3504 [(set VR128:$dst, (OpNode (loadv2f64 addr:$src)))],
3505 itins.rm>, VEX, Sched<[itins.Sched.Folded]>;
3506 def V#NAME#PDYr : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
3507 !strconcat("v", OpcodeStr,
3508 "pd\t{$src, $dst|$dst, $src}"),
3509 [(set VR256:$dst, (v4f64 (OpNode VR256:$src)))],
3510 itins.rr>, VEX, VEX_L, Sched<[itins.Sched]>;
3511 def V#NAME#PDYm : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
3512 !strconcat("v", OpcodeStr,
3513 "pd\t{$src, $dst|$dst, $src}"),
3514 [(set VR256:$dst, (OpNode (loadv4f64 addr:$src)))],
3515 itins.rm>, VEX, VEX_L, Sched<[itins.Sched.Folded]>;
3518 def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
3519 !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
3520 [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))], itins.rr>,
3521 Sched<[itins.Sched]>;
3522 def PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
3523 !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
3524 [(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))], itins.rm>,
3525 Sched<[itins.Sched.Folded]>;
3528 multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
3530 defm SS : sse_fp_unop_s<opc, OpcodeStr##ss, FR32, v4f32, f32, f32mem,
3531 ssmem, sse_load_f32,
3532 !cast<Intrinsic>("int_x86_sse_"##OpcodeStr##_ss), OpNode,
3533 SSEPackedSingle, itins, UseSSE1, "SS">, XS;
3534 defm V#NAME#SS : avx_fp_unop_s<opc, "v"#OpcodeStr##ss, FR32, v4f32, f32,
3535 f32mem, ssmem, sse_load_f32,
3536 !cast<Intrinsic>("int_x86_sse_"##OpcodeStr##_ss), OpNode,
3537 SSEPackedSingle, itins, "SS">, XS, VEX_4V, VEX_LIG;
3540 multiclass sse2_fp_unop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
3542 defm SD : sse_fp_unop_s<opc, OpcodeStr##sd, FR64, v2f64, f64, f64mem,
3543 sdmem, sse_load_f64,
3544 !cast<Intrinsic>("int_x86_sse2_"##OpcodeStr##_sd),
3545 OpNode, SSEPackedDouble, itins, UseSSE2, "SD">, XD;
3546 defm V#NAME#SD : avx_fp_unop_s<opc, "v"#OpcodeStr##sd, FR64, v2f64, f64,
3547 f64mem, sdmem, sse_load_f64,
3548 !cast<Intrinsic>("int_x86_sse2_"##OpcodeStr##_sd),
3549 OpNode, SSEPackedDouble, itins, "SD">,
3550 XD, VEX_4V, VEX_LIG;
3554 defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, SSE_SQRTSS>,
3555 sse1_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTPS>,
3556 sse2_fp_unop_s<0x51, "sqrt", fsqrt, SSE_SQRTSD>,
3557 sse2_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTPD>;
3559 // Reciprocal approximations. Note that these typically require refinement
3560 // in order to obtain suitable precision.
3561 defm RSQRT : sse1_fp_unop_s<0x52, "rsqrt", X86frsqrt, SSE_RSQRTSS>,
3562 sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SSE_RSQRTPS>;
3563 defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, SSE_RCPS>,
3564 sse1_fp_unop_p<0x53, "rcp", X86frcp, SSE_RCPP>;
3566 // There is no f64 version of the reciprocal approximation instructions.
3568 // TODO: We should add *scalar* op patterns for these just like we have for
3569 // the binops above. If the binop and unop patterns could all be unified
3570 // that would be even better.
3572 multiclass scalar_unary_math_patterns<Intrinsic Intr, string OpcPrefix,
3573 SDNode Move, ValueType VT,
3574 Predicate BasePredicate> {
3575 let Predicates = [BasePredicate] in {
3576 def : Pat<(VT (Move VT:$dst, (Intr VT:$src))),
3577 (!cast<I>(OpcPrefix#r_Int) VT:$dst, VT:$src)>;
3580 // With SSE 4.1, blendi is preferred to movs*, so match that too.
3581 let Predicates = [UseSSE41] in {
3582 def : Pat<(VT (X86Blendi VT:$dst, (Intr VT:$src), (i8 1))),
3583 (!cast<I>(OpcPrefix#r_Int) VT:$dst, VT:$src)>;
3586 // Repeat for AVX versions of the instructions.
3587 let Predicates = [HasAVX] in {
3588 def : Pat<(VT (Move VT:$dst, (Intr VT:$src))),
3589 (!cast<I>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>;
3591 def : Pat<(VT (X86Blendi VT:$dst, (Intr VT:$src), (i8 1))),
3592 (!cast<I>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>;
3596 defm : scalar_unary_math_patterns<int_x86_sse_rcp_ss, "RCPSS", X86Movss,
3598 defm : scalar_unary_math_patterns<int_x86_sse_rsqrt_ss, "RSQRTSS", X86Movss,
3600 defm : scalar_unary_math_patterns<int_x86_sse_sqrt_ss, "SQRTSS", X86Movss,
3602 defm : scalar_unary_math_patterns<int_x86_sse2_sqrt_sd, "SQRTSD", X86Movsd,
3606 //===----------------------------------------------------------------------===//
3607 // SSE 1 & 2 - Non-temporal stores
3608 //===----------------------------------------------------------------------===//
3610 let AddedComplexity = 400 in { // Prefer non-temporal versions
3611 let SchedRW = [WriteStore] in {
3612 let Predicates = [HasAVX, NoVLX] in {
3613 def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs),
3614 (ins f128mem:$dst, VR128:$src),
3615 "movntps\t{$src, $dst|$dst, $src}",
3616 [(alignednontemporalstore (v4f32 VR128:$src),
3618 IIC_SSE_MOVNT>, VEX;