Merging r257730:
[oota-llvm.git] / lib / Target / X86 / X86FrameLowering.cpp
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86FrameLowering.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/Support/Debug.h"
34 #include <cstdlib>
35
36 using namespace llvm;
37
38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
39                                    unsigned StackAlignOverride)
40     : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
41                           STI.is64Bit() ? -8 : -4),
42       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
43   // Cache a bunch of frame-related predicates for this subtarget.
44   SlotSize = TRI->getSlotSize();
45   Is64Bit = STI.is64Bit();
46   IsLP64 = STI.isTarget64BitLP64();
47   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
48   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
49   StackPtr = TRI->getStackRegister();
50 }
51
52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
53   return !MF.getFrameInfo()->hasVarSizedObjects() &&
54          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
55 }
56
57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
58 /// call frame pseudos can be simplified.  Having a FP, as in the default
59 /// implementation, is not sufficient here since we can't always use it.
60 /// Use a more nuanced condition.
61 bool
62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
63   return hasReservedCallFrame(MF) ||
64          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
65          TRI->hasBasePointer(MF);
66 }
67
68 // needsFrameIndexResolution - Do we need to perform FI resolution for
69 // this function. Normally, this is required only when the function
70 // has any stack objects. However, FI resolution actually has another job,
71 // not apparent from the title - it resolves callframesetup/destroy 
72 // that were not simplified earlier.
73 // So, this is required for x86 functions that have push sequences even
74 // when there are no stack objects.
75 bool
76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
77   return MF.getFrameInfo()->hasStackObjects() ||
78          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
79 }
80
81 /// hasFP - Return true if the specified function should have a dedicated frame
82 /// pointer register.  This is true if the function has variable sized allocas
83 /// or if frame pointer elimination is disabled.
84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
85   const MachineFrameInfo *MFI = MF.getFrameInfo();
86   const MachineModuleInfo &MMI = MF.getMMI();
87
88   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
89           TRI->needsStackRealignment(MF) ||
90           MFI->hasVarSizedObjects() ||
91           MFI->isFrameAddressTaken() || MFI->hasOpaqueSPAdjustment() ||
92           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
93           MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() ||
94           MFI->hasStackMap() || MFI->hasPatchPoint() ||
95           MFI->hasCopyImplyingStackAdjustment());
96 }
97
98 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
99   if (IsLP64) {
100     if (isInt<8>(Imm))
101       return X86::SUB64ri8;
102     return X86::SUB64ri32;
103   } else {
104     if (isInt<8>(Imm))
105       return X86::SUB32ri8;
106     return X86::SUB32ri;
107   }
108 }
109
110 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
111   if (IsLP64) {
112     if (isInt<8>(Imm))
113       return X86::ADD64ri8;
114     return X86::ADD64ri32;
115   } else {
116     if (isInt<8>(Imm))
117       return X86::ADD32ri8;
118     return X86::ADD32ri;
119   }
120 }
121
122 static unsigned getSUBrrOpcode(unsigned isLP64) {
123   return isLP64 ? X86::SUB64rr : X86::SUB32rr;
124 }
125
126 static unsigned getADDrrOpcode(unsigned isLP64) {
127   return isLP64 ? X86::ADD64rr : X86::ADD32rr;
128 }
129
130 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
131   if (IsLP64) {
132     if (isInt<8>(Imm))
133       return X86::AND64ri8;
134     return X86::AND64ri32;
135   }
136   if (isInt<8>(Imm))
137     return X86::AND32ri8;
138   return X86::AND32ri;
139 }
140
141 static unsigned getLEArOpcode(unsigned IsLP64) {
142   return IsLP64 ? X86::LEA64r : X86::LEA32r;
143 }
144
145 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
146 /// when it reaches the "return" instruction. We can then pop a stack object
147 /// to this register without worry about clobbering it.
148 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
149                                        MachineBasicBlock::iterator &MBBI,
150                                        const X86RegisterInfo *TRI,
151                                        bool Is64Bit) {
152   const MachineFunction *MF = MBB.getParent();
153   const Function *F = MF->getFunction();
154   if (!F || MF->getMMI().callsEHReturn())
155     return 0;
156
157   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
158
159   unsigned Opc = MBBI->getOpcode();
160   switch (Opc) {
161   default: return 0;
162   case X86::RETL:
163   case X86::RETQ:
164   case X86::RETIL:
165   case X86::RETIQ:
166   case X86::TCRETURNdi:
167   case X86::TCRETURNri:
168   case X86::TCRETURNmi:
169   case X86::TCRETURNdi64:
170   case X86::TCRETURNri64:
171   case X86::TCRETURNmi64:
172   case X86::EH_RETURN:
173   case X86::EH_RETURN64: {
174     SmallSet<uint16_t, 8> Uses;
175     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
176       MachineOperand &MO = MBBI->getOperand(i);
177       if (!MO.isReg() || MO.isDef())
178         continue;
179       unsigned Reg = MO.getReg();
180       if (!Reg)
181         continue;
182       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
183         Uses.insert(*AI);
184     }
185
186     for (auto CS : AvailableRegs)
187       if (!Uses.count(CS) && CS != X86::RIP)
188         return CS;
189   }
190   }
191
192   return 0;
193 }
194
195 static bool isEAXLiveIn(MachineFunction &MF) {
196   for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
197        EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
198     unsigned Reg = II->first;
199
200     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
201         Reg == X86::AH || Reg == X86::AL)
202       return true;
203   }
204
205   return false;
206 }
207
208 /// Check if the flags need to be preserved before the terminators.
209 /// This would be the case, if the eflags is live-in of the region
210 /// composed by the terminators or live-out of that region, without
211 /// being defined by a terminator.
212 static bool
213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
214   for (const MachineInstr &MI : MBB.terminators()) {
215     bool BreakNext = false;
216     for (const MachineOperand &MO : MI.operands()) {
217       if (!MO.isReg())
218         continue;
219       unsigned Reg = MO.getReg();
220       if (Reg != X86::EFLAGS)
221         continue;
222
223       // This terminator needs an eflags that is not defined
224       // by a previous another terminator:
225       // EFLAGS is live-in of the region composed by the terminators.
226       if (!MO.isDef())
227         return true;
228       // This terminator defines the eflags, i.e., we don't need to preserve it.
229       // However, we still need to check this specific terminator does not
230       // read a live-in value.
231       BreakNext = true;
232     }
233     // We found a definition of the eflags, no need to preserve them.
234     if (BreakNext)
235       return false;
236   }
237
238   // None of the terminators use or define the eflags.
239   // Check if they are live-out, that would imply we need to preserve them.
240   for (const MachineBasicBlock *Succ : MBB.successors())
241     if (Succ->isLiveIn(X86::EFLAGS))
242       return true;
243
244   return false;
245 }
246
247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
248 /// stack pointer by a constant value.
249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
250                                     MachineBasicBlock::iterator &MBBI,
251                                     int64_t NumBytes, bool InEpilogue) const {
252   bool isSub = NumBytes < 0;
253   uint64_t Offset = isSub ? -NumBytes : NumBytes;
254
255   uint64_t Chunk = (1LL << 31) - 1;
256   DebugLoc DL = MBB.findDebugLoc(MBBI);
257
258   while (Offset) {
259     if (Offset > Chunk) {
260       // Rather than emit a long series of instructions for large offsets,
261       // load the offset into a register and do one sub/add
262       unsigned Reg = 0;
263
264       if (isSub && !isEAXLiveIn(*MBB.getParent()))
265         Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
266       else
267         Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
268
269       if (Reg) {
270         unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
271         BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
272           .addImm(Offset);
273         Opc = isSub
274           ? getSUBrrOpcode(Is64Bit)
275           : getADDrrOpcode(Is64Bit);
276         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
277           .addReg(StackPtr)
278           .addReg(Reg);
279         MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
280         Offset = 0;
281         continue;
282       }
283     }
284
285     uint64_t ThisVal = std::min(Offset, Chunk);
286     if (ThisVal == (Is64Bit ? 8 : 4)) {
287       // Use push / pop instead.
288       unsigned Reg = isSub
289         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
290         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
291       if (Reg) {
292         unsigned Opc = isSub
293           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
294           : (Is64Bit ? X86::POP64r  : X86::POP32r);
295         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
296           .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
297         if (isSub)
298           MI->setFlag(MachineInstr::FrameSetup);
299         else
300           MI->setFlag(MachineInstr::FrameDestroy);
301         Offset -= ThisVal;
302         continue;
303       }
304     }
305
306     MachineInstrBuilder MI = BuildStackAdjustment(
307         MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue);
308     if (isSub)
309       MI.setMIFlag(MachineInstr::FrameSetup);
310     else
311       MI.setMIFlag(MachineInstr::FrameDestroy);
312
313     Offset -= ThisVal;
314   }
315 }
316
317 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
318     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL,
319     int64_t Offset, bool InEpilogue) const {
320   assert(Offset != 0 && "zero offset stack adjustment requested");
321
322   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
323   // is tricky.
324   bool UseLEA;
325   if (!InEpilogue) {
326     // Check if inserting the prologue at the beginning
327     // of MBB would require to use LEA operations.
328     // We need to use LEA operations if EFLAGS is live in, because
329     // it means an instruction will read it before it gets defined.
330     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
331   } else {
332     // If we can use LEA for SP but we shouldn't, check that none
333     // of the terminators uses the eflags. Otherwise we will insert
334     // a ADD that will redefine the eflags and break the condition.
335     // Alternatively, we could move the ADD, but this may not be possible
336     // and is an optimization anyway.
337     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
338     if (UseLEA && !STI.useLeaForSP())
339       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
340     // If that assert breaks, that means we do not do the right thing
341     // in canUseAsEpilogue.
342     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
343            "We shouldn't have allowed this insertion point");
344   }
345
346   MachineInstrBuilder MI;
347   if (UseLEA) {
348     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
349                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
350                               StackPtr),
351                       StackPtr, false, Offset);
352   } else {
353     bool IsSub = Offset < 0;
354     uint64_t AbsOffset = IsSub ? -Offset : Offset;
355     unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
356                          : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
357     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
358              .addReg(StackPtr)
359              .addImm(AbsOffset);
360     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
361   }
362   return MI;
363 }
364
365 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
366                                      MachineBasicBlock::iterator &MBBI,
367                                      bool doMergeWithPrevious) const {
368   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
369       (!doMergeWithPrevious && MBBI == MBB.end()))
370     return 0;
371
372   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
373   MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
374                                                        : std::next(MBBI);
375   unsigned Opc = PI->getOpcode();
376   int Offset = 0;
377
378   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
379        Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
380        Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
381       PI->getOperand(0).getReg() == StackPtr){
382     Offset += PI->getOperand(2).getImm();
383     MBB.erase(PI);
384     if (!doMergeWithPrevious) MBBI = NI;
385   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
386               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
387              PI->getOperand(0).getReg() == StackPtr) {
388     Offset -= PI->getOperand(2).getImm();
389     MBB.erase(PI);
390     if (!doMergeWithPrevious) MBBI = NI;
391   }
392
393   return Offset;
394 }
395
396 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
397                                 MachineBasicBlock::iterator MBBI, DebugLoc DL,
398                                 MCCFIInstruction CFIInst) const {
399   MachineFunction &MF = *MBB.getParent();
400   unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst);
401   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
402       .addCFIIndex(CFIIndex);
403 }
404
405 void
406 X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
407                                             MachineBasicBlock::iterator MBBI,
408                                             DebugLoc DL) const {
409   MachineFunction &MF = *MBB.getParent();
410   MachineFrameInfo *MFI = MF.getFrameInfo();
411   MachineModuleInfo &MMI = MF.getMMI();
412   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
413
414   // Add callee saved registers to move list.
415   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
416   if (CSI.empty()) return;
417
418   // Calculate offsets.
419   for (std::vector<CalleeSavedInfo>::const_iterator
420          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
421     int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
422     unsigned Reg = I->getReg();
423
424     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
425     BuildCFI(MBB, MBBI, DL,
426              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
427   }
428 }
429
430 MachineInstr *X86FrameLowering::emitStackProbe(MachineFunction &MF,
431                                                MachineBasicBlock &MBB,
432                                                MachineBasicBlock::iterator MBBI,
433                                                DebugLoc DL,
434                                                bool InProlog) const {
435   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
436   if (STI.isTargetWindowsCoreCLR()) {
437     if (InProlog) {
438       return emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
439     } else {
440       return emitStackProbeInline(MF, MBB, MBBI, DL, false);
441     }
442   } else {
443     return emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
444   }
445 }
446
447 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
448                                         MachineBasicBlock &PrologMBB) const {
449   const StringRef ChkStkStubSymbol = "__chkstk_stub";
450   MachineInstr *ChkStkStub = nullptr;
451
452   for (MachineInstr &MI : PrologMBB) {
453     if (MI.isCall() && MI.getOperand(0).isSymbol() &&
454         ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
455       ChkStkStub = &MI;
456       break;
457     }
458   }
459
460   if (ChkStkStub != nullptr) {
461     MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
462     assert(std::prev(MBBI).operator==(ChkStkStub) &&
463       "MBBI expected after __chkstk_stub.");
464     DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
465     emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
466     ChkStkStub->eraseFromParent();
467   }
468 }
469
470 MachineInstr *X86FrameLowering::emitStackProbeInline(
471   MachineFunction &MF, MachineBasicBlock &MBB,
472   MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
473   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
474   assert(STI.is64Bit() && "different expansion needed for 32 bit");
475   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
476   const TargetInstrInfo &TII = *STI.getInstrInfo();
477   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
478
479   // RAX contains the number of bytes of desired stack adjustment.
480   // The handling here assumes this value has already been updated so as to
481   // maintain stack alignment.
482   //
483   // We need to exit with RSP modified by this amount and execute suitable
484   // page touches to notify the OS that we're growing the stack responsibly.
485   // All stack probing must be done without modifying RSP.
486   //
487   // MBB:
488   //    SizeReg = RAX;
489   //    ZeroReg = 0
490   //    CopyReg = RSP
491   //    Flags, TestReg = CopyReg - SizeReg
492   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
493   //    LimitReg = gs magic thread env access
494   //    if FinalReg >= LimitReg goto ContinueMBB
495   // RoundBB:
496   //    RoundReg = page address of FinalReg
497   // LoopMBB:
498   //    LoopReg = PHI(LimitReg,ProbeReg)
499   //    ProbeReg = LoopReg - PageSize
500   //    [ProbeReg] = 0
501   //    if (ProbeReg > RoundReg) goto LoopMBB
502   // ContinueMBB:
503   //    RSP = RSP - RAX
504   //    [rest of original MBB]
505
506   // Set up the new basic blocks
507   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
508   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
509   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
510
511   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
512   MF.insert(MBBIter, RoundMBB);
513   MF.insert(MBBIter, LoopMBB);
514   MF.insert(MBBIter, ContinueMBB);
515
516   // Split MBB and move the tail portion down to ContinueMBB.
517   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
518   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
519   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
520
521   // Some useful constants
522   const int64_t ThreadEnvironmentStackLimit = 0x10;
523   const int64_t PageSize = 0x1000;
524   const int64_t PageMask = ~(PageSize - 1);
525
526   // Registers we need. For the normal case we use virtual
527   // registers. For the prolog expansion we use RAX, RCX and RDX.
528   MachineRegisterInfo &MRI = MF.getRegInfo();
529   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
530   const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
531                                     : MRI.createVirtualRegister(RegClass),
532                  ZeroReg = InProlog ? (unsigned)X86::RCX
533                                     : MRI.createVirtualRegister(RegClass),
534                  CopyReg = InProlog ? (unsigned)X86::RDX
535                                     : MRI.createVirtualRegister(RegClass),
536                  TestReg = InProlog ? (unsigned)X86::RDX
537                                     : MRI.createVirtualRegister(RegClass),
538                  FinalReg = InProlog ? (unsigned)X86::RDX
539                                      : MRI.createVirtualRegister(RegClass),
540                  RoundedReg = InProlog ? (unsigned)X86::RDX
541                                        : MRI.createVirtualRegister(RegClass),
542                  LimitReg = InProlog ? (unsigned)X86::RCX
543                                      : MRI.createVirtualRegister(RegClass),
544                  JoinReg = InProlog ? (unsigned)X86::RCX
545                                     : MRI.createVirtualRegister(RegClass),
546                  ProbeReg = InProlog ? (unsigned)X86::RCX
547                                      : MRI.createVirtualRegister(RegClass);
548
549   // SP-relative offsets where we can save RCX and RDX.
550   int64_t RCXShadowSlot = 0;
551   int64_t RDXShadowSlot = 0;
552
553   // If inlining in the prolog, save RCX and RDX.     
554   // Future optimization: don't save or restore if not live in.
555   if (InProlog) {
556     // Compute the offsets. We need to account for things already
557     // pushed onto the stack at this point: return address, frame
558     // pointer (if used), and callee saves.
559     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
560     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
561     const bool HasFP = hasFP(MF);
562     RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
563     RDXShadowSlot = RCXShadowSlot + 8;
564     // Emit the saves.
565     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
566                  RCXShadowSlot)
567         .addReg(X86::RCX);
568     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
569                  RDXShadowSlot)
570         .addReg(X86::RDX);
571   } else {
572     // Not in the prolog. Copy RAX to a virtual reg.
573     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
574   }
575
576   // Add code to MBB to check for overflow and set the new target stack pointer
577   // to zero if so.
578   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
579       .addReg(ZeroReg, RegState::Undef)
580       .addReg(ZeroReg, RegState::Undef);
581   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
582   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
583       .addReg(CopyReg)
584       .addReg(SizeReg);
585   BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
586       .addReg(TestReg)
587       .addReg(ZeroReg);
588
589   // FinalReg now holds final stack pointer value, or zero if
590   // allocation would overflow. Compare against the current stack
591   // limit from the thread environment block. Note this limit is the
592   // lowest touched page on the stack, not the point at which the OS
593   // will cause an overflow exception, so this is just an optimization
594   // to avoid unnecessarily touching pages that are below the current
595   // SP but already commited to the stack by the OS.
596   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
597       .addReg(0)
598       .addImm(1)
599       .addReg(0)
600       .addImm(ThreadEnvironmentStackLimit)
601       .addReg(X86::GS);
602   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
603   // Jump if the desired stack pointer is at or above the stack limit.
604   BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
605
606   // Add code to roundMBB to round the final stack pointer to a page boundary.
607   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
608       .addReg(FinalReg)
609       .addImm(PageMask);
610   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
611
612   // LimitReg now holds the current stack limit, RoundedReg page-rounded
613   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
614   // and probe until we reach RoundedReg.
615   if (!InProlog) {
616     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
617         .addReg(LimitReg)
618         .addMBB(RoundMBB)
619         .addReg(ProbeReg)
620         .addMBB(LoopMBB);
621   }
622
623   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
624                false, -PageSize);
625
626   // Probe by storing a byte onto the stack.
627   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
628       .addReg(ProbeReg)
629       .addImm(1)
630       .addReg(0)
631       .addImm(0)
632       .addReg(0)
633       .addImm(0);
634   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
635       .addReg(RoundedReg)
636       .addReg(ProbeReg);
637   BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
638
639   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
640
641   // If in prolog, restore RDX and RCX.
642   if (InProlog) {
643     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
644                          X86::RCX),
645                  X86::RSP, false, RCXShadowSlot);
646     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
647                          X86::RDX),
648                  X86::RSP, false, RDXShadowSlot);
649   }
650
651   // Now that the probing is done, add code to continueMBB to update
652   // the stack pointer for real.
653   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
654       .addReg(X86::RSP)
655       .addReg(SizeReg);
656
657   // Add the control flow edges we need.
658   MBB.addSuccessor(ContinueMBB);
659   MBB.addSuccessor(RoundMBB);
660   RoundMBB->addSuccessor(LoopMBB);
661   LoopMBB->addSuccessor(ContinueMBB);
662   LoopMBB->addSuccessor(LoopMBB);
663
664   // Mark all the instructions added to the prolog as frame setup.
665   if (InProlog) {
666     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
667       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
668     }
669     for (MachineInstr &MI : *RoundMBB) {
670       MI.setFlag(MachineInstr::FrameSetup);
671     }
672     for (MachineInstr &MI : *LoopMBB) {
673       MI.setFlag(MachineInstr::FrameSetup);
674     }
675     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
676          CMBBI != ContinueMBBI; ++CMBBI) {
677       CMBBI->setFlag(MachineInstr::FrameSetup);
678     }
679   }
680
681   // Possible TODO: physreg liveness for InProlog case.
682
683   return ContinueMBBI;
684 }
685
686 MachineInstr *X86FrameLowering::emitStackProbeCall(
687     MachineFunction &MF, MachineBasicBlock &MBB,
688     MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
689   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
690
691   unsigned CallOp;
692   if (Is64Bit)
693     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
694   else
695     CallOp = X86::CALLpcrel32;
696
697   const char *Symbol;
698   if (Is64Bit) {
699     if (STI.isTargetCygMing()) {
700       Symbol = "___chkstk_ms";
701     } else {
702       Symbol = "__chkstk";
703     }
704   } else if (STI.isTargetCygMing())
705     Symbol = "_alloca";
706   else
707     Symbol = "_chkstk";
708
709   MachineInstrBuilder CI;
710   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
711
712   // All current stack probes take AX and SP as input, clobber flags, and
713   // preserve all registers. x86_64 probes leave RSP unmodified.
714   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
715     // For the large code model, we have to call through a register. Use R11,
716     // as it is scratch in all supported calling conventions.
717     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
718         .addExternalSymbol(Symbol);
719     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
720   } else {
721     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
722   }
723
724   unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
725   unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
726   CI.addReg(AX, RegState::Implicit)
727       .addReg(SP, RegState::Implicit)
728       .addReg(AX, RegState::Define | RegState::Implicit)
729       .addReg(SP, RegState::Define | RegState::Implicit)
730       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
731
732   if (Is64Bit) {
733     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
734     // themselves. It also does not clobber %rax so we can reuse it when
735     // adjusting %rsp.
736     BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
737         .addReg(X86::RSP)
738         .addReg(X86::RAX);
739   }
740
741   if (InProlog) {
742     // Apply the frame setup flag to all inserted instrs.
743     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
744       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
745   }
746
747   return MBBI;
748 }
749
750 MachineInstr *X86FrameLowering::emitStackProbeInlineStub(
751     MachineFunction &MF, MachineBasicBlock &MBB,
752     MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
753
754   assert(InProlog && "ChkStkStub called outside prolog!");
755
756   BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
757       .addExternalSymbol("__chkstk_stub");
758
759   return MBBI;
760 }
761
762 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
763   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
764   // and might require smaller successive adjustments.
765   const uint64_t Win64MaxSEHOffset = 128;
766   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
767   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
768   return SEHFrameOffset & -16;
769 }
770
771 // If we're forcing a stack realignment we can't rely on just the frame
772 // info, we need to know the ABI stack alignment as well in case we
773 // have a call out.  Otherwise just make sure we have some alignment - we'll
774 // go with the minimum SlotSize.
775 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
776   const MachineFrameInfo *MFI = MF.getFrameInfo();
777   uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
778   unsigned StackAlign = getStackAlignment();
779   if (MF.getFunction()->hasFnAttribute("stackrealign")) {
780     if (MFI->hasCalls())
781       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
782     else if (MaxAlign < SlotSize)
783       MaxAlign = SlotSize;
784   }
785   return MaxAlign;
786 }
787
788 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
789                                           MachineBasicBlock::iterator MBBI,
790                                           DebugLoc DL, unsigned Reg,
791                                           uint64_t MaxAlign) const {
792   uint64_t Val = -MaxAlign;
793   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
794   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
795                          .addReg(Reg)
796                          .addImm(Val)
797                          .setMIFlag(MachineInstr::FrameSetup);
798
799   // The EFLAGS implicit def is dead.
800   MI->getOperand(3).setIsDead();
801 }
802
803 /// emitPrologue - Push callee-saved registers onto the stack, which
804 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
805 /// space for local variables. Also emit labels used by the exception handler to
806 /// generate the exception handling frames.
807
808 /*
809   Here's a gist of what gets emitted:
810
811   ; Establish frame pointer, if needed
812   [if needs FP]
813       push  %rbp
814       .cfi_def_cfa_offset 16
815       .cfi_offset %rbp, -16
816       .seh_pushreg %rpb
817       mov  %rsp, %rbp
818       .cfi_def_cfa_register %rbp
819
820   ; Spill general-purpose registers
821   [for all callee-saved GPRs]
822       pushq %<reg>
823       [if not needs FP]
824          .cfi_def_cfa_offset (offset from RETADDR)
825       .seh_pushreg %<reg>
826
827   ; If the required stack alignment > default stack alignment
828   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
829   ; of unknown size in the stack frame.
830   [if stack needs re-alignment]
831       and  $MASK, %rsp
832
833   ; Allocate space for locals
834   [if target is Windows and allocated space > 4096 bytes]
835       ; Windows needs special care for allocations larger
836       ; than one page.
837       mov $NNN, %rax
838       call ___chkstk_ms/___chkstk
839       sub  %rax, %rsp
840   [else]
841       sub  $NNN, %rsp
842
843   [if needs FP]
844       .seh_stackalloc (size of XMM spill slots)
845       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
846   [else]
847       .seh_stackalloc NNN
848
849   ; Spill XMMs
850   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
851   ; they may get spilled on any platform, if the current function
852   ; calls @llvm.eh.unwind.init
853   [if needs FP]
854       [for all callee-saved XMM registers]
855           movaps  %<xmm reg>, -MMM(%rbp)
856       [for all callee-saved XMM registers]
857           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
858               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
859   [else]
860       [for all callee-saved XMM registers]
861           movaps  %<xmm reg>, KKK(%rsp)
862       [for all callee-saved XMM registers]
863           .seh_savexmm %<xmm reg>, KKK
864
865   .seh_endprologue
866
867   [if needs base pointer]
868       mov  %rsp, %rbx
869       [if needs to restore base pointer]
870           mov %rsp, -MMM(%rbp)
871
872   ; Emit CFI info
873   [if needs FP]
874       [for all callee-saved registers]
875           .cfi_offset %<reg>, (offset from %rbp)
876   [else]
877        .cfi_def_cfa_offset (offset from RETADDR)
878       [for all callee-saved registers]
879           .cfi_offset %<reg>, (offset from %rsp)
880
881   Notes:
882   - .seh directives are emitted only for Windows 64 ABI
883   - .cfi directives are emitted for all other ABIs
884   - for 32-bit code, substitute %e?? registers for %r??
885 */
886
887 void X86FrameLowering::emitPrologue(MachineFunction &MF,
888                                     MachineBasicBlock &MBB) const {
889   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
890          "MF used frame lowering for wrong subtarget");
891   MachineBasicBlock::iterator MBBI = MBB.begin();
892   MachineFrameInfo *MFI = MF.getFrameInfo();
893   const Function *Fn = MF.getFunction();
894   MachineModuleInfo &MMI = MF.getMMI();
895   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
896   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
897   uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
898   bool IsFunclet = MBB.isEHFuncletEntry();
899   EHPersonality Personality = EHPersonality::Unknown;
900   if (Fn->hasPersonalityFn())
901     Personality = classifyEHPersonality(Fn->getPersonalityFn());
902   bool FnHasClrFunclet =
903       MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
904   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
905   bool HasFP = hasFP(MF);
906   bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv());
907   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
908   bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry();
909   bool NeedsDwarfCFI =
910       !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
911   unsigned FramePtr = TRI->getFrameRegister(MF);
912   const unsigned MachineFramePtr =
913       STI.isTarget64BitILP32()
914           ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
915   unsigned BasePtr = TRI->getBaseRegister();
916   
917   // Debug location must be unknown since the first debug location is used
918   // to determine the end of the prologue.
919   DebugLoc DL;
920
921   // Add RETADDR move area to callee saved frame size.
922   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
923   if (TailCallReturnAddrDelta && IsWin64Prologue)
924     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
925
926   if (TailCallReturnAddrDelta < 0)
927     X86FI->setCalleeSavedFrameSize(
928       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
929
930   bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
931
932   // The default stack probe size is 4096 if the function has no stackprobesize
933   // attribute.
934   unsigned StackProbeSize = 4096;
935   if (Fn->hasFnAttribute("stack-probe-size"))
936     Fn->getFnAttribute("stack-probe-size")
937         .getValueAsString()
938         .getAsInteger(0, StackProbeSize);
939
940   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
941   // function, and use up to 128 bytes of stack space, don't have a frame
942   // pointer, calls, or dynamic alloca then we do not need to adjust the
943   // stack pointer (we fit in the Red Zone). We also check that we don't
944   // push and pop from the stack.
945   if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) &&
946       !TRI->needsStackRealignment(MF) &&
947       !MFI->hasVarSizedObjects() &&             // No dynamic alloca.
948       !MFI->adjustsStack() &&                   // No calls.
949       !IsWin64CC &&                             // Win64 has no Red Zone
950       !MFI->hasCopyImplyingStackAdjustment() && // Don't push and pop.
951       !MF.shouldSplitStack()) {                 // Regular stack
952     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
953     if (HasFP) MinSize += SlotSize;
954     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
955     MFI->setStackSize(StackSize);
956   }
957
958   // Insert stack pointer adjustment for later moving of return addr.  Only
959   // applies to tail call optimized functions where the callee argument stack
960   // size is bigger than the callers.
961   if (TailCallReturnAddrDelta < 0) {
962     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
963                          /*InEpilogue=*/false)
964         .setMIFlag(MachineInstr::FrameSetup);
965   }
966
967   // Mapping for machine moves:
968   //
969   //   DST: VirtualFP AND
970   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
971   //        ELSE                        => DW_CFA_def_cfa
972   //
973   //   SRC: VirtualFP AND
974   //        DST: Register               => DW_CFA_def_cfa_register
975   //
976   //   ELSE
977   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
978   //        REG < 64                    => DW_CFA_offset + Reg
979   //        ELSE                        => DW_CFA_offset_extended
980
981   uint64_t NumBytes = 0;
982   int stackGrowth = -SlotSize;
983
984   // Find the funclet establisher parameter
985   unsigned Establisher = X86::NoRegister;
986   if (IsClrFunclet)
987     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
988   else if (IsFunclet)
989     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
990
991   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
992     // Immediately spill establisher into the home slot.
993     // The runtime cares about this.
994     // MOV64mr %rdx, 16(%rsp)
995     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
996     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
997         .addReg(Establisher)
998         .setMIFlag(MachineInstr::FrameSetup);
999     MBB.addLiveIn(Establisher);
1000   }
1001
1002   if (HasFP) {
1003     // Calculate required stack adjustment.
1004     uint64_t FrameSize = StackSize - SlotSize;
1005     // If required, include space for extra hidden slot for stashing base pointer.
1006     if (X86FI->getRestoreBasePointer())
1007       FrameSize += SlotSize;
1008
1009     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1010
1011     // Callee-saved registers are pushed on stack before the stack is realigned.
1012     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1013       NumBytes = RoundUpToAlignment(NumBytes, MaxAlign);
1014
1015     // Get the offset of the stack slot for the EBP register, which is
1016     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1017     // Update the frame offset adjustment.
1018     if (!IsFunclet)
1019       MFI->setOffsetAdjustment(-NumBytes);
1020     else
1021       assert(MFI->getOffsetAdjustment() == -(int)NumBytes &&
1022              "should calculate same local variable offset for funclets");
1023
1024     // Save EBP/RBP into the appropriate stack slot.
1025     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1026       .addReg(MachineFramePtr, RegState::Kill)
1027       .setMIFlag(MachineInstr::FrameSetup);
1028
1029     if (NeedsDwarfCFI) {
1030       // Mark the place where EBP/RBP was saved.
1031       // Define the current CFA rule to use the provided offset.
1032       assert(StackSize);
1033       BuildCFI(MBB, MBBI, DL,
1034                MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1035
1036       // Change the rule for the FramePtr to be an "offset" rule.
1037       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1038       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1039                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1040     }
1041
1042     if (NeedsWinCFI) {
1043       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1044           .addImm(FramePtr)
1045           .setMIFlag(MachineInstr::FrameSetup);
1046     }
1047
1048     if (!IsWin64Prologue && !IsFunclet) {
1049       // Update EBP with the new base value.
1050       BuildMI(MBB, MBBI, DL,
1051               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1052               FramePtr)
1053           .addReg(StackPtr)
1054           .setMIFlag(MachineInstr::FrameSetup);
1055
1056       if (NeedsDwarfCFI) {
1057         // Mark effective beginning of when frame pointer becomes valid.
1058         // Define the current CFA to use the EBP/RBP register.
1059         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1060         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1061                                     nullptr, DwarfFramePtr));
1062       }
1063     }
1064
1065     // Mark the FramePtr as live-in in every block. Don't do this again for
1066     // funclet prologues.
1067     if (!IsFunclet) {
1068       for (MachineBasicBlock &EveryMBB : MF)
1069         EveryMBB.addLiveIn(MachineFramePtr);
1070     }
1071   } else {
1072     assert(!IsFunclet && "funclets without FPs not yet implemented");
1073     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1074   }
1075
1076   // For EH funclets, only allocate enough space for outgoing calls. Save the
1077   // NumBytes value that we would've used for the parent frame.
1078   unsigned ParentFrameNumBytes = NumBytes;
1079   if (IsFunclet)
1080     NumBytes = getWinEHFuncletFrameSize(MF);
1081
1082   // Skip the callee-saved push instructions.
1083   bool PushedRegs = false;
1084   int StackOffset = 2 * stackGrowth;
1085
1086   while (MBBI != MBB.end() &&
1087          MBBI->getFlag(MachineInstr::FrameSetup) &&
1088          (MBBI->getOpcode() == X86::PUSH32r ||
1089           MBBI->getOpcode() == X86::PUSH64r)) {
1090     PushedRegs = true;
1091     unsigned Reg = MBBI->getOperand(0).getReg();
1092     ++MBBI;
1093
1094     if (!HasFP && NeedsDwarfCFI) {
1095       // Mark callee-saved push instruction.
1096       // Define the current CFA rule to use the provided offset.
1097       assert(StackSize);
1098       BuildCFI(MBB, MBBI, DL,
1099                MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1100       StackOffset += stackGrowth;
1101     }
1102
1103     if (NeedsWinCFI) {
1104       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
1105           MachineInstr::FrameSetup);
1106     }
1107   }
1108
1109   // Realign stack after we pushed callee-saved registers (so that we'll be
1110   // able to calculate their offsets from the frame pointer).
1111   // Don't do this for Win64, it needs to realign the stack after the prologue.
1112   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1113     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1114     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1115   }
1116
1117   // If there is an SUB32ri of ESP immediately before this instruction, merge
1118   // the two. This can be the case when tail call elimination is enabled and
1119   // the callee has more arguments then the caller.
1120   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1121
1122   // Adjust stack pointer: ESP -= numbytes.
1123
1124   // Windows and cygwin/mingw require a prologue helper routine when allocating
1125   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1126   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1127   // stack and adjust the stack pointer in one go.  The 64-bit version of
1128   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1129   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1130   // increments is necessary to ensure that the guard pages used by the OS
1131   // virtual memory manager are allocated in correct sequence.
1132   uint64_t AlignedNumBytes = NumBytes;
1133   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1134     AlignedNumBytes = RoundUpToAlignment(AlignedNumBytes, MaxAlign);
1135   if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1136     // Check whether EAX is livein for this function.
1137     bool isEAXAlive = isEAXLiveIn(MF);
1138
1139     if (isEAXAlive) {
1140       // Sanity check that EAX is not livein for this function.
1141       // It should not be, so throw an assert.
1142       assert(!Is64Bit && "EAX is livein in x64 case!");
1143
1144       // Save EAX
1145       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1146         .addReg(X86::EAX, RegState::Kill)
1147         .setMIFlag(MachineInstr::FrameSetup);
1148     }
1149
1150     if (Is64Bit) {
1151       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1152       // Function prologue is responsible for adjusting the stack pointer.
1153       if (isUInt<32>(NumBytes)) {
1154         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1155             .addImm(NumBytes)
1156             .setMIFlag(MachineInstr::FrameSetup);
1157       } else if (isInt<32>(NumBytes)) {
1158         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1159             .addImm(NumBytes)
1160             .setMIFlag(MachineInstr::FrameSetup);
1161       } else {
1162         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1163             .addImm(NumBytes)
1164             .setMIFlag(MachineInstr::FrameSetup);
1165       }
1166     } else {
1167       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1168       // We'll also use 4 already allocated bytes for EAX.
1169       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1170           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1171           .setMIFlag(MachineInstr::FrameSetup);
1172     }
1173
1174     // Call __chkstk, __chkstk_ms, or __alloca.
1175     emitStackProbe(MF, MBB, MBBI, DL, true);
1176
1177     if (isEAXAlive) {
1178       // Restore EAX
1179       MachineInstr *MI =
1180           addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1181                        StackPtr, false, NumBytes - 4);
1182       MI->setFlag(MachineInstr::FrameSetup);
1183       MBB.insert(MBBI, MI);
1184     }
1185   } else if (NumBytes) {
1186     emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false);
1187   }
1188
1189   if (NeedsWinCFI && NumBytes)
1190     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1191         .addImm(NumBytes)
1192         .setMIFlag(MachineInstr::FrameSetup);
1193
1194   int SEHFrameOffset = 0;
1195   unsigned SPOrEstablisher;
1196   if (IsFunclet) {
1197     if (IsClrFunclet) {
1198       // The establisher parameter passed to a CLR funclet is actually a pointer
1199       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1200       // to find the root function establisher frame by loading the PSPSym from
1201       // the intermediate frame.
1202       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1203       MachinePointerInfo NoInfo;
1204       MBB.addLiveIn(Establisher);
1205       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1206                    Establisher, false, PSPSlotOffset)
1207           .addMemOperand(MF.getMachineMemOperand(
1208               NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1209       ;
1210       // Save the root establisher back into the current funclet's (mostly
1211       // empty) frame, in case a sub-funclet or the GC needs it.
1212       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1213                    false, PSPSlotOffset)
1214           .addReg(Establisher)
1215           .addMemOperand(
1216               MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1217                                                   MachineMemOperand::MOVolatile,
1218                                       SlotSize, SlotSize));
1219     }
1220     SPOrEstablisher = Establisher;
1221   } else {
1222     SPOrEstablisher = StackPtr;
1223   }
1224
1225   if (IsWin64Prologue && HasFP) {
1226     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1227     // this calculation on the incoming establisher, which holds the value of
1228     // RSP from the parent frame at the end of the prologue.
1229     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1230     if (SEHFrameOffset)
1231       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1232                    SPOrEstablisher, false, SEHFrameOffset);
1233     else
1234       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1235           .addReg(SPOrEstablisher);
1236
1237     // If this is not a funclet, emit the CFI describing our frame pointer.
1238     if (NeedsWinCFI && !IsFunclet) {
1239       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1240           .addImm(FramePtr)
1241           .addImm(SEHFrameOffset)
1242           .setMIFlag(MachineInstr::FrameSetup);
1243       if (isAsynchronousEHPersonality(Personality))
1244         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1245     }
1246   } else if (IsFunclet && STI.is32Bit()) {
1247     // Reset EBP / ESI to something good for funclets.
1248     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1249     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1250     // into the registration node so that the runtime will restore it for us.
1251     if (!MBB.isCleanupFuncletEntry()) {
1252       assert(Personality == EHPersonality::MSVC_CXX);
1253       unsigned FrameReg;
1254       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1255       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1256       // ESP is the first field, so no extra displacement is needed.
1257       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1258                    false, EHRegOffset)
1259           .addReg(X86::ESP);
1260     }
1261   }
1262
1263   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1264     const MachineInstr *FrameInstr = &*MBBI;
1265     ++MBBI;
1266
1267     if (NeedsWinCFI) {
1268       int FI;
1269       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1270         if (X86::FR64RegClass.contains(Reg)) {
1271           unsigned IgnoredFrameReg;
1272           int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
1273           Offset += SEHFrameOffset;
1274
1275           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1276               .addImm(Reg)
1277               .addImm(Offset)
1278               .setMIFlag(MachineInstr::FrameSetup);
1279         }
1280       }
1281     }
1282   }
1283
1284   if (NeedsWinCFI)
1285     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1286         .setMIFlag(MachineInstr::FrameSetup);
1287
1288   if (FnHasClrFunclet && !IsFunclet) {
1289     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1290     // immediately after the prolog)  into the PSPSlot so that funclets
1291     // and the GC can recover it.
1292     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1293     auto PSPInfo = MachinePointerInfo::getFixedStack(
1294         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1295     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1296                  PSPSlotOffset)
1297         .addReg(StackPtr)
1298         .addMemOperand(MF.getMachineMemOperand(
1299             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1300             SlotSize, SlotSize));
1301   }
1302
1303   // Realign stack after we spilled callee-saved registers (so that we'll be
1304   // able to calculate their offsets from the frame pointer).
1305   // Win64 requires aligning the stack after the prologue.
1306   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1307     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1308     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1309   }
1310
1311   // We already dealt with stack realignment and funclets above.
1312   if (IsFunclet && STI.is32Bit())
1313     return;
1314
1315   // If we need a base pointer, set it up here. It's whatever the value
1316   // of the stack pointer is at this point. Any variable size objects
1317   // will be allocated after this, so we can still use the base pointer
1318   // to reference locals.
1319   if (TRI->hasBasePointer(MF)) {
1320     // Update the base pointer with the current stack pointer.
1321     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1322     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1323       .addReg(SPOrEstablisher)
1324       .setMIFlag(MachineInstr::FrameSetup);
1325     if (X86FI->getRestoreBasePointer()) {
1326       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1327       // dependence chain. Used by SjLj EH.
1328       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1329       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1330                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1331         .addReg(SPOrEstablisher)
1332         .setMIFlag(MachineInstr::FrameSetup);
1333     }
1334
1335     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1336       // Stash the value of the frame pointer relative to the base pointer for
1337       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1338       // it recovers the frame pointer from the base pointer rather than the
1339       // other way around.
1340       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1341       unsigned UsedReg;
1342       int Offset =
1343           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1344       assert(UsedReg == BasePtr);
1345       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1346           .addReg(FramePtr)
1347           .setMIFlag(MachineInstr::FrameSetup);
1348     }
1349   }
1350
1351   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1352     // Mark end of stack pointer adjustment.
1353     if (!HasFP && NumBytes) {
1354       // Define the current CFA rule to use the provided offset.
1355       assert(StackSize);
1356       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1357                                   nullptr, -StackSize + stackGrowth));
1358     }
1359
1360     // Emit DWARF info specifying the offsets of the callee-saved registers.
1361     if (PushedRegs)
1362       emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1363   }
1364 }
1365
1366 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1367     const MachineFunction &MF) const {
1368   // We can't use LEA instructions for adjusting the stack pointer if this is a
1369   // leaf function in the Win64 ABI.  Only ADD instructions may be used to
1370   // deallocate the stack.
1371   // This means that we can use LEA for SP in two situations:
1372   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1373   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1374   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1375 }
1376
1377 static bool isFuncletReturnInstr(MachineInstr *MI) {
1378   switch (MI->getOpcode()) {
1379   case X86::CATCHRET:
1380   case X86::CLEANUPRET:
1381     return true;
1382   default:
1383     return false;
1384   }
1385   llvm_unreachable("impossible");
1386 }
1387
1388 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1389 // stack. It holds a pointer to the bottom of the root function frame.  The
1390 // establisher frame pointer passed to a nested funclet may point to the
1391 // (mostly empty) frame of its parent funclet, but it will need to find
1392 // the frame of the root function to access locals.  To facilitate this,
1393 // every funclet copies the pointer to the bottom of the root function
1394 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1395 // same offset for the PSPSym in the root function frame that's used in the
1396 // funclets' frames allows each funclet to dynamically accept any ancestor
1397 // frame as its establisher argument (the runtime doesn't guarantee the
1398 // immediate parent for some reason lost to history), and also allows the GC,
1399 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1400 // frame with only a single offset reported for the entire method.
1401 unsigned
1402 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1403   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1404   // getFrameIndexReferenceFromSP has an out ref parameter for the stack
1405   // pointer register; pass a dummy that we ignore
1406   unsigned SPReg;
1407   int Offset = getFrameIndexReferenceFromSP(MF, Info.PSPSymFrameIdx, SPReg);
1408   assert(Offset >= 0);
1409   return static_cast<unsigned>(Offset);
1410 }
1411
1412 unsigned
1413 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1414   // This is the size of the pushed CSRs.
1415   unsigned CSSize =
1416       MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
1417   // This is the amount of stack a funclet needs to allocate.
1418   unsigned UsedSize;
1419   EHPersonality Personality =
1420       classifyEHPersonality(MF.getFunction()->getPersonalityFn());
1421   if (Personality == EHPersonality::CoreCLR) {
1422     // CLR funclets need to hold enough space to include the PSPSym, at the
1423     // same offset from the stack pointer (immediately after the prolog) as it
1424     // resides at in the main function.
1425     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1426   } else {
1427     // Other funclets just need enough stack for outgoing call arguments.
1428     UsedSize = MF.getFrameInfo()->getMaxCallFrameSize();
1429   }
1430   // RBP is not included in the callee saved register block. After pushing RBP,
1431   // everything is 16 byte aligned. Everything we allocate before an outgoing
1432   // call must also be 16 byte aligned.
1433   unsigned FrameSizeMinusRBP =
1434       RoundUpToAlignment(CSSize + UsedSize, getStackAlignment());
1435   // Subtract out the size of the callee saved registers. This is how much stack
1436   // each funclet will allocate.
1437   return FrameSizeMinusRBP - CSSize;
1438 }
1439
1440 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1441                                     MachineBasicBlock &MBB) const {
1442   const MachineFrameInfo *MFI = MF.getFrameInfo();
1443   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1444   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1445   DebugLoc DL;
1446   if (MBBI != MBB.end())
1447     DL = MBBI->getDebugLoc();
1448   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1449   const bool Is64BitILP32 = STI.isTarget64BitILP32();
1450   unsigned FramePtr = TRI->getFrameRegister(MF);
1451   unsigned MachineFramePtr =
1452       Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1453
1454   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1455   bool NeedsWinCFI =
1456       IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry();
1457   bool IsFunclet = isFuncletReturnInstr(MBBI);
1458   MachineBasicBlock *TargetMBB = nullptr;
1459
1460   // Get the number of bytes to allocate from the FrameInfo.
1461   uint64_t StackSize = MFI->getStackSize();
1462   uint64_t MaxAlign = calculateMaxStackAlign(MF);
1463   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1464   uint64_t NumBytes = 0;
1465
1466   if (MBBI->getOpcode() == X86::CATCHRET) {
1467     // SEH shouldn't use catchret.
1468     assert(!isAsynchronousEHPersonality(
1469                classifyEHPersonality(MF.getFunction()->getPersonalityFn())) &&
1470            "SEH should not use CATCHRET");
1471
1472     NumBytes = getWinEHFuncletFrameSize(MF);
1473     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1474     TargetMBB = MBBI->getOperand(0).getMBB();
1475
1476     // Pop EBP.
1477     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1478             MachineFramePtr)
1479         .setMIFlag(MachineInstr::FrameDestroy);
1480   } else if (MBBI->getOpcode() == X86::CLEANUPRET) {
1481     NumBytes = getWinEHFuncletFrameSize(MF);
1482     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1483     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1484             MachineFramePtr)
1485         .setMIFlag(MachineInstr::FrameDestroy);
1486   } else if (hasFP(MF)) {
1487     // Calculate required stack adjustment.
1488     uint64_t FrameSize = StackSize - SlotSize;
1489     NumBytes = FrameSize - CSSize;
1490
1491     // Callee-saved registers were pushed on stack before the stack was
1492     // realigned.
1493     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1494       NumBytes = RoundUpToAlignment(FrameSize, MaxAlign);
1495
1496     // Pop EBP.
1497     BuildMI(MBB, MBBI, DL,
1498             TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr)
1499         .setMIFlag(MachineInstr::FrameDestroy);
1500   } else {
1501     NumBytes = StackSize - CSSize;
1502   }
1503   uint64_t SEHStackAllocAmt = NumBytes;
1504
1505   // Skip the callee-saved pop instructions.
1506   while (MBBI != MBB.begin()) {
1507     MachineBasicBlock::iterator PI = std::prev(MBBI);
1508     unsigned Opc = PI->getOpcode();
1509
1510     if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1511         (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1512         Opc != X86::DBG_VALUE && !PI->isTerminator())
1513       break;
1514
1515     --MBBI;
1516   }
1517   MachineBasicBlock::iterator FirstCSPop = MBBI;
1518
1519   if (TargetMBB) {
1520     // Fill EAX/RAX with the address of the target block.
1521     unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX;
1522     if (STI.is64Bit()) {
1523       // LEA64r TargetMBB(%rip), %rax
1524       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg)
1525           .addReg(X86::RIP)
1526           .addImm(0)
1527           .addReg(0)
1528           .addMBB(TargetMBB)
1529           .addReg(0);
1530     } else {
1531       // MOV32ri $TargetMBB, %eax
1532       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg)
1533           .addMBB(TargetMBB);
1534     }
1535     // Record that we've taken the address of TargetMBB and no longer just
1536     // reference it in a terminator.
1537     TargetMBB->setHasAddressTaken();
1538   }
1539
1540   if (MBBI != MBB.end())
1541     DL = MBBI->getDebugLoc();
1542
1543   // If there is an ADD32ri or SUB32ri of ESP immediately before this
1544   // instruction, merge the two instructions.
1545   if (NumBytes || MFI->hasVarSizedObjects())
1546     NumBytes += mergeSPUpdates(MBB, MBBI, true);
1547
1548   // If dynamic alloca is used, then reset esp to point to the last callee-saved
1549   // slot before popping them off! Same applies for the case, when stack was
1550   // realigned. Don't do this if this was a funclet epilogue, since the funclets
1551   // will not do realignment or dynamic stack allocation.
1552   if ((TRI->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) &&
1553       !IsFunclet) {
1554     if (TRI->needsStackRealignment(MF))
1555       MBBI = FirstCSPop;
1556     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1557     uint64_t LEAAmount =
1558         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1559
1560     // There are only two legal forms of epilogue:
1561     // - add SEHAllocationSize, %rsp
1562     // - lea SEHAllocationSize(%FramePtr), %rsp
1563     //
1564     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1565     // However, we may use this sequence if we have a frame pointer because the
1566     // effects of the prologue can safely be undone.
1567     if (LEAAmount != 0) {
1568       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1569       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1570                    FramePtr, false, LEAAmount);
1571       --MBBI;
1572     } else {
1573       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1574       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1575         .addReg(FramePtr);
1576       --MBBI;
1577     }
1578   } else if (NumBytes) {
1579     // Adjust stack pointer back: ESP += numbytes.
1580     emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true);
1581     --MBBI;
1582   }
1583
1584   // Windows unwinder will not invoke function's exception handler if IP is
1585   // either in prologue or in epilogue.  This behavior causes a problem when a
1586   // call immediately precedes an epilogue, because the return address points
1587   // into the epilogue.  To cope with that, we insert an epilogue marker here,
1588   // then replace it with a 'nop' if it ends up immediately after a CALL in the
1589   // final emitted code.
1590   if (NeedsWinCFI)
1591     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1592
1593   // Add the return addr area delta back since we are not tail calling.
1594   int Offset = -1 * X86FI->getTCReturnAddrDelta();
1595   assert(Offset >= 0 && "TCDelta should never be positive");
1596   if (Offset) {
1597     MBBI = MBB.getFirstTerminator();
1598
1599     // Check for possible merge with preceding ADD instruction.
1600     Offset += mergeSPUpdates(MBB, MBBI, true);
1601     emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
1602   }
1603 }
1604
1605 // NOTE: this only has a subset of the full frame index logic. In
1606 // particular, the FI < 0 and AfterFPPop logic is handled in
1607 // X86RegisterInfo::eliminateFrameIndex, but not here. Possibly
1608 // (probably?) it should be moved into here.
1609 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1610                                              unsigned &FrameReg) const {
1611   const MachineFrameInfo *MFI = MF.getFrameInfo();
1612
1613   // We can't calculate offset from frame pointer if the stack is realigned,
1614   // so enforce usage of stack/base pointer.  The base pointer is used when we
1615   // have dynamic allocas in addition to dynamic realignment.
1616   if (TRI->hasBasePointer(MF))
1617     FrameReg = TRI->getBaseRegister();
1618   else if (TRI->needsStackRealignment(MF))
1619     FrameReg = TRI->getStackRegister();
1620   else
1621     FrameReg = TRI->getFrameRegister(MF);
1622
1623   // Offset will hold the offset from the stack pointer at function entry to the
1624   // object.
1625   // We need to factor in additional offsets applied during the prologue to the
1626   // frame, base, and stack pointer depending on which is used.
1627   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1628   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1629   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1630   uint64_t StackSize = MFI->getStackSize();
1631   bool HasFP = hasFP(MF);
1632   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1633   int64_t FPDelta = 0;
1634
1635   if (IsWin64Prologue) {
1636     assert(!MFI->hasCalls() || (StackSize % 16) == 8);
1637
1638     // Calculate required stack adjustment.
1639     uint64_t FrameSize = StackSize - SlotSize;
1640     // If required, include space for extra hidden slot for stashing base pointer.
1641     if (X86FI->getRestoreBasePointer())
1642       FrameSize += SlotSize;
1643     uint64_t NumBytes = FrameSize - CSSize;
1644
1645     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1646     if (FI && FI == X86FI->getFAIndex())
1647       return -SEHFrameOffset;
1648
1649     // FPDelta is the offset from the "traditional" FP location of the old base
1650     // pointer followed by return address and the location required by the
1651     // restricted Win64 prologue.
1652     // Add FPDelta to all offsets below that go through the frame pointer.
1653     FPDelta = FrameSize - SEHFrameOffset;
1654     assert((!MFI->hasCalls() || (FPDelta % 16) == 0) &&
1655            "FPDelta isn't aligned per the Win64 ABI!");
1656   }
1657
1658
1659   if (TRI->hasBasePointer(MF)) {
1660     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1661     if (FI < 0) {
1662       // Skip the saved EBP.
1663       return Offset + SlotSize + FPDelta;
1664     } else {
1665       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1666       return Offset + StackSize;
1667     }
1668   } else if (TRI->needsStackRealignment(MF)) {
1669     if (FI < 0) {
1670       // Skip the saved EBP.
1671       return Offset + SlotSize + FPDelta;
1672     } else {
1673       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1674       return Offset + StackSize;
1675     }
1676     // FIXME: Support tail calls
1677   } else {
1678     if (!HasFP)
1679       return Offset + StackSize;
1680
1681     // Skip the saved EBP.
1682     Offset += SlotSize;
1683
1684     // Skip the RETADDR move area
1685     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1686     if (TailCallReturnAddrDelta < 0)
1687       Offset -= TailCallReturnAddrDelta;
1688   }
1689
1690   return Offset + FPDelta;
1691 }
1692
1693 // Simplified from getFrameIndexReference keeping only StackPointer cases
1694 int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF,
1695                                                    int FI,
1696                                                    unsigned &FrameReg) const {
1697   const MachineFrameInfo *MFI = MF.getFrameInfo();
1698   // Does not include any dynamic realign.
1699   const uint64_t StackSize = MFI->getStackSize();
1700   {
1701 #ifndef NDEBUG
1702     // LLVM arranges the stack as follows:
1703     //   ...
1704     //   ARG2
1705     //   ARG1
1706     //   RETADDR
1707     //   PUSH RBP   <-- RBP points here
1708     //   PUSH CSRs
1709     //   ~~~~~~~    <-- possible stack realignment (non-win64)
1710     //   ...
1711     //   STACK OBJECTS
1712     //   ...        <-- RSP after prologue points here
1713     //   ~~~~~~~    <-- possible stack realignment (win64)
1714     //
1715     // if (hasVarSizedObjects()):
1716     //   ...        <-- "base pointer" (ESI/RBX) points here
1717     //   DYNAMIC ALLOCAS
1718     //   ...        <-- RSP points here
1719     //
1720     // Case 1: In the simple case of no stack realignment and no dynamic
1721     // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1722     // with fixed offsets from RSP.
1723     //
1724     // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1725     // stack objects are addressed with RBP and regular stack objects with RSP.
1726     //
1727     // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1728     // to address stack arguments for outgoing calls and nothing else. The "base
1729     // pointer" points to local variables, and RBP points to fixed objects.
1730     //
1731     // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1732     // answer we give is relative to the SP after the prologue, and not the
1733     // SP in the middle of the function.
1734
1735     assert((!MFI->isFixedObjectIndex(FI) || !TRI->needsStackRealignment(MF) ||
1736             STI.isTargetWin64()) &&
1737            "offset from fixed object to SP is not static");
1738
1739     // We don't handle tail calls, and shouldn't be seeing them either.
1740     int TailCallReturnAddrDelta =
1741         MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta();
1742     assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!");
1743 #endif
1744   }
1745
1746   // Fill in FrameReg output argument.
1747   FrameReg = TRI->getStackRegister();
1748
1749   // This is how the math works out:
1750   //
1751   //  %rsp grows (i.e. gets lower) left to right. Each box below is
1752   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
1753   //  get to.
1754   //
1755   //    ----------------------------------
1756   //    | BP | Obj0 | Obj1 | ... | ObjN |
1757   //    ----------------------------------
1758   //    ^    ^      ^                   ^
1759   //    A    B      C                   E
1760   //
1761   // A is the incoming stack pointer.
1762   // (B - A) is the local area offset (-8 for x86-64) [1]
1763   // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
1764   //
1765   // |(E - B)| is the StackSize (absolute value, positive).  For a
1766   // stack that grown down, this works out to be (B - E). [3]
1767   //
1768   // E is also the value of %rsp after stack has been set up, and we
1769   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
1770   // (C - E) == (C - A) - (B - A) + (B - E)
1771   //            { Using [1], [2] and [3] above }
1772   //         == getObjectOffset - LocalAreaOffset + StackSize
1773   //
1774
1775   // Get the Offset from the StackPointer
1776   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1777
1778   return Offset + StackSize;
1779 }
1780
1781 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1782     MachineFunction &MF, const TargetRegisterInfo *TRI,
1783     std::vector<CalleeSavedInfo> &CSI) const {
1784   MachineFrameInfo *MFI = MF.getFrameInfo();
1785   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1786
1787   unsigned CalleeSavedFrameSize = 0;
1788   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1789
1790   if (hasFP(MF)) {
1791     // emitPrologue always spills frame register the first thing.
1792     SpillSlotOffset -= SlotSize;
1793     MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1794
1795     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
1796     // the frame register, we can delete it from CSI list and not have to worry
1797     // about avoiding it later.
1798     unsigned FPReg = TRI->getFrameRegister(MF);
1799     for (unsigned i = 0; i < CSI.size(); ++i) {
1800       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
1801         CSI.erase(CSI.begin() + i);
1802         break;
1803       }
1804     }
1805   }
1806
1807   // Assign slots for GPRs. It increases frame size.
1808   for (unsigned i = CSI.size(); i != 0; --i) {
1809     unsigned Reg = CSI[i - 1].getReg();
1810
1811     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1812       continue;
1813
1814     SpillSlotOffset -= SlotSize;
1815     CalleeSavedFrameSize += SlotSize;
1816
1817     int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1818     CSI[i - 1].setFrameIdx(SlotIndex);
1819   }
1820
1821   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
1822
1823   // Assign slots for XMMs.
1824   for (unsigned i = CSI.size(); i != 0; --i) {
1825     unsigned Reg = CSI[i - 1].getReg();
1826     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1827       continue;
1828
1829     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1830     // ensure alignment
1831     SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
1832     // spill into slot
1833     SpillSlotOffset -= RC->getSize();
1834     int SlotIndex =
1835         MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
1836     CSI[i - 1].setFrameIdx(SlotIndex);
1837     MFI->ensureMaxAlignment(RC->getAlignment());
1838   }
1839
1840   return true;
1841 }
1842
1843 bool X86FrameLowering::spillCalleeSavedRegisters(
1844     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1845     const std::vector<CalleeSavedInfo> &CSI,
1846     const TargetRegisterInfo *TRI) const {
1847   DebugLoc DL = MBB.findDebugLoc(MI);
1848
1849   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
1850   // for us, and there are no XMM CSRs on Win32.
1851   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
1852     return true;
1853
1854   // Push GPRs. It increases frame size.
1855   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1856   for (unsigned i = CSI.size(); i != 0; --i) {
1857     unsigned Reg = CSI[i - 1].getReg();
1858
1859     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1860       continue;
1861     // Add the callee-saved register as live-in. It's killed at the spill.
1862     MBB.addLiveIn(Reg);
1863
1864     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
1865       .setMIFlag(MachineInstr::FrameSetup);
1866   }
1867
1868   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1869   // It can be done by spilling XMMs to stack frame.
1870   for (unsigned i = CSI.size(); i != 0; --i) {
1871     unsigned Reg = CSI[i-1].getReg();
1872     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1873       continue;
1874     // Add the callee-saved register as live-in. It's killed at the spill.
1875     MBB.addLiveIn(Reg);
1876     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1877
1878     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
1879                             TRI);
1880     --MI;
1881     MI->setFlag(MachineInstr::FrameSetup);
1882     ++MI;
1883   }
1884
1885   return true;
1886 }
1887
1888 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1889                                                MachineBasicBlock::iterator MI,
1890                                         const std::vector<CalleeSavedInfo> &CSI,
1891                                           const TargetRegisterInfo *TRI) const {
1892   if (CSI.empty())
1893     return false;
1894
1895   if (isFuncletReturnInstr(MI) && STI.isOSWindows()) {
1896     // Don't restore CSRs in 32-bit EH funclets. Matches
1897     // spillCalleeSavedRegisters.
1898     if (STI.is32Bit())
1899       return true;
1900     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
1901     // funclets. emitEpilogue transforms these to normal jumps.
1902     if (MI->getOpcode() == X86::CATCHRET) {
1903       const Function *Func = MBB.getParent()->getFunction();
1904       bool IsSEH = isAsynchronousEHPersonality(
1905           classifyEHPersonality(Func->getPersonalityFn()));
1906       if (IsSEH)
1907         return true;
1908     }
1909   }
1910
1911   DebugLoc DL = MBB.findDebugLoc(MI);
1912
1913   // Reload XMMs from stack frame.
1914   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1915     unsigned Reg = CSI[i].getReg();
1916     if (X86::GR64RegClass.contains(Reg) ||
1917         X86::GR32RegClass.contains(Reg))
1918       continue;
1919
1920     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1921     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
1922   }
1923
1924   // POP GPRs.
1925   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
1926   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1927     unsigned Reg = CSI[i].getReg();
1928     if (!X86::GR64RegClass.contains(Reg) &&
1929         !X86::GR32RegClass.contains(Reg))
1930       continue;
1931
1932     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
1933         .setMIFlag(MachineInstr::FrameDestroy);
1934   }
1935   return true;
1936 }
1937
1938 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
1939                                             BitVector &SavedRegs,
1940                                             RegScavenger *RS) const {
1941   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1942
1943   MachineFrameInfo *MFI = MF.getFrameInfo();
1944
1945   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1946   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1947
1948   if (TailCallReturnAddrDelta < 0) {
1949     // create RETURNADDR area
1950     //   arg
1951     //   arg
1952     //   RETADDR
1953     //   { ...
1954     //     RETADDR area
1955     //     ...
1956     //   }
1957     //   [EBP]
1958     MFI->CreateFixedObject(-TailCallReturnAddrDelta,
1959                            TailCallReturnAddrDelta - SlotSize, true);
1960   }
1961
1962   // Spill the BasePtr if it's used.
1963   if (TRI->hasBasePointer(MF)) {
1964     SavedRegs.set(TRI->getBaseRegister());
1965
1966     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1967     if (MF.getMMI().hasEHFunclets()) {
1968       int FI = MFI->CreateSpillStackObject(SlotSize, SlotSize);
1969       X86FI->setHasSEHFramePtrSave(true);
1970       X86FI->setSEHFramePtrSaveIndex(FI);
1971     }
1972   }
1973 }
1974
1975 static bool
1976 HasNestArgument(const MachineFunction *MF) {
1977   const Function *F = MF->getFunction();
1978   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1979        I != E; I++) {
1980     if (I->hasNestAttr())
1981       return true;
1982   }
1983   return false;
1984 }
1985
1986 /// GetScratchRegister - Get a temp register for performing work in the
1987 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
1988 /// and the properties of the function either one or two registers will be
1989 /// needed. Set primary to true for the first register, false for the second.
1990 static unsigned
1991 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
1992   CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
1993
1994   // Erlang stuff.
1995   if (CallingConvention == CallingConv::HiPE) {
1996     if (Is64Bit)
1997       return Primary ? X86::R14 : X86::R13;
1998     else
1999       return Primary ? X86::EBX : X86::EDI;
2000   }
2001
2002   if (Is64Bit) {
2003     if (IsLP64)
2004       return Primary ? X86::R11 : X86::R12;
2005     else
2006       return Primary ? X86::R11D : X86::R12D;
2007   }
2008
2009   bool IsNested = HasNestArgument(&MF);
2010
2011   if (CallingConvention == CallingConv::X86_FastCall ||
2012       CallingConvention == CallingConv::Fast) {
2013     if (IsNested)
2014       report_fatal_error("Segmented stacks does not support fastcall with "
2015                          "nested function.");
2016     return Primary ? X86::EAX : X86::ECX;
2017   }
2018   if (IsNested)
2019     return Primary ? X86::EDX : X86::EAX;
2020   return Primary ? X86::ECX : X86::EAX;
2021 }
2022
2023 // The stack limit in the TCB is set to this many bytes above the actual stack
2024 // limit.
2025 static const uint64_t kSplitStackAvailable = 256;
2026
2027 void X86FrameLowering::adjustForSegmentedStacks(
2028     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2029   MachineFrameInfo *MFI = MF.getFrameInfo();
2030   uint64_t StackSize;
2031   unsigned TlsReg, TlsOffset;
2032   DebugLoc DL;
2033
2034   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2035   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2036          "Scratch register is live-in");
2037
2038   if (MF.getFunction()->isVarArg())
2039     report_fatal_error("Segmented stacks do not support vararg functions.");
2040   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2041       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2042       !STI.isTargetDragonFly())
2043     report_fatal_error("Segmented stacks not supported on this platform.");
2044
2045   // Eventually StackSize will be calculated by a link-time pass; which will
2046   // also decide whether checking code needs to be injected into this particular
2047   // prologue.
2048   StackSize = MFI->getStackSize();
2049
2050   // Do not generate a prologue for functions with a stack of size zero
2051   if (StackSize == 0)
2052     return;
2053
2054   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2055   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2056   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2057   bool IsNested = false;
2058
2059   // We need to know if the function has a nest argument only in 64 bit mode.
2060   if (Is64Bit)
2061     IsNested = HasNestArgument(&MF);
2062
2063   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2064   // allocMBB needs to be last (terminating) instruction.
2065
2066   for (const auto &LI : PrologueMBB.liveins()) {
2067     allocMBB->addLiveIn(LI);
2068     checkMBB->addLiveIn(LI);
2069   }
2070
2071   if (IsNested)
2072     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2073
2074   MF.push_front(allocMBB);
2075   MF.push_front(checkMBB);
2076
2077   // When the frame size is less than 256 we just compare the stack
2078   // boundary directly to the value of the stack pointer, per gcc.
2079   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2080
2081   // Read the limit off the current stacklet off the stack_guard location.
2082   if (Is64Bit) {
2083     if (STI.isTargetLinux()) {
2084       TlsReg = X86::FS;
2085       TlsOffset = IsLP64 ? 0x70 : 0x40;
2086     } else if (STI.isTargetDarwin()) {
2087       TlsReg = X86::GS;
2088       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2089     } else if (STI.isTargetWin64()) {
2090       TlsReg = X86::GS;
2091       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2092     } else if (STI.isTargetFreeBSD()) {
2093       TlsReg = X86::FS;
2094       TlsOffset = 0x18;
2095     } else if (STI.isTargetDragonFly()) {
2096       TlsReg = X86::FS;
2097       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2098     } else {
2099       report_fatal_error("Segmented stacks not supported on this platform.");
2100     }
2101
2102     if (CompareStackPointer)
2103       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2104     else
2105       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2106         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2107
2108     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2109       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2110   } else {
2111     if (STI.isTargetLinux()) {
2112       TlsReg = X86::GS;
2113       TlsOffset = 0x30;
2114     } else if (STI.isTargetDarwin()) {
2115       TlsReg = X86::GS;
2116       TlsOffset = 0x48 + 90*4;
2117     } else if (STI.isTargetWin32()) {
2118       TlsReg = X86::FS;
2119       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2120     } else if (STI.isTargetDragonFly()) {
2121       TlsReg = X86::FS;
2122       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2123     } else if (STI.isTargetFreeBSD()) {
2124       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2125     } else {
2126       report_fatal_error("Segmented stacks not supported on this platform.");
2127     }
2128
2129     if (CompareStackPointer)
2130       ScratchReg = X86::ESP;
2131     else
2132       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2133         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2134
2135     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2136         STI.isTargetDragonFly()) {
2137       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2138         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2139     } else if (STI.isTargetDarwin()) {
2140
2141       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2142       unsigned ScratchReg2;
2143       bool SaveScratch2;
2144       if (CompareStackPointer) {
2145         // The primary scratch register is available for holding the TLS offset.
2146         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2147         SaveScratch2 = false;
2148       } else {
2149         // Need to use a second register to hold the TLS offset
2150         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2151
2152         // Unfortunately, with fastcc the second scratch register may hold an
2153         // argument.
2154         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2155       }
2156
2157       // If Scratch2 is live-in then it needs to be saved.
2158       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2159              "Scratch register is live-in and not saved");
2160
2161       if (SaveScratch2)
2162         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2163           .addReg(ScratchReg2, RegState::Kill);
2164
2165       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2166         .addImm(TlsOffset);
2167       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2168         .addReg(ScratchReg)
2169         .addReg(ScratchReg2).addImm(1).addReg(0)
2170         .addImm(0)
2171         .addReg(TlsReg);
2172
2173       if (SaveScratch2)
2174         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2175     }
2176   }
2177
2178   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2179   // It jumps to normal execution of the function body.
2180   BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
2181
2182   // On 32 bit we first push the arguments size and then the frame size. On 64
2183   // bit, we pass the stack frame size in r10 and the argument size in r11.
2184   if (Is64Bit) {
2185     // Functions with nested arguments use R10, so it needs to be saved across
2186     // the call to _morestack
2187
2188     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2189     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2190     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2191     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2192     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2193
2194     if (IsNested)
2195       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2196
2197     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2198       .addImm(StackSize);
2199     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2200       .addImm(X86FI->getArgumentStackSize());
2201   } else {
2202     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2203       .addImm(X86FI->getArgumentStackSize());
2204     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2205       .addImm(StackSize);
2206   }
2207
2208   // __morestack is in libgcc
2209   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2210     // Under the large code model, we cannot assume that __morestack lives
2211     // within 2^31 bytes of the call site, so we cannot use pc-relative
2212     // addressing. We cannot perform the call via a temporary register,
2213     // as the rax register may be used to store the static chain, and all
2214     // other suitable registers may be either callee-save or used for
2215     // parameter passing. We cannot use the stack at this point either
2216     // because __morestack manipulates the stack directly.
2217     //
2218     // To avoid these issues, perform an indirect call via a read-only memory
2219     // location containing the address.
2220     //
2221     // This solution is not perfect, as it assumes that the .rodata section
2222     // is laid out within 2^31 bytes of each function body, but this seems
2223     // to be sufficient for JIT.
2224     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2225         .addReg(X86::RIP)
2226         .addImm(0)
2227         .addReg(0)
2228         .addExternalSymbol("__morestack_addr")
2229         .addReg(0);
2230     MF.getMMI().setUsesMorestackAddr(true);
2231   } else {
2232     if (Is64Bit)
2233       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2234         .addExternalSymbol("__morestack");
2235     else
2236       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2237         .addExternalSymbol("__morestack");
2238   }
2239
2240   if (IsNested)
2241     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2242   else
2243     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2244
2245   allocMBB->addSuccessor(&PrologueMBB);
2246
2247   checkMBB->addSuccessor(allocMBB);
2248   checkMBB->addSuccessor(&PrologueMBB);
2249
2250 #ifdef XDEBUG
2251   MF.verify();
2252 #endif
2253 }
2254
2255 /// Erlang programs may need a special prologue to handle the stack size they
2256 /// might need at runtime. That is because Erlang/OTP does not implement a C
2257 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2258 /// (for more information see Eric Stenman's Ph.D. thesis:
2259 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2260 ///
2261 /// CheckStack:
2262 ///       temp0 = sp - MaxStack
2263 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2264 /// OldStart:
2265 ///       ...
2266 /// IncStack:
2267 ///       call inc_stack   # doubles the stack space
2268 ///       temp0 = sp - MaxStack
2269 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2270 void X86FrameLowering::adjustForHiPEPrologue(
2271     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2272   MachineFrameInfo *MFI = MF.getFrameInfo();
2273   DebugLoc DL;
2274   // HiPE-specific values
2275   const unsigned HipeLeafWords = 24;
2276   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2277   const unsigned Guaranteed = HipeLeafWords * SlotSize;
2278   unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
2279                             MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
2280   unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
2281
2282   assert(STI.isTargetLinux() &&
2283          "HiPE prologue is only supported on Linux operating systems.");
2284
2285   // Compute the largest caller's frame that is needed to fit the callees'
2286   // frames. This 'MaxStack' is computed from:
2287   //
2288   // a) the fixed frame size, which is the space needed for all spilled temps,
2289   // b) outgoing on-stack parameter areas, and
2290   // c) the minimum stack space this function needs to make available for the
2291   //    functions it calls (a tunable ABI property).
2292   if (MFI->hasCalls()) {
2293     unsigned MoreStackForCalls = 0;
2294
2295     for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
2296          MBBI != MBBE; ++MBBI)
2297       for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
2298            MI != ME; ++MI) {
2299         if (!MI->isCall())
2300           continue;
2301
2302         // Get callee operand.
2303         const MachineOperand &MO = MI->getOperand(0);
2304
2305         // Only take account of global function calls (no closures etc.).
2306         if (!MO.isGlobal())
2307           continue;
2308
2309         const Function *F = dyn_cast<Function>(MO.getGlobal());
2310         if (!F)
2311           continue;
2312
2313         // Do not update 'MaxStack' for primitive and built-in functions
2314         // (encoded with names either starting with "erlang."/"bif_" or not
2315         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2316         // "_", such as the BIF "suspend_0") as they are executed on another
2317         // stack.
2318         if (F->getName().find("erlang.") != StringRef::npos ||
2319             F->getName().find("bif_") != StringRef::npos ||
2320             F->getName().find_first_of("._") == StringRef::npos)
2321           continue;
2322
2323         unsigned CalleeStkArity =
2324           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2325         if (HipeLeafWords - 1 > CalleeStkArity)
2326           MoreStackForCalls = std::max(MoreStackForCalls,
2327                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2328       }
2329     MaxStack += MoreStackForCalls;
2330   }
2331
2332   // If the stack frame needed is larger than the guaranteed then runtime checks
2333   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2334   if (MaxStack > Guaranteed) {
2335     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2336     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2337
2338     for (const auto &LI : PrologueMBB.liveins()) {
2339       stackCheckMBB->addLiveIn(LI);
2340       incStackMBB->addLiveIn(LI);
2341     }
2342
2343     MF.push_front(incStackMBB);
2344     MF.push_front(stackCheckMBB);
2345
2346     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2347     unsigned LEAop, CMPop, CALLop;
2348     if (Is64Bit) {
2349       SPReg = X86::RSP;
2350       PReg  = X86::RBP;
2351       LEAop = X86::LEA64r;
2352       CMPop = X86::CMP64rm;
2353       CALLop = X86::CALL64pcrel32;
2354       SPLimitOffset = 0x90;
2355     } else {
2356       SPReg = X86::ESP;
2357       PReg  = X86::EBP;
2358       LEAop = X86::LEA32r;
2359       CMPop = X86::CMP32rm;
2360       CALLop = X86::CALLpcrel32;
2361       SPLimitOffset = 0x4c;
2362     }
2363
2364     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2365     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2366            "HiPE prologue scratch register is live-in");
2367
2368     // Create new MBB for StackCheck:
2369     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2370                  SPReg, false, -MaxStack);
2371     // SPLimitOffset is in a fixed heap location (pointed by BP).
2372     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2373                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2374     BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
2375
2376     // Create new MBB for IncStack:
2377     BuildMI(incStackMBB, DL, TII.get(CALLop)).
2378       addExternalSymbol("inc_stack_0");
2379     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2380                  SPReg, false, -MaxStack);
2381     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2382                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2383     BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
2384
2385     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2386     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2387     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2388     incStackMBB->addSuccessor(incStackMBB, {1, 100});
2389   }
2390 #ifdef XDEBUG
2391   MF.verify();
2392 #endif
2393 }
2394
2395 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2396     MachineBasicBlock::iterator MBBI, DebugLoc DL, int Offset) const {
2397
2398   if (Offset <= 0)
2399     return false;
2400
2401   if (Offset % SlotSize)
2402     return false;
2403
2404   int NumPops = Offset / SlotSize;
2405   // This is only worth it if we have at most 2 pops.
2406   if (NumPops != 1 && NumPops != 2)
2407     return false;
2408
2409   // Handle only the trivial case where the adjustment directly follows
2410   // a call. This is the most common one, anyway.
2411   if (MBBI == MBB.begin())
2412     return false;
2413   MachineBasicBlock::iterator Prev = std::prev(MBBI);
2414   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2415     return false;
2416
2417   unsigned Regs[2];
2418   unsigned FoundRegs = 0;
2419
2420   auto RegMask = Prev->getOperand(1);
2421
2422   auto &RegClass =
2423       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2424   // Try to find up to NumPops free registers.
2425   for (auto Candidate : RegClass) {
2426
2427     // Poor man's liveness:
2428     // Since we're immediately after a call, any register that is clobbered
2429     // by the call and not defined by it can be considered dead.
2430     if (!RegMask.clobbersPhysReg(Candidate))
2431       continue;
2432
2433     bool IsDef = false;
2434     for (const MachineOperand &MO : Prev->implicit_operands()) {
2435       if (MO.isReg() && MO.isDef() && MO.getReg() == Candidate) {
2436         IsDef = true;
2437         break;
2438       }
2439     }
2440
2441     if (IsDef)
2442       continue;
2443
2444     Regs[FoundRegs++] = Candidate;
2445     if (FoundRegs == (unsigned)NumPops)
2446       break;
2447   }
2448
2449   if (FoundRegs == 0)
2450     return false;
2451
2452   // If we found only one free register, but need two, reuse the same one twice.
2453   while (FoundRegs < (unsigned)NumPops)
2454     Regs[FoundRegs++] = Regs[0];
2455
2456   for (int i = 0; i < NumPops; ++i)
2457     BuildMI(MBB, MBBI, DL, 
2458             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2459
2460   return true;
2461 }
2462
2463 void X86FrameLowering::
2464 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2465                               MachineBasicBlock::iterator I) const {
2466   bool reserveCallFrame = hasReservedCallFrame(MF);
2467   unsigned Opcode = I->getOpcode();
2468   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2469   DebugLoc DL = I->getDebugLoc();
2470   uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
2471   uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
2472   I = MBB.erase(I);
2473
2474   if (!reserveCallFrame) {
2475     // If the stack pointer can be changed after prologue, turn the
2476     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2477     // adjcallstackdown instruction into 'add ESP, <amt>'
2478
2479     // We need to keep the stack aligned properly.  To do this, we round the
2480     // amount of space needed for the outgoing arguments up to the next
2481     // alignment boundary.
2482     unsigned StackAlign = getStackAlignment();
2483     Amount = RoundUpToAlignment(Amount, StackAlign);
2484
2485     MachineModuleInfo &MMI = MF.getMMI();
2486     const Function *Fn = MF.getFunction();
2487     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2488     bool DwarfCFI = !WindowsCFI && 
2489                     (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
2490
2491     // If we have any exception handlers in this function, and we adjust
2492     // the SP before calls, we may need to indicate this to the unwinder
2493     // using GNU_ARGS_SIZE. Note that this may be necessary even when
2494     // Amount == 0, because the preceding function may have set a non-0
2495     // GNU_ARGS_SIZE.
2496     // TODO: We don't need to reset this between subsequent functions,
2497     // if it didn't change.
2498     bool HasDwarfEHHandlers = !WindowsCFI &&
2499                               !MF.getMMI().getLandingPads().empty();
2500
2501     if (HasDwarfEHHandlers && !isDestroy &&
2502         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2503       BuildCFI(MBB, I, DL,
2504                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2505
2506     if (Amount == 0)
2507       return;
2508
2509     // Factor out the amount that gets handled inside the sequence
2510     // (Pushes of argument for frame setup, callee pops for frame destroy)
2511     Amount -= InternalAmt;
2512
2513     // TODO: This is needed only if we require precise CFA.
2514     // If this is a callee-pop calling convention, emit a CFA adjust for
2515     // the amount the callee popped.
2516     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2517       BuildCFI(MBB, I, DL, 
2518                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2519
2520     if (Amount) {
2521       // Add Amount to SP to destroy a frame, and subtract to setup.
2522       int Offset = isDestroy ? Amount : -Amount;
2523
2524       if (!(Fn->optForMinSize() && 
2525             adjustStackWithPops(MBB, I, DL, Offset)))
2526         BuildStackAdjustment(MBB, I, DL, Offset, /*InEpilogue=*/false);
2527     }
2528
2529     if (DwarfCFI && !hasFP(MF)) {
2530       // If we don't have FP, but need to generate unwind information,
2531       // we need to set the correct CFA offset after the stack adjustment.
2532       // How much we adjust the CFA offset depends on whether we're emitting
2533       // CFI only for EH purposes or for debugging. EH only requires the CFA
2534       // offset to be correct at each call site, while for debugging we want
2535       // it to be more precise.
2536       int CFAOffset = Amount;
2537       // TODO: When not using precise CFA, we also need to adjust for the
2538       // InternalAmt here.
2539
2540       if (CFAOffset) {
2541         CFAOffset = isDestroy ? -CFAOffset : CFAOffset;
2542         BuildCFI(MBB, I, DL, 
2543                  MCCFIInstruction::createAdjustCfaOffset(nullptr, CFAOffset));
2544       }
2545     }
2546
2547     return;
2548   }
2549
2550   if (isDestroy && InternalAmt) {
2551     // If we are performing frame pointer elimination and if the callee pops
2552     // something off the stack pointer, add it back.  We do this until we have
2553     // more advanced stack pointer tracking ability.
2554     // We are not tracking the stack pointer adjustment by the callee, so make
2555     // sure we restore the stack pointer immediately after the call, there may
2556     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2557     MachineBasicBlock::iterator B = MBB.begin();
2558     while (I != B && !std::prev(I)->isCall())
2559       --I;
2560     BuildStackAdjustment(MBB, I, DL, -InternalAmt, /*InEpilogue=*/false);
2561   }
2562 }
2563
2564 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2565   assert(MBB.getParent() && "Block is not attached to a function!");
2566
2567   // Win64 has strict requirements in terms of epilogue and we are
2568   // not taking a chance at messing with them.
2569   // I.e., unless this block is already an exit block, we can't use
2570   // it as an epilogue.
2571   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2572     return false;
2573
2574   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2575     return true;
2576
2577   // If we cannot use LEA to adjust SP, we may need to use ADD, which
2578   // clobbers the EFLAGS. Check that we do not need to preserve it,
2579   // otherwise, conservatively assume this is not
2580   // safe to insert the epilogue here.
2581   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2582 }
2583
2584 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2585   // If we may need to emit frameless compact unwind information, give
2586   // up as this is currently broken: PR25614.
2587   return MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF);
2588 }
2589
2590 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2591     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2592     DebugLoc DL, bool RestoreSP) const {
2593   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2594   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2595   assert(STI.is32Bit() && !Uses64BitFramePtr &&
2596          "restoring EBP/ESI on non-32-bit target");
2597
2598   MachineFunction &MF = *MBB.getParent();
2599   unsigned FramePtr = TRI->getFrameRegister(MF);
2600   unsigned BasePtr = TRI->getBaseRegister();
2601   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2602   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2603   MachineFrameInfo *MFI = MF.getFrameInfo();
2604
2605   // FIXME: Don't set FrameSetup flag in catchret case.
2606
2607   int FI = FuncInfo.EHRegNodeFrameIndex;
2608   int EHRegSize = MFI->getObjectSize(FI);
2609
2610   if (RestoreSP) {
2611     // MOV32rm -EHRegSize(%ebp), %esp
2612     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2613                  X86::EBP, true, -EHRegSize)
2614         .setMIFlag(MachineInstr::FrameSetup);
2615   }
2616
2617   unsigned UsedReg;
2618   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2619   int EndOffset = -EHRegOffset - EHRegSize;
2620   FuncInfo.EHRegNodeEndOffset = EndOffset;
2621
2622   if (UsedReg == FramePtr) {
2623     // ADD $offset, %ebp
2624     unsigned ADDri = getADDriOpcode(false, EndOffset);
2625     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2626         .addReg(FramePtr)
2627         .addImm(EndOffset)
2628         .setMIFlag(MachineInstr::FrameSetup)
2629         ->getOperand(3)
2630         .setIsDead();
2631     assert(EndOffset >= 0 &&
2632            "end of registration object above normal EBP position!");
2633   } else if (UsedReg == BasePtr) {
2634     // LEA offset(%ebp), %esi
2635     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2636                  FramePtr, false, EndOffset)
2637         .setMIFlag(MachineInstr::FrameSetup);
2638     // MOV32rm SavedEBPOffset(%esi), %ebp
2639     assert(X86FI->getHasSEHFramePtrSave());
2640     int Offset =
2641         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2642     assert(UsedReg == BasePtr);
2643     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2644                  UsedReg, true, Offset)
2645         .setMIFlag(MachineInstr::FrameSetup);
2646   } else {
2647     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2648   }
2649   return MBBI;
2650 }
2651
2652 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
2653   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
2654   unsigned Offset = 16;
2655   // RBP is immediately pushed.
2656   Offset += SlotSize;
2657   // All callee-saved registers are then pushed.
2658   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
2659   // Every funclet allocates enough stack space for the largest outgoing call.
2660   Offset += getWinEHFuncletFrameSize(MF);
2661   return Offset;
2662 }
2663
2664 void X86FrameLowering::processFunctionBeforeFrameFinalized(
2665     MachineFunction &MF, RegScavenger *RS) const {
2666   // If this function isn't doing Win64-style C++ EH, we don't need to do
2667   // anything.
2668   const Function *Fn = MF.getFunction();
2669   if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() ||
2670       classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX)
2671     return;
2672
2673   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
2674   // relative to RSP after the prologue.  Find the offset of the last fixed
2675   // object, so that we can allocate a slot immediately following it. If there
2676   // were no fixed objects, use offset -SlotSize, which is immediately after the
2677   // return address. Fixed objects have negative frame indices.
2678   MachineFrameInfo *MFI = MF.getFrameInfo();
2679   int64_t MinFixedObjOffset = -SlotSize;
2680   for (int I = MFI->getObjectIndexBegin(); I < 0; ++I)
2681     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI->getObjectOffset(I));
2682
2683   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
2684   int UnwindHelpFI =
2685       MFI->CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
2686   MF.getWinEHFuncInfo()->UnwindHelpFrameIdx = UnwindHelpFI;
2687
2688   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
2689   // other frame setup instructions.
2690   MachineBasicBlock &MBB = MF.front();
2691   auto MBBI = MBB.begin();
2692   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2693     ++MBBI;
2694
2695   DebugLoc DL = MBB.findDebugLoc(MBBI);
2696   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
2697                     UnwindHelpFI)
2698       .addImm(-2);
2699 }