Add addrspacecast instruction.
[oota-llvm.git] / lib / Target / X86 / X86ISelLowering.h
1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef X86ISELLOWERING_H
16 #define X86ISELLOWERING_H
17
18 #include "X86MachineFunctionInfo.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/FastISel.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/Target/TargetLowering.h"
25 #include "llvm/Target/TargetOptions.h"
26
27 namespace llvm {
28   namespace X86ISD {
29     // X86 Specific DAG Nodes
30     enum NodeType {
31       // Start the numbering where the builtin ops leave off.
32       FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34       /// BSF - Bit scan forward.
35       /// BSR - Bit scan reverse.
36       BSF,
37       BSR,
38
39       /// SHLD, SHRD - Double shift instructions. These correspond to
40       /// X86::SHLDxx and X86::SHRDxx instructions.
41       SHLD,
42       SHRD,
43
44       /// FAND - Bitwise logical AND of floating point values. This corresponds
45       /// to X86::ANDPS or X86::ANDPD.
46       FAND,
47
48       /// FOR - Bitwise logical OR of floating point values. This corresponds
49       /// to X86::ORPS or X86::ORPD.
50       FOR,
51
52       /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53       /// to X86::XORPS or X86::XORPD.
54       FXOR,
55
56       /// FANDN - Bitwise logical ANDNOT of floating point values. This
57       /// corresponds to X86::ANDNPS or X86::ANDNPD.
58       FANDN,
59
60       /// FSRL - Bitwise logical right shift of floating point values. These
61       /// corresponds to X86::PSRLDQ.
62       FSRL,
63
64       /// CALL - These operations represent an abstract X86 call
65       /// instruction, which includes a bunch of information.  In particular the
66       /// operands of these node are:
67       ///
68       ///     #0 - The incoming token chain
69       ///     #1 - The callee
70       ///     #2 - The number of arg bytes the caller pushes on the stack.
71       ///     #3 - The number of arg bytes the callee pops off the stack.
72       ///     #4 - The value to pass in AL/AX/EAX (optional)
73       ///     #5 - The value to pass in DL/DX/EDX (optional)
74       ///
75       /// The result values of these nodes are:
76       ///
77       ///     #0 - The outgoing token chain
78       ///     #1 - The first register result value (optional)
79       ///     #2 - The second register result value (optional)
80       ///
81       CALL,
82
83       /// RDTSC_DAG - This operation implements the lowering for
84       /// readcyclecounter
85       RDTSC_DAG,
86
87       /// X86 compare and logical compare instructions.
88       CMP, COMI, UCOMI,
89
90       /// X86 bit-test instructions.
91       BT,
92
93       /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
94       /// operand, usually produced by a CMP instruction.
95       SETCC,
96
97       // Same as SETCC except it's materialized with a sbb and the value is all
98       // one's or all zero's.
99       SETCC_CARRY,  // R = carry_bit ? ~0 : 0
100
101       /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
102       /// Operands are two FP values to compare; result is a mask of
103       /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
104       FSETCCss, FSETCCsd,
105
106       /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
107       /// result in an integer GPR.  Needs masking for scalar result.
108       FGETSIGNx86,
109
110       /// X86 conditional moves. Operand 0 and operand 1 are the two values
111       /// to select from. Operand 2 is the condition code, and operand 3 is the
112       /// flag operand produced by a CMP or TEST instruction. It also writes a
113       /// flag result.
114       CMOV,
115
116       /// X86 conditional branches. Operand 0 is the chain operand, operand 1
117       /// is the block to branch if condition is true, operand 2 is the
118       /// condition code, and operand 3 is the flag operand produced by a CMP
119       /// or TEST instruction.
120       BRCOND,
121
122       /// Return with a flag operand. Operand 0 is the chain operand, operand
123       /// 1 is the number of bytes of stack to pop.
124       RET_FLAG,
125
126       /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
127       REP_STOS,
128
129       /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
130       REP_MOVS,
131
132       /// GlobalBaseReg - On Darwin, this node represents the result of the popl
133       /// at function entry, used for PIC code.
134       GlobalBaseReg,
135
136       /// Wrapper - A wrapper node for TargetConstantPool,
137       /// TargetExternalSymbol, and TargetGlobalAddress.
138       Wrapper,
139
140       /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
141       /// relative displacements.
142       WrapperRIP,
143
144       /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
145       /// to an MMX vector.  If you think this is too close to the previous
146       /// mnemonic, so do I; blame Intel.
147       MOVDQ2Q,
148
149       /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX
150       /// vector to a GPR.
151       MMX_MOVD2W,
152
153       /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
154       /// i32, corresponds to X86::PEXTRB.
155       PEXTRB,
156
157       /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
158       /// i32, corresponds to X86::PEXTRW.
159       PEXTRW,
160
161       /// INSERTPS - Insert any element of a 4 x float vector into any element
162       /// of a destination 4 x floatvector.
163       INSERTPS,
164
165       /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
166       /// corresponds to X86::PINSRB.
167       PINSRB,
168
169       /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
170       /// corresponds to X86::PINSRW.
171       PINSRW, MMX_PINSRW,
172
173       /// PSHUFB - Shuffle 16 8-bit values within a vector.
174       PSHUFB,
175
176       /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
177       ANDNP,
178
179       /// PSIGN - Copy integer sign.
180       PSIGN,
181
182       /// BLENDV - Blend where the selector is a register.
183       BLENDV,
184
185       /// BLENDI - Blend where the selector is an immediate.
186       BLENDI,
187
188       // SUBUS - Integer sub with unsigned saturation.
189       SUBUS,
190
191       /// HADD - Integer horizontal add.
192       HADD,
193
194       /// HSUB - Integer horizontal sub.
195       HSUB,
196
197       /// FHADD - Floating point horizontal add.
198       FHADD,
199
200       /// FHSUB - Floating point horizontal sub.
201       FHSUB,
202
203       /// UMAX, UMIN - Unsigned integer max and min.
204       UMAX, UMIN,
205
206       /// SMAX, SMIN - Signed integer max and min.
207       SMAX, SMIN,
208
209       /// FMAX, FMIN - Floating point max and min.
210       ///
211       FMAX, FMIN,
212
213       /// FMAXC, FMINC - Commutative FMIN and FMAX.
214       FMAXC, FMINC,
215
216       /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
217       /// approximation.  Note that these typically require refinement
218       /// in order to obtain suitable precision.
219       FRSQRT, FRCP,
220
221       // TLSADDR - Thread Local Storage.
222       TLSADDR,
223
224       // TLSBASEADDR - Thread Local Storage. A call to get the start address
225       // of the TLS block for the current module.
226       TLSBASEADDR,
227
228       // TLSCALL - Thread Local Storage.  When calling to an OS provided
229       // thunk at the address from an earlier relocation.
230       TLSCALL,
231
232       // EH_RETURN - Exception Handling helpers.
233       EH_RETURN,
234
235       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
236       EH_SJLJ_SETJMP,
237
238       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
239       EH_SJLJ_LONGJMP,
240
241       /// TC_RETURN - Tail call return. See X86TargetLowering::LowerCall for
242       /// the list of operands.
243       TC_RETURN,
244
245       // VZEXT_MOVL - Vector move low and zero extend.
246       VZEXT_MOVL,
247
248       // VSEXT_MOVL - Vector move low and sign extend.
249       VSEXT_MOVL,
250
251       // VZEXT - Vector integer zero-extend.
252       VZEXT,
253
254       // VSEXT - Vector integer signed-extend.
255       VSEXT,
256
257       // VTRUNC - Vector integer truncate.
258       VTRUNC,
259
260       // VTRUNC - Vector integer truncate with mask.
261       VTRUNCM,
262
263       // VFPEXT - Vector FP extend.
264       VFPEXT,
265
266       // VFPROUND - Vector FP round.
267       VFPROUND,
268
269       // VSHL, VSRL - 128-bit vector logical left / right shift
270       VSHLDQ, VSRLDQ,
271
272       // VSHL, VSRL, VSRA - Vector shift elements
273       VSHL, VSRL, VSRA,
274
275       // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
276       VSHLI, VSRLI, VSRAI,
277
278       // CMPP - Vector packed double/float comparison.
279       CMPP,
280
281       // PCMP* - Vector integer comparisons.
282       PCMPEQ, PCMPGT,
283       // PCMP*M - Vector integer comparisons, the result is in a mask vector.
284       PCMPEQM, PCMPGTM,
285
286       /// CMPM, CMPMU - Vector comparison generating mask bits for fp and
287       /// integer signed and unsigned data types.
288       CMPM,
289       CMPMU,
290
291       // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
292       ADD, SUB, ADC, SBB, SMUL,
293       INC, DEC, OR, XOR, AND,
294
295       BLSI,   // BLSI - Extract lowest set isolated bit
296       BLSMSK, // BLSMSK - Get mask up to lowest set bit
297       BLSR,   // BLSR - Reset lowest set bit
298       BZHI,   // BZHI - Zero high bits
299       BEXTR,  // BEXTR - Bit field extract
300
301       UMUL, // LOW, HI, FLAGS = umul LHS, RHS
302
303       // MUL_IMM - X86 specific multiply by immediate.
304       MUL_IMM,
305
306       // PTEST - Vector bitwise comparisons.
307       PTEST,
308
309       // TESTP - Vector packed fp sign bitwise comparisons.
310       TESTP,
311
312       // TESTM - Vector "test" in AVX-512, the result is in a mask vector.
313       TESTM,
314
315       // OR/AND test for masks
316       KORTEST,
317       KTEST,
318
319       // Several flavors of instructions with vector shuffle behaviors.
320       PALIGNR,
321       PSHUFD,
322       PSHUFHW,
323       PSHUFLW,
324       SHUFP,
325       MOVDDUP,
326       MOVSHDUP,
327       MOVSLDUP,
328       MOVLHPS,
329       MOVLHPD,
330       MOVHLPS,
331       MOVLPS,
332       MOVLPD,
333       MOVSD,
334       MOVSS,
335       UNPCKL,
336       UNPCKH,
337       VPERMILP,
338       VPERMV,
339       VPERMV3,
340       VPERMI,
341       VPERM2X128,
342       VBROADCAST,
343       // masked broadcast
344       VBROADCASTM,
345       VINSERT,
346
347       // PMULUDQ - Vector multiply packed unsigned doubleword integers
348       PMULUDQ,
349
350       // FMA nodes
351       FMADD,
352       FNMADD,
353       FMSUB,
354       FNMSUB,
355       FMADDSUB,
356       FMSUBADD,
357
358       // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
359       // according to %al. An operator is needed so that this can be expanded
360       // with control flow.
361       VASTART_SAVE_XMM_REGS,
362
363       // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
364       WIN_ALLOCA,
365
366       // SEG_ALLOCA - For allocating variable amounts of stack space when using
367       // segmented stacks. Check if the current stacklet has enough space, and
368       // falls back to heap allocation if not.
369       SEG_ALLOCA,
370
371       // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
372       WIN_FTOL,
373
374       // Memory barrier
375       MEMBARRIER,
376       MFENCE,
377       SFENCE,
378       LFENCE,
379
380       // FNSTSW16r - Store FP status word into i16 register.
381       FNSTSW16r,
382
383       // SAHF - Store contents of %ah into %eflags.
384       SAHF,
385
386       // RDRAND - Get a random integer and indicate whether it is valid in CF.
387       RDRAND,
388
389       // RDSEED - Get a NIST SP800-90B & C compliant random integer and
390       // indicate whether it is valid in CF.
391       RDSEED,
392
393       // PCMP*STRI
394       PCMPISTRI,
395       PCMPESTRI,
396
397       // XTEST - Test if in transactional execution.
398       XTEST,
399
400       // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
401       // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
402       // Atomic 64-bit binary operations.
403       ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
404       ATOMSUB64_DAG,
405       ATOMOR64_DAG,
406       ATOMXOR64_DAG,
407       ATOMAND64_DAG,
408       ATOMNAND64_DAG,
409       ATOMMAX64_DAG,
410       ATOMMIN64_DAG,
411       ATOMUMAX64_DAG,
412       ATOMUMIN64_DAG,
413       ATOMSWAP64_DAG,
414
415       // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
416       LCMPXCHG_DAG,
417       LCMPXCHG8_DAG,
418       LCMPXCHG16_DAG,
419
420       // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
421       VZEXT_LOAD,
422
423       // FNSTCW16m - Store FP control world into i16 memory.
424       FNSTCW16m,
425
426       /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
427       /// integer destination in memory and a FP reg source.  This corresponds
428       /// to the X86::FIST*m instructions and the rounding mode change stuff. It
429       /// has two inputs (token chain and address) and two outputs (int value
430       /// and token chain).
431       FP_TO_INT16_IN_MEM,
432       FP_TO_INT32_IN_MEM,
433       FP_TO_INT64_IN_MEM,
434
435       /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
436       /// integer source in memory and FP reg result.  This corresponds to the
437       /// X86::FILD*m instructions. It has three inputs (token chain, address,
438       /// and source type) and two outputs (FP value and token chain). FILD_FLAG
439       /// also produces a flag).
440       FILD,
441       FILD_FLAG,
442
443       /// FLD - This instruction implements an extending load to FP stack slots.
444       /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
445       /// operand, ptr to load from, and a ValueType node indicating the type
446       /// to load to.
447       FLD,
448
449       /// FST - This instruction implements a truncating store to FP stack
450       /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
451       /// chain operand, value to store, address, and a ValueType to store it
452       /// as.
453       FST,
454
455       /// VAARG_64 - This instruction grabs the address of the next argument
456       /// from a va_list. (reads and modifies the va_list in memory)
457       VAARG_64
458
459       // WARNING: Do not add anything in the end unless you want the node to
460       // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
461       // thought as target memory ops!
462     };
463   }
464
465   /// Define some predicates that are used for node matching.
466   namespace X86 {
467     /// isVEXTRACT128Index - Return true if the specified
468     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
469     /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
470     bool isVEXTRACT128Index(SDNode *N);
471
472     /// isVINSERT128Index - Return true if the specified
473     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
474     /// suitable for input to VINSERTF128, VINSERTI128 instructions.
475     bool isVINSERT128Index(SDNode *N);
476
477     /// isVEXTRACT256Index - Return true if the specified
478     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
479     /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
480     bool isVEXTRACT256Index(SDNode *N);
481
482     /// isVINSERT256Index - Return true if the specified
483     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
484     /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
485     bool isVINSERT256Index(SDNode *N);
486
487     /// getExtractVEXTRACT128Immediate - Return the appropriate
488     /// immediate to extract the specified EXTRACT_SUBVECTOR index
489     /// with VEXTRACTF128, VEXTRACTI128 instructions.
490     unsigned getExtractVEXTRACT128Immediate(SDNode *N);
491
492     /// getInsertVINSERT128Immediate - Return the appropriate
493     /// immediate to insert at the specified INSERT_SUBVECTOR index
494     /// with VINSERTF128, VINSERT128 instructions.
495     unsigned getInsertVINSERT128Immediate(SDNode *N);
496
497     /// getExtractVEXTRACT256Immediate - Return the appropriate
498     /// immediate to extract the specified EXTRACT_SUBVECTOR index
499     /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
500     unsigned getExtractVEXTRACT256Immediate(SDNode *N);
501
502     /// getInsertVINSERT256Immediate - Return the appropriate
503     /// immediate to insert at the specified INSERT_SUBVECTOR index
504     /// with VINSERTF64x4, VINSERTI64x4 instructions.
505     unsigned getInsertVINSERT256Immediate(SDNode *N);
506
507     /// isZeroNode - Returns true if Elt is a constant zero or a floating point
508     /// constant +0.0.
509     bool isZeroNode(SDValue Elt);
510
511     /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
512     /// fit into displacement field of the instruction.
513     bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
514                                       bool hasSymbolicDisplacement = true);
515
516
517     /// isCalleePop - Determines whether the callee is required to pop its
518     /// own arguments. Callee pop is necessary to support tail calls.
519     bool isCalleePop(CallingConv::ID CallingConv,
520                      bool is64Bit, bool IsVarArg, bool TailCallOpt);
521   }
522
523   //===--------------------------------------------------------------------===//
524   //  X86TargetLowering - X86 Implementation of the TargetLowering interface
525   class X86TargetLowering : public TargetLowering {
526   public:
527     explicit X86TargetLowering(X86TargetMachine &TM);
528
529     virtual unsigned getJumpTableEncoding() const;
530
531     virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
532
533     virtual const MCExpr *
534     LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
535                               const MachineBasicBlock *MBB, unsigned uid,
536                               MCContext &Ctx) const;
537
538     /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
539     /// jumptable.
540     virtual SDValue getPICJumpTableRelocBase(SDValue Table,
541                                              SelectionDAG &DAG) const;
542     virtual const MCExpr *
543     getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
544                                  unsigned JTI, MCContext &Ctx) const;
545
546     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
547     /// function arguments in the caller parameter area. For X86, aggregates
548     /// that contains are placed at 16-byte boundaries while the rest are at
549     /// 4-byte boundaries.
550     virtual unsigned getByValTypeAlignment(Type *Ty) const;
551
552     /// getOptimalMemOpType - Returns the target specific optimal type for load
553     /// and store operations as a result of memset, memcpy, and memmove
554     /// lowering. If DstAlign is zero that means it's safe to destination
555     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
556     /// means there isn't a need to check it against alignment requirement,
557     /// probably because the source does not need to be loaded. If 'IsMemset' is
558     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
559     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
560     /// source is constant so it does not need to be loaded.
561     /// It returns EVT::Other if the type should be determined using generic
562     /// target-independent logic.
563     virtual EVT
564     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
565                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
566                         MachineFunction &MF) const;
567
568     /// isSafeMemOpType - Returns true if it's safe to use load / store of the
569     /// specified type to expand memcpy / memset inline. This is mostly true
570     /// for all types except for some special cases. For example, on X86
571     /// targets without SSE2 f64 load / store are done with fldl / fstpl which
572     /// also does type conversion. Note the specified type doesn't have to be
573     /// legal as the hook is used before type legalization.
574     virtual bool isSafeMemOpType(MVT VT) const;
575
576     /// allowsUnalignedMemoryAccesses - Returns true if the target allows
577     /// unaligned memory accesses. of the specified type. Returns whether it
578     /// is "fast" by reference in the second argument.
579     virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const;
580
581     /// LowerOperation - Provide custom lowering hooks for some operations.
582     ///
583     virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
584
585     /// ReplaceNodeResults - Replace the results of node with an illegal result
586     /// type with new values built out of custom code.
587     ///
588     virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
589                                     SelectionDAG &DAG) const;
590
591
592     virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
593
594     /// isTypeDesirableForOp - Return true if the target has native support for
595     /// the specified value type and it is 'desirable' to use the type for the
596     /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
597     /// instruction encodings are longer and some i16 instructions are slow.
598     virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
599
600     /// isTypeDesirable - Return true if the target has native support for the
601     /// specified value type and it is 'desirable' to use the type. e.g. On x86
602     /// i16 is legal, but undesirable since i16 instruction encodings are longer
603     /// and some i16 instructions are slow.
604     virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
605
606     virtual MachineBasicBlock *
607       EmitInstrWithCustomInserter(MachineInstr *MI,
608                                   MachineBasicBlock *MBB) const;
609
610
611     /// getTargetNodeName - This method returns the name of a target specific
612     /// DAG node.
613     virtual const char *getTargetNodeName(unsigned Opcode) const;
614
615     /// getSetCCResultType - Return the value type to use for ISD::SETCC.
616     virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
617
618     /// computeMaskedBitsForTargetNode - Determine which of the bits specified
619     /// in Mask are known to be either zero or one and return them in the
620     /// KnownZero/KnownOne bitsets.
621     virtual void computeMaskedBitsForTargetNode(const SDValue Op,
622                                                 APInt &KnownZero,
623                                                 APInt &KnownOne,
624                                                 const SelectionDAG &DAG,
625                                                 unsigned Depth = 0) const;
626
627     // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
628     // operation that are sign bits.
629     virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
630                                                      unsigned Depth) const;
631
632     virtual bool
633     isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
634
635     SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
636
637     virtual bool ExpandInlineAsm(CallInst *CI) const;
638
639     ConstraintType getConstraintType(const std::string &Constraint) const;
640
641     /// Examine constraint string and operand type and determine a weight value.
642     /// The operand object must already have been set up with the operand type.
643     virtual ConstraintWeight getSingleConstraintMatchWeight(
644       AsmOperandInfo &info, const char *constraint) const;
645
646     virtual const char *LowerXConstraint(EVT ConstraintVT) const;
647
648     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
649     /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
650     /// true it means one of the asm constraint of the inline asm instruction
651     /// being processed is 'm'.
652     virtual void LowerAsmOperandForConstraint(SDValue Op,
653                                               std::string &Constraint,
654                                               std::vector<SDValue> &Ops,
655                                               SelectionDAG &DAG) const;
656
657     /// getRegForInlineAsmConstraint - Given a physical register constraint
658     /// (e.g. {edx}), return the register number and the register class for the
659     /// register.  This should only be used for C_Register constraints.  On
660     /// error, this returns a register number of 0.
661     std::pair<unsigned, const TargetRegisterClass*>
662       getRegForInlineAsmConstraint(const std::string &Constraint,
663                                    MVT VT) const;
664
665     /// isLegalAddressingMode - Return true if the addressing mode represented
666     /// by AM is legal for this target, for a load/store of the specified type.
667     virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
668
669     /// isLegalICmpImmediate - Return true if the specified immediate is legal
670     /// icmp immediate, that is the target has icmp instructions which can
671     /// compare a register against the immediate without having to materialize
672     /// the immediate into a register.
673     virtual bool isLegalICmpImmediate(int64_t Imm) const;
674
675     /// isLegalAddImmediate - Return true if the specified immediate is legal
676     /// add immediate, that is the target has add instructions which can
677     /// add a register and the immediate without having to materialize
678     /// the immediate into a register.
679     virtual bool isLegalAddImmediate(int64_t Imm) const;
680
681     /// isTruncateFree - Return true if it's free to truncate a value of
682     /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
683     /// register EAX to i16 by referencing its sub-register AX.
684     virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
685     virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
686
687     virtual bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const;
688
689     /// isZExtFree - Return true if any actual instruction that defines a
690     /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
691     /// register. This does not necessarily include registers defined in
692     /// unknown ways, such as incoming arguments, or copies from unknown
693     /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
694     /// does not necessarily apply to truncate instructions. e.g. on x86-64,
695     /// all instructions that define 32-bit values implicit zero-extend the
696     /// result out to 64 bits.
697     virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
698     virtual bool isZExtFree(EVT VT1, EVT VT2) const;
699     virtual bool isZExtFree(SDValue Val, EVT VT2) const;
700
701     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
702     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
703     /// expanded to FMAs when this method returns true, otherwise fmuladd is
704     /// expanded to fmul + fadd.
705     virtual bool isFMAFasterThanFMulAndFAdd(EVT VT) const;
706
707     /// isNarrowingProfitable - Return true if it's profitable to narrow
708     /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
709     /// from i32 to i8 but not from i32 to i16.
710     virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
711
712     /// isFPImmLegal - Returns true if the target can instruction select the
713     /// specified FP immediate natively. If false, the legalizer will
714     /// materialize the FP immediate as a load from a constant pool.
715     virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
716
717     /// isShuffleMaskLegal - Targets can use this to indicate that they only
718     /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
719     /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
720     /// values are assumed to be legal.
721     virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
722                                     EVT VT) const;
723
724     /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
725     /// used by Targets can use this to indicate if there is a suitable
726     /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
727     /// pool entry.
728     virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
729                                         EVT VT) const;
730
731     /// ShouldShrinkFPConstant - If true, then instruction selection should
732     /// seek to shrink the FP constant of the specified type to a smaller type
733     /// in order to save space and / or reduce runtime.
734     virtual bool ShouldShrinkFPConstant(EVT VT) const {
735       // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
736       // expensive than a straight movsd. On the other hand, it's important to
737       // shrink long double fp constant since fldt is very slow.
738       return !X86ScalarSSEf64 || VT == MVT::f80;
739     }
740
741     const X86Subtarget* getSubtarget() const {
742       return Subtarget;
743     }
744
745     /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
746     /// computed in an SSE register, not on the X87 floating point stack.
747     bool isScalarFPTypeInSSEReg(EVT VT) const {
748       return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
749       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
750     }
751
752     /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
753     /// for fptoui.
754     bool isTargetFTOL() const {
755       return Subtarget->isTargetWindows() && !Subtarget->is64Bit();
756     }
757
758     /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
759     /// used for fptoui to the given type.
760     bool isIntegerTypeFTOL(EVT VT) const {
761       return isTargetFTOL() && VT == MVT::i64;
762     }
763
764     /// createFastISel - This method returns a target specific FastISel object,
765     /// or null if the target does not support "fast" ISel.
766     virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
767                                      const TargetLibraryInfo *libInfo) const;
768
769     /// getStackCookieLocation - Return true if the target stores stack
770     /// protector cookies at a fixed offset in some non-standard address
771     /// space, and populates the address space and offset as
772     /// appropriate.
773     virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
774
775     SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
776                       SelectionDAG &DAG) const;
777
778     virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const LLVM_OVERRIDE;
779
780     /// \brief Reset the operation actions based on target options.
781     virtual void resetOperationActions();
782
783   protected:
784     std::pair<const TargetRegisterClass*, uint8_t>
785     findRepresentativeClass(MVT VT) const;
786
787   private:
788     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
789     /// make the right decision when generating code for different targets.
790     const X86Subtarget *Subtarget;
791     const DataLayout *TD;
792
793     /// Used to store the TargetOptions so that we don't waste time resetting
794     /// the operation actions unless we have to.
795     TargetOptions TO;
796
797     /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
798     /// floating point ops.
799     /// When SSE is available, use it for f32 operations.
800     /// When SSE2 is available, use it for f64 operations.
801     bool X86ScalarSSEf32;
802     bool X86ScalarSSEf64;
803
804     /// LegalFPImmediates - A list of legal fp immediates.
805     std::vector<APFloat> LegalFPImmediates;
806
807     /// addLegalFPImmediate - Indicate that this x86 target can instruction
808     /// select the specified FP immediate natively.
809     void addLegalFPImmediate(const APFloat& Imm) {
810       LegalFPImmediates.push_back(Imm);
811     }
812
813     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
814                             CallingConv::ID CallConv, bool isVarArg,
815                             const SmallVectorImpl<ISD::InputArg> &Ins,
816                             SDLoc dl, SelectionDAG &DAG,
817                             SmallVectorImpl<SDValue> &InVals) const;
818     SDValue LowerMemArgument(SDValue Chain,
819                              CallingConv::ID CallConv,
820                              const SmallVectorImpl<ISD::InputArg> &ArgInfo,
821                              SDLoc dl, SelectionDAG &DAG,
822                              const CCValAssign &VA,  MachineFrameInfo *MFI,
823                               unsigned i) const;
824     SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
825                              SDLoc dl, SelectionDAG &DAG,
826                              const CCValAssign &VA,
827                              ISD::ArgFlagsTy Flags) const;
828
829     // Call lowering helpers.
830
831     /// IsEligibleForTailCallOptimization - Check whether the call is eligible
832     /// for tail call optimization. Targets which want to do tail call
833     /// optimization should implement this function.
834     bool IsEligibleForTailCallOptimization(SDValue Callee,
835                                            CallingConv::ID CalleeCC,
836                                            bool isVarArg,
837                                            bool isCalleeStructRet,
838                                            bool isCallerStructRet,
839                                            Type *RetTy,
840                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
841                                     const SmallVectorImpl<SDValue> &OutVals,
842                                     const SmallVectorImpl<ISD::InputArg> &Ins,
843                                            SelectionDAG& DAG) const;
844     bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
845     SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
846                                 SDValue Chain, bool IsTailCall, bool Is64Bit,
847                                 int FPDiff, SDLoc dl) const;
848
849     unsigned GetAlignedArgumentStackSize(unsigned StackSize,
850                                          SelectionDAG &DAG) const;
851
852     std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
853                                                bool isSigned,
854                                                bool isReplace) const;
855
856     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
857     SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
858     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
859     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
860     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
861     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
862     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
863     SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
864                                int64_t Offset, SelectionDAG &DAG) const;
865     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
866     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
867     SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
868     SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
869     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
870     SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
871     SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
872     SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
873     SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
874     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
875     SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
876     SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
877     SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
878     SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
879     SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
880     SDValue LowerToBT(SDValue And, ISD::CondCode CC,
881                       SDLoc dl, SelectionDAG &DAG) const;
882     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
883     SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
884     SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
885     SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
886     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
887     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
888     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
889     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
890     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
891     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
892     SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
893     SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
894     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
895     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
896     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
897     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
898     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
899
900     virtual SDValue
901       LowerFormalArguments(SDValue Chain,
902                            CallingConv::ID CallConv, bool isVarArg,
903                            const SmallVectorImpl<ISD::InputArg> &Ins,
904                            SDLoc dl, SelectionDAG &DAG,
905                            SmallVectorImpl<SDValue> &InVals) const;
906     virtual SDValue
907       LowerCall(CallLoweringInfo &CLI,
908                 SmallVectorImpl<SDValue> &InVals) const;
909
910     virtual SDValue
911       LowerReturn(SDValue Chain,
912                   CallingConv::ID CallConv, bool isVarArg,
913                   const SmallVectorImpl<ISD::OutputArg> &Outs,
914                   const SmallVectorImpl<SDValue> &OutVals,
915                   SDLoc dl, SelectionDAG &DAG) const;
916
917     virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const;
918
919     virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
920
921     virtual MVT
922     getTypeForExtArgOrReturn(MVT VT, ISD::NodeType ExtendKind) const;
923
924     virtual bool
925     CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
926                    bool isVarArg,
927                    const SmallVectorImpl<ISD::OutputArg> &Outs,
928                    LLVMContext &Context) const;
929
930     virtual const uint16_t *getScratchRegisters(CallingConv::ID CC) const;
931
932     /// Utility function to emit atomic-load-arith operations (and, or, xor,
933     /// nand, max, min, umax, umin). It takes the corresponding instruction to
934     /// expand, the associated machine basic block, and the associated X86
935     /// opcodes for reg/reg.
936     MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
937                                            MachineBasicBlock *MBB) const;
938
939     /// Utility function to emit atomic-load-arith operations (and, or, xor,
940     /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
941     MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
942                                                MachineBasicBlock *MBB) const;
943
944     // Utility function to emit the low-level va_arg code for X86-64.
945     MachineBasicBlock *EmitVAARG64WithCustomInserter(
946                        MachineInstr *MI,
947                        MachineBasicBlock *MBB) const;
948
949     /// Utility function to emit the xmm reg save portion of va_start.
950     MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
951                                                    MachineInstr *BInstr,
952                                                    MachineBasicBlock *BB) const;
953
954     MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
955                                          MachineBasicBlock *BB) const;
956
957     MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
958                                               MachineBasicBlock *BB) const;
959
960     MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
961                                             MachineBasicBlock *BB,
962                                             bool Is64Bit) const;
963
964     MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
965                                           MachineBasicBlock *BB) const;
966
967     MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
968                                           MachineBasicBlock *BB) const;
969
970     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
971                                         MachineBasicBlock *MBB) const;
972
973     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
974                                          MachineBasicBlock *MBB) const;
975
976     /// Emit nodes that will be selected as "test Op0,Op0", or something
977     /// equivalent, for use with the given x86 condition code.
978     SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
979
980     /// Emit nodes that will be selected as "cmp Op0,Op1", or something
981     /// equivalent, for use with the given x86 condition code.
982     SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
983                     SelectionDAG &DAG) const;
984
985     /// Convert a comparison if required by the subtarget.
986     SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
987   };
988
989   namespace X86 {
990     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
991                              const TargetLibraryInfo *libInfo);
992   }
993 }
994
995 #endif    // X86ISELLOWERING_H