6c203aa586067bf95859f2af5ef7f6d335a4ff7e
[oota-llvm.git] / lib / Target / X86 / X86FloatingPoint.cpp
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions.  This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
14 //
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
20 //
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "X86.h"
27 #include "X86InstrInfo.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/LivePhysRegs.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetSubtargetInfo.h"
47 #include <algorithm>
48 #include <bitset>
49 using namespace llvm;
50
51 #define DEBUG_TYPE "x86-codegen"
52
53 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
54 STATISTIC(NumFP  , "Number of floating point instructions");
55
56 namespace {
57   const unsigned ScratchFPReg = 7;
58
59   struct FPS : public MachineFunctionPass {
60     static char ID;
61     FPS() : MachineFunctionPass(ID) {
62       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
63       // This is really only to keep valgrind quiet.
64       // The logic in isLive() is too much for it.
65       memset(Stack, 0, sizeof(Stack));
66       memset(RegMap, 0, sizeof(RegMap));
67     }
68
69     void getAnalysisUsage(AnalysisUsage &AU) const override {
70       AU.setPreservesCFG();
71       AU.addRequired<EdgeBundles>();
72       AU.addPreservedID(MachineLoopInfoID);
73       AU.addPreservedID(MachineDominatorsID);
74       MachineFunctionPass::getAnalysisUsage(AU);
75     }
76
77     bool runOnMachineFunction(MachineFunction &MF) override;
78
79     const char *getPassName() const override { return "X86 FP Stackifier"; }
80
81   private:
82     const TargetInstrInfo *TII; // Machine instruction info.
83
84     // Two CFG edges are related if they leave the same block, or enter the same
85     // block. The transitive closure of an edge under this relation is a
86     // LiveBundle. It represents a set of CFG edges where the live FP stack
87     // registers must be allocated identically in the x87 stack.
88     //
89     // A LiveBundle is usually all the edges leaving a block, or all the edges
90     // entering a block, but it can contain more edges if critical edges are
91     // present.
92     //
93     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
94     // but the exact mapping of FP registers to stack slots is fixed later.
95     struct LiveBundle {
96       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
97       unsigned Mask;
98
99       // Number of pre-assigned live registers in FixStack. This is 0 when the
100       // stack order has not yet been fixed.
101       unsigned FixCount;
102
103       // Assigned stack order for live-in registers.
104       // FixStack[i] == getStackEntry(i) for all i < FixCount.
105       unsigned char FixStack[8];
106
107       LiveBundle() : Mask(0), FixCount(0) {}
108
109       // Have the live registers been assigned a stack order yet?
110       bool isFixed() const { return !Mask || FixCount; }
111     };
112
113     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
114     // with no live FP registers.
115     SmallVector<LiveBundle, 8> LiveBundles;
116
117     // The edge bundle analysis provides indices into the LiveBundles vector.
118     EdgeBundles *Bundles;
119
120     // Return a bitmask of FP registers in block's live-in list.
121     static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
122       unsigned Mask = 0;
123       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
124            E = MBB->livein_end(); I != E; ++I) {
125         unsigned Reg = *I;
126         if (Reg < X86::FP0 || Reg > X86::FP6)
127           continue;
128         Mask |= 1 << (Reg - X86::FP0);
129       }
130       return Mask;
131     }
132
133     // Partition all the CFG edges into LiveBundles.
134     void bundleCFG(MachineFunction &MF);
135
136     MachineBasicBlock *MBB;     // Current basic block
137
138     // The hardware keeps track of how many FP registers are live, so we have
139     // to model that exactly. Usually, each live register corresponds to an
140     // FP<n> register, but when dealing with calls, returns, and inline
141     // assembly, it is sometimes necessary to have live scratch registers.
142     unsigned Stack[8];          // FP<n> Registers in each stack slot...
143     unsigned StackTop;          // The current top of the FP stack.
144
145     enum {
146       NumFPRegs = 8             // Including scratch pseudo-registers.
147     };
148
149     // For each live FP<n> register, point to its Stack[] entry.
150     // The first entries correspond to FP0-FP6, the rest are scratch registers
151     // used when we need slightly different live registers than what the
152     // register allocator thinks.
153     unsigned RegMap[NumFPRegs];
154
155     // Set up our stack model to match the incoming registers to MBB.
156     void setupBlockStack();
157
158     // Shuffle live registers to match the expectations of successor blocks.
159     void finishBlockStack();
160
161 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
162     void dumpStack() const {
163       dbgs() << "Stack contents:";
164       for (unsigned i = 0; i != StackTop; ++i) {
165         dbgs() << " FP" << Stack[i];
166         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
167       }
168     }
169 #endif
170
171     /// getSlot - Return the stack slot number a particular register number is
172     /// in.
173     unsigned getSlot(unsigned RegNo) const {
174       assert(RegNo < NumFPRegs && "Regno out of range!");
175       return RegMap[RegNo];
176     }
177
178     /// isLive - Is RegNo currently live in the stack?
179     bool isLive(unsigned RegNo) const {
180       unsigned Slot = getSlot(RegNo);
181       return Slot < StackTop && Stack[Slot] == RegNo;
182     }
183
184     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
185     unsigned getStackEntry(unsigned STi) const {
186       if (STi >= StackTop)
187         report_fatal_error("Access past stack top!");
188       return Stack[StackTop-1-STi];
189     }
190
191     /// getSTReg - Return the X86::ST(i) register which contains the specified
192     /// FP<RegNo> register.
193     unsigned getSTReg(unsigned RegNo) const {
194       return StackTop - 1 - getSlot(RegNo) + X86::ST0;
195     }
196
197     // pushReg - Push the specified FP<n> register onto the stack.
198     void pushReg(unsigned Reg) {
199       assert(Reg < NumFPRegs && "Register number out of range!");
200       if (StackTop >= 8)
201         report_fatal_error("Stack overflow!");
202       Stack[StackTop] = Reg;
203       RegMap[Reg] = StackTop++;
204     }
205
206     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
207     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
208       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
209       if (isAtTop(RegNo)) return;
210
211       unsigned STReg = getSTReg(RegNo);
212       unsigned RegOnTop = getStackEntry(0);
213
214       // Swap the slots the regs are in.
215       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
216
217       // Swap stack slot contents.
218       if (RegMap[RegOnTop] >= StackTop)
219         report_fatal_error("Access past stack top!");
220       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
221
222       // Emit an fxch to update the runtime processors version of the state.
223       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
224       ++NumFXCH;
225     }
226
227     void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
228       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
229       unsigned STReg = getSTReg(RegNo);
230       pushReg(AsReg);   // New register on top of stack
231
232       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
233     }
234
235     /// popStackAfter - Pop the current value off of the top of the FP stack
236     /// after the specified instruction.
237     void popStackAfter(MachineBasicBlock::iterator &I);
238
239     /// freeStackSlotAfter - Free the specified register from the register
240     /// stack, so that it is no longer in a register.  If the register is
241     /// currently at the top of the stack, we just pop the current instruction,
242     /// otherwise we store the current top-of-stack into the specified slot,
243     /// then pop the top of stack.
244     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
245
246     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
247     /// instruction.
248     MachineBasicBlock::iterator
249     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
250
251     /// Adjust the live registers to be the set in Mask.
252     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
253
254     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
255     /// st(0), FP reg FixStack[1] is st(1) etc.
256     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
257                          MachineBasicBlock::iterator I);
258
259     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
260
261     void handleCall(MachineBasicBlock::iterator &I);
262     void handleZeroArgFP(MachineBasicBlock::iterator &I);
263     void handleOneArgFP(MachineBasicBlock::iterator &I);
264     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
265     void handleTwoArgFP(MachineBasicBlock::iterator &I);
266     void handleCompareFP(MachineBasicBlock::iterator &I);
267     void handleCondMovFP(MachineBasicBlock::iterator &I);
268     void handleSpecialFP(MachineBasicBlock::iterator &I);
269
270     // Check if a COPY instruction is using FP registers.
271     static bool isFPCopy(MachineInstr *MI) {
272       unsigned DstReg = MI->getOperand(0).getReg();
273       unsigned SrcReg = MI->getOperand(1).getReg();
274
275       return X86::RFP80RegClass.contains(DstReg) ||
276         X86::RFP80RegClass.contains(SrcReg);
277     }
278
279     void setKillFlags(MachineBasicBlock &MBB) const;
280   };
281   char FPS::ID = 0;
282 }
283
284 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
285
286 /// getFPReg - Return the X86::FPx register number for the specified operand.
287 /// For example, this returns 3 for X86::FP3.
288 static unsigned getFPReg(const MachineOperand &MO) {
289   assert(MO.isReg() && "Expected an FP register!");
290   unsigned Reg = MO.getReg();
291   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
292   return Reg - X86::FP0;
293 }
294
295 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
296 /// register references into FP stack references.
297 ///
298 bool FPS::runOnMachineFunction(MachineFunction &MF) {
299   // We only need to run this pass if there are any FP registers used in this
300   // function.  If it is all integer, there is nothing for us to do!
301   bool FPIsUsed = false;
302
303   assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
304   for (unsigned i = 0; i <= 6; ++i)
305     if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
306       FPIsUsed = true;
307       break;
308     }
309
310   // Early exit.
311   if (!FPIsUsed) return false;
312
313   Bundles = &getAnalysis<EdgeBundles>();
314   TII = MF.getSubtarget().getInstrInfo();
315
316   // Prepare cross-MBB liveness.
317   bundleCFG(MF);
318
319   StackTop = 0;
320
321   // Process the function in depth first order so that we process at least one
322   // of the predecessors for every reachable block in the function.
323   SmallPtrSet<MachineBasicBlock*, 8> Processed;
324   MachineBasicBlock *Entry = MF.begin();
325
326   bool Changed = false;
327   for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
328     Changed |= processBasicBlock(MF, *BB);
329
330   // Process any unreachable blocks in arbitrary order now.
331   if (MF.size() != Processed.size())
332     for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
333       if (Processed.insert(BB))
334         Changed |= processBasicBlock(MF, *BB);
335
336   LiveBundles.clear();
337
338   return Changed;
339 }
340
341 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
342 /// live-out sets for the FP registers. Consistent means that the set of
343 /// registers live-out from a block is identical to the live-in set of all
344 /// successors. This is not enforced by the normal live-in lists since
345 /// registers may be implicitly defined, or not used by all successors.
346 void FPS::bundleCFG(MachineFunction &MF) {
347   assert(LiveBundles.empty() && "Stale data in LiveBundles");
348   LiveBundles.resize(Bundles->getNumBundles());
349
350   // Gather the actual live-in masks for all MBBs.
351   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
352     MachineBasicBlock *MBB = I;
353     const unsigned Mask = calcLiveInMask(MBB);
354     if (!Mask)
355       continue;
356     // Update MBB ingoing bundle mask.
357     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
358   }
359 }
360
361 /// processBasicBlock - Loop over all of the instructions in the basic block,
362 /// transforming FP instructions into their stack form.
363 ///
364 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
365   bool Changed = false;
366   MBB = &BB;
367
368   setKillFlags(BB);
369   setupBlockStack();
370
371   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
372     MachineInstr *MI = I;
373     uint64_t Flags = MI->getDesc().TSFlags;
374
375     unsigned FPInstClass = Flags & X86II::FPTypeMask;
376     if (MI->isInlineAsm())
377       FPInstClass = X86II::SpecialFP;
378
379     if (MI->isCopy() && isFPCopy(MI))
380       FPInstClass = X86II::SpecialFP;
381
382     if (MI->isImplicitDef() &&
383         X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
384       FPInstClass = X86II::SpecialFP;
385
386     if (MI->isCall())
387       FPInstClass = X86II::SpecialFP;
388
389     if (FPInstClass == X86II::NotFP)
390       continue;  // Efficiently ignore non-fp insts!
391
392     MachineInstr *PrevMI = nullptr;
393     if (I != BB.begin())
394       PrevMI = std::prev(I);
395
396     ++NumFP;  // Keep track of # of pseudo instrs
397     DEBUG(dbgs() << "\nFPInst:\t" << *MI);
398
399     // Get dead variables list now because the MI pointer may be deleted as part
400     // of processing!
401     SmallVector<unsigned, 8> DeadRegs;
402     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
403       const MachineOperand &MO = MI->getOperand(i);
404       if (MO.isReg() && MO.isDead())
405         DeadRegs.push_back(MO.getReg());
406     }
407
408     switch (FPInstClass) {
409     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
410     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
411     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
412     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
413     case X86II::CompareFP:  handleCompareFP(I); break;
414     case X86II::CondMovFP:  handleCondMovFP(I); break;
415     case X86II::SpecialFP:  handleSpecialFP(I); break;
416     default: llvm_unreachable("Unknown FP Type!");
417     }
418
419     // Check to see if any of the values defined by this instruction are dead
420     // after definition.  If so, pop them.
421     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
422       unsigned Reg = DeadRegs[i];
423       // Check if Reg is live on the stack. An inline-asm register operand that
424       // is in the clobber list and marked dead might not be live on the stack.
425       if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
426         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
427         freeStackSlotAfter(I, Reg-X86::FP0);
428       }
429     }
430
431     // Print out all of the instructions expanded to if -debug
432     DEBUG(
433       MachineBasicBlock::iterator PrevI(PrevMI);
434       if (I == PrevI) {
435         dbgs() << "Just deleted pseudo instruction\n";
436       } else {
437         MachineBasicBlock::iterator Start = I;
438         // Rewind to first instruction newly inserted.
439         while (Start != BB.begin() && std::prev(Start) != PrevI) --Start;
440         dbgs() << "Inserted instructions:\n\t";
441         Start->print(dbgs(), &MF.getTarget());
442         while (++Start != std::next(I)) {}
443       }
444       dumpStack();
445     );
446     (void)PrevMI;
447
448     Changed = true;
449   }
450
451   finishBlockStack();
452
453   return Changed;
454 }
455
456 /// setupBlockStack - Use the live bundles to set up our model of the stack
457 /// to match predecessors' live out stack.
458 void FPS::setupBlockStack() {
459   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
460                << " derived from " << MBB->getName() << ".\n");
461   StackTop = 0;
462   // Get the live-in bundle for MBB.
463   const LiveBundle &Bundle =
464     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
465
466   if (!Bundle.Mask) {
467     DEBUG(dbgs() << "Block has no FP live-ins.\n");
468     return;
469   }
470
471   // Depth-first iteration should ensure that we always have an assigned stack.
472   assert(Bundle.isFixed() && "Reached block before any predecessors");
473
474   // Push the fixed live-in registers.
475   for (unsigned i = Bundle.FixCount; i > 0; --i) {
476     MBB->addLiveIn(X86::ST0+i-1);
477     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
478                  << unsigned(Bundle.FixStack[i-1]) << '\n');
479     pushReg(Bundle.FixStack[i-1]);
480   }
481
482   // Kill off unwanted live-ins. This can happen with a critical edge.
483   // FIXME: We could keep these live registers around as zombies. They may need
484   // to be revived at the end of a short block. It might save a few instrs.
485   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
486   DEBUG(MBB->dump());
487 }
488
489 /// finishBlockStack - Revive live-outs that are implicitly defined out of
490 /// MBB. Shuffle live registers to match the expected fixed stack of any
491 /// predecessors, and ensure that all predecessors are expecting the same
492 /// stack.
493 void FPS::finishBlockStack() {
494   // The RET handling below takes care of return blocks for us.
495   if (MBB->succ_empty())
496     return;
497
498   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
499                << " derived from " << MBB->getName() << ".\n");
500
501   // Get MBB's live-out bundle.
502   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
503   LiveBundle &Bundle = LiveBundles[BundleIdx];
504
505   // We may need to kill and define some registers to match successors.
506   // FIXME: This can probably be combined with the shuffle below.
507   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
508   adjustLiveRegs(Bundle.Mask, Term);
509
510   if (!Bundle.Mask) {
511     DEBUG(dbgs() << "No live-outs.\n");
512     return;
513   }
514
515   // Has the stack order been fixed yet?
516   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
517   if (Bundle.isFixed()) {
518     DEBUG(dbgs() << "Shuffling stack to match.\n");
519     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
520   } else {
521     // Not fixed yet, we get to choose.
522     DEBUG(dbgs() << "Fixing stack order now.\n");
523     Bundle.FixCount = StackTop;
524     for (unsigned i = 0; i < StackTop; ++i)
525       Bundle.FixStack[i] = getStackEntry(i);
526   }
527 }
528
529
530 //===----------------------------------------------------------------------===//
531 // Efficient Lookup Table Support
532 //===----------------------------------------------------------------------===//
533
534 namespace {
535   struct TableEntry {
536     uint16_t from;
537     uint16_t to;
538     bool operator<(const TableEntry &TE) const { return from < TE.from; }
539     friend bool operator<(const TableEntry &TE, unsigned V) {
540       return TE.from < V;
541     }
542     friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
543                                                 const TableEntry &TE) {
544       return V < TE.from;
545     }
546   };
547 }
548
549 #ifndef NDEBUG
550 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
551   for (unsigned i = 0; i != NumEntries-1; ++i)
552     if (!(Table[i] < Table[i+1])) return false;
553   return true;
554 }
555 #endif
556
557 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
558   const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
559   if (I != Table+N && I->from == Opcode)
560     return I->to;
561   return -1;
562 }
563
564 #ifdef NDEBUG
565 #define ASSERT_SORTED(TABLE)
566 #else
567 #define ASSERT_SORTED(TABLE)                                              \
568   { static bool TABLE##Checked = false;                                   \
569     if (!TABLE##Checked) {                                                \
570        assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
571               "All lookup tables must be sorted for efficient access!");  \
572        TABLE##Checked = true;                                             \
573     }                                                                     \
574   }
575 #endif
576
577 //===----------------------------------------------------------------------===//
578 // Register File -> Register Stack Mapping Methods
579 //===----------------------------------------------------------------------===//
580
581 // OpcodeTable - Sorted map of register instructions to their stack version.
582 // The first element is an register file pseudo instruction, the second is the
583 // concrete X86 instruction which uses the register stack.
584 //
585 static const TableEntry OpcodeTable[] = {
586   { X86::ABS_Fp32     , X86::ABS_F     },
587   { X86::ABS_Fp64     , X86::ABS_F     },
588   { X86::ABS_Fp80     , X86::ABS_F     },
589   { X86::ADD_Fp32m    , X86::ADD_F32m  },
590   { X86::ADD_Fp64m    , X86::ADD_F64m  },
591   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
592   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
593   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
594   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
595   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
596   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
597   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
598   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
599   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
600   { X86::CHS_Fp32     , X86::CHS_F     },
601   { X86::CHS_Fp64     , X86::CHS_F     },
602   { X86::CHS_Fp80     , X86::CHS_F     },
603   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
604   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
605   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
606   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
607   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
608   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
609   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
610   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
611   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
612   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
613   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
614   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
615   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
616   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
617   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
618   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
619   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
620   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
621   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
622   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
623   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
624   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
625   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
626   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
627   { X86::COS_Fp32     , X86::COS_F     },
628   { X86::COS_Fp64     , X86::COS_F     },
629   { X86::COS_Fp80     , X86::COS_F     },
630   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
631   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
632   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
633   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
634   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
635   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
636   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
637   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
638   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
639   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
640   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
641   { X86::DIV_Fp32m    , X86::DIV_F32m  },
642   { X86::DIV_Fp64m    , X86::DIV_F64m  },
643   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
644   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
645   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
646   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
647   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
648   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
649   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
650   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
651   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
652   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
653   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
654   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
655   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
656   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
657   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
658   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
659   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
660   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
661   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
662   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
663   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
664   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
665   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
666   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
667   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
668   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
669   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
670   { X86::IST_Fp16m32  , X86::IST_F16m  },
671   { X86::IST_Fp16m64  , X86::IST_F16m  },
672   { X86::IST_Fp16m80  , X86::IST_F16m  },
673   { X86::IST_Fp32m32  , X86::IST_F32m  },
674   { X86::IST_Fp32m64  , X86::IST_F32m  },
675   { X86::IST_Fp32m80  , X86::IST_F32m  },
676   { X86::IST_Fp64m32  , X86::IST_FP64m },
677   { X86::IST_Fp64m64  , X86::IST_FP64m },
678   { X86::IST_Fp64m80  , X86::IST_FP64m },
679   { X86::LD_Fp032     , X86::LD_F0     },
680   { X86::LD_Fp064     , X86::LD_F0     },
681   { X86::LD_Fp080     , X86::LD_F0     },
682   { X86::LD_Fp132     , X86::LD_F1     },
683   { X86::LD_Fp164     , X86::LD_F1     },
684   { X86::LD_Fp180     , X86::LD_F1     },
685   { X86::LD_Fp32m     , X86::LD_F32m   },
686   { X86::LD_Fp32m64   , X86::LD_F32m   },
687   { X86::LD_Fp32m80   , X86::LD_F32m   },
688   { X86::LD_Fp64m     , X86::LD_F64m   },
689   { X86::LD_Fp64m80   , X86::LD_F64m   },
690   { X86::LD_Fp80m     , X86::LD_F80m   },
691   { X86::MUL_Fp32m    , X86::MUL_F32m  },
692   { X86::MUL_Fp64m    , X86::MUL_F64m  },
693   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
694   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
695   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
696   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
697   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
698   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
699   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
700   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
701   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
702   { X86::SIN_Fp32     , X86::SIN_F     },
703   { X86::SIN_Fp64     , X86::SIN_F     },
704   { X86::SIN_Fp80     , X86::SIN_F     },
705   { X86::SQRT_Fp32    , X86::SQRT_F    },
706   { X86::SQRT_Fp64    , X86::SQRT_F    },
707   { X86::SQRT_Fp80    , X86::SQRT_F    },
708   { X86::ST_Fp32m     , X86::ST_F32m   },
709   { X86::ST_Fp64m     , X86::ST_F64m   },
710   { X86::ST_Fp64m32   , X86::ST_F32m   },
711   { X86::ST_Fp80m32   , X86::ST_F32m   },
712   { X86::ST_Fp80m64   , X86::ST_F64m   },
713   { X86::ST_FpP80m    , X86::ST_FP80m  },
714   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
715   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
716   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
717   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
718   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
719   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
720   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
721   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
722   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
723   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
724   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
725   { X86::SUB_Fp32m    , X86::SUB_F32m  },
726   { X86::SUB_Fp64m    , X86::SUB_F64m  },
727   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
728   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
729   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
730   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
731   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
732   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
733   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
734   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
735   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
736   { X86::TST_Fp32     , X86::TST_F     },
737   { X86::TST_Fp64     , X86::TST_F     },
738   { X86::TST_Fp80     , X86::TST_F     },
739   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
740   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
741   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
742   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
743   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
744   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
745 };
746
747 static unsigned getConcreteOpcode(unsigned Opcode) {
748   ASSERT_SORTED(OpcodeTable);
749   int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
750   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
751   return Opc;
752 }
753
754 //===----------------------------------------------------------------------===//
755 // Helper Methods
756 //===----------------------------------------------------------------------===//
757
758 // PopTable - Sorted map of instructions to their popping version.  The first
759 // element is an instruction, the second is the version which pops.
760 //
761 static const TableEntry PopTable[] = {
762   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
763
764   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
765   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
766
767   { X86::IST_F16m  , X86::IST_FP16m   },
768   { X86::IST_F32m  , X86::IST_FP32m   },
769
770   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
771
772   { X86::ST_F32m   , X86::ST_FP32m    },
773   { X86::ST_F64m   , X86::ST_FP64m    },
774   { X86::ST_Frr    , X86::ST_FPrr     },
775
776   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
777   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
778
779   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
780
781   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
782   { X86::UCOM_Fr   , X86::UCOM_FPr    },
783 };
784
785 /// popStackAfter - Pop the current value off of the top of the FP stack after
786 /// the specified instruction.  This attempts to be sneaky and combine the pop
787 /// into the instruction itself if possible.  The iterator is left pointing to
788 /// the last instruction, be it a new pop instruction inserted, or the old
789 /// instruction if it was modified in place.
790 ///
791 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
792   MachineInstr* MI = I;
793   DebugLoc dl = MI->getDebugLoc();
794   ASSERT_SORTED(PopTable);
795   if (StackTop == 0)
796     report_fatal_error("Cannot pop empty stack!");
797   RegMap[Stack[--StackTop]] = ~0;     // Update state
798
799   // Check to see if there is a popping version of this instruction...
800   int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
801   if (Opcode != -1) {
802     I->setDesc(TII->get(Opcode));
803     if (Opcode == X86::UCOM_FPPr)
804       I->RemoveOperand(0);
805   } else {    // Insert an explicit pop
806     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
807   }
808 }
809
810 /// freeStackSlotAfter - Free the specified register from the register stack, so
811 /// that it is no longer in a register.  If the register is currently at the top
812 /// of the stack, we just pop the current instruction, otherwise we store the
813 /// current top-of-stack into the specified slot, then pop the top of stack.
814 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
815   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
816     popStackAfter(I);
817     return;
818   }
819
820   // Otherwise, store the top of stack into the dead slot, killing the operand
821   // without having to add in an explicit xchg then pop.
822   //
823   I = freeStackSlotBefore(++I, FPRegNo);
824 }
825
826 /// freeStackSlotBefore - Free the specified register without trying any
827 /// folding.
828 MachineBasicBlock::iterator
829 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
830   unsigned STReg    = getSTReg(FPRegNo);
831   unsigned OldSlot  = getSlot(FPRegNo);
832   unsigned TopReg   = Stack[StackTop-1];
833   Stack[OldSlot]    = TopReg;
834   RegMap[TopReg]    = OldSlot;
835   RegMap[FPRegNo]   = ~0;
836   Stack[--StackTop] = ~0;
837   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
838 }
839
840 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
841 /// registers with a bit in Mask are live.
842 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
843   unsigned Defs = Mask;
844   unsigned Kills = 0;
845   for (unsigned i = 0; i < StackTop; ++i) {
846     unsigned RegNo = Stack[i];
847     if (!(Defs & (1 << RegNo)))
848       // This register is live, but we don't want it.
849       Kills |= (1 << RegNo);
850     else
851       // We don't need to imp-def this live register.
852       Defs &= ~(1 << RegNo);
853   }
854   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
855
856   // Produce implicit-defs for free by using killed registers.
857   while (Kills && Defs) {
858     unsigned KReg = countTrailingZeros(Kills);
859     unsigned DReg = countTrailingZeros(Defs);
860     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
861     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
862     std::swap(RegMap[KReg], RegMap[DReg]);
863     Kills &= ~(1 << KReg);
864     Defs &= ~(1 << DReg);
865   }
866
867   // Kill registers by popping.
868   if (Kills && I != MBB->begin()) {
869     MachineBasicBlock::iterator I2 = std::prev(I);
870     while (StackTop) {
871       unsigned KReg = getStackEntry(0);
872       if (!(Kills & (1 << KReg)))
873         break;
874       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
875       popStackAfter(I2);
876       Kills &= ~(1 << KReg);
877     }
878   }
879
880   // Manually kill the rest.
881   while (Kills) {
882     unsigned KReg = countTrailingZeros(Kills);
883     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
884     freeStackSlotBefore(I, KReg);
885     Kills &= ~(1 << KReg);
886   }
887
888   // Load zeros for all the imp-defs.
889   while(Defs) {
890     unsigned DReg = countTrailingZeros(Defs);
891     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
892     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
893     pushReg(DReg);
894     Defs &= ~(1 << DReg);
895   }
896
897   // Now we should have the correct registers live.
898   DEBUG(dumpStack());
899   assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
900 }
901
902 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
903 /// FixCount entries into the order given by FixStack.
904 /// FIXME: Is there a better algorithm than insertion sort?
905 void FPS::shuffleStackTop(const unsigned char *FixStack,
906                           unsigned FixCount,
907                           MachineBasicBlock::iterator I) {
908   // Move items into place, starting from the desired stack bottom.
909   while (FixCount--) {
910     // Old register at position FixCount.
911     unsigned OldReg = getStackEntry(FixCount);
912     // Desired register at position FixCount.
913     unsigned Reg = FixStack[FixCount];
914     if (Reg == OldReg)
915       continue;
916     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
917     moveToTop(Reg, I);
918     if (FixCount > 0)
919       moveToTop(OldReg, I);
920   }
921   DEBUG(dumpStack());
922 }
923
924
925 //===----------------------------------------------------------------------===//
926 // Instruction transformation implementation
927 //===----------------------------------------------------------------------===//
928
929 void FPS::handleCall(MachineBasicBlock::iterator &I) {
930   unsigned STReturns = 0;
931
932   for (const auto &MO : I->operands()) {
933     if (!MO.isReg())
934       continue;
935
936     unsigned R = MO.getReg() - X86::FP0;
937
938     if (R < 8) {
939       assert(MO.isDef() && MO.isImplicit());
940       STReturns |= 1 << R;
941     }
942   }
943
944   unsigned N = CountTrailingOnes_32(STReturns);
945
946   // FP registers used for function return must be consecutive starting at
947   // FP0.
948   assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
949
950   for (unsigned I = 0; I < N; ++I)
951     pushReg(N - I - 1);
952 }
953
954 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
955 ///
956 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
957   MachineInstr *MI = I;
958   unsigned DestReg = getFPReg(MI->getOperand(0));
959
960   // Change from the pseudo instruction to the concrete instruction.
961   MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
962   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
963
964   // Result gets pushed on the stack.
965   pushReg(DestReg);
966 }
967
968 /// handleOneArgFP - fst <mem>, ST(0)
969 ///
970 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
971   MachineInstr *MI = I;
972   unsigned NumOps = MI->getDesc().getNumOperands();
973   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
974          "Can only handle fst* & ftst instructions!");
975
976   // Is this the last use of the source register?
977   unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
978   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
979
980   // FISTP64m is strange because there isn't a non-popping versions.
981   // If we have one _and_ we don't want to pop the operand, duplicate the value
982   // on the stack instead of moving it.  This ensure that popping the value is
983   // always ok.
984   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
985   //
986   if (!KillsSrc &&
987       (MI->getOpcode() == X86::IST_Fp64m32 ||
988        MI->getOpcode() == X86::ISTT_Fp16m32 ||
989        MI->getOpcode() == X86::ISTT_Fp32m32 ||
990        MI->getOpcode() == X86::ISTT_Fp64m32 ||
991        MI->getOpcode() == X86::IST_Fp64m64 ||
992        MI->getOpcode() == X86::ISTT_Fp16m64 ||
993        MI->getOpcode() == X86::ISTT_Fp32m64 ||
994        MI->getOpcode() == X86::ISTT_Fp64m64 ||
995        MI->getOpcode() == X86::IST_Fp64m80 ||
996        MI->getOpcode() == X86::ISTT_Fp16m80 ||
997        MI->getOpcode() == X86::ISTT_Fp32m80 ||
998        MI->getOpcode() == X86::ISTT_Fp64m80 ||
999        MI->getOpcode() == X86::ST_FpP80m)) {
1000     duplicateToTop(Reg, ScratchFPReg, I);
1001   } else {
1002     moveToTop(Reg, I);            // Move to the top of the stack...
1003   }
1004
1005   // Convert from the pseudo instruction to the concrete instruction.
1006   MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
1007   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1008
1009   if (MI->getOpcode() == X86::IST_FP64m ||
1010       MI->getOpcode() == X86::ISTT_FP16m ||
1011       MI->getOpcode() == X86::ISTT_FP32m ||
1012       MI->getOpcode() == X86::ISTT_FP64m ||
1013       MI->getOpcode() == X86::ST_FP80m) {
1014     if (StackTop == 0)
1015       report_fatal_error("Stack empty??");
1016     --StackTop;
1017   } else if (KillsSrc) { // Last use of operand?
1018     popStackAfter(I);
1019   }
1020 }
1021
1022
1023 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1024 /// replace the value with a newly computed value.  These instructions may have
1025 /// non-fp operands after their FP operands.
1026 ///
1027 ///  Examples:
1028 ///     R1 = fchs R2
1029 ///     R1 = fadd R2, [mem]
1030 ///
1031 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1032   MachineInstr *MI = I;
1033 #ifndef NDEBUG
1034   unsigned NumOps = MI->getDesc().getNumOperands();
1035   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1036 #endif
1037
1038   // Is this the last use of the source register?
1039   unsigned Reg = getFPReg(MI->getOperand(1));
1040   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1041
1042   if (KillsSrc) {
1043     // If this is the last use of the source register, just make sure it's on
1044     // the top of the stack.
1045     moveToTop(Reg, I);
1046     if (StackTop == 0)
1047       report_fatal_error("Stack cannot be empty!");
1048     --StackTop;
1049     pushReg(getFPReg(MI->getOperand(0)));
1050   } else {
1051     // If this is not the last use of the source register, _copy_ it to the top
1052     // of the stack.
1053     duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1054   }
1055
1056   // Change from the pseudo instruction to the concrete instruction.
1057   MI->RemoveOperand(1);   // Drop the source operand.
1058   MI->RemoveOperand(0);   // Drop the destination operand.
1059   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1060 }
1061
1062
1063 //===----------------------------------------------------------------------===//
1064 // Define tables of various ways to map pseudo instructions
1065 //
1066
1067 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1068 static const TableEntry ForwardST0Table[] = {
1069   { X86::ADD_Fp32  , X86::ADD_FST0r },
1070   { X86::ADD_Fp64  , X86::ADD_FST0r },
1071   { X86::ADD_Fp80  , X86::ADD_FST0r },
1072   { X86::DIV_Fp32  , X86::DIV_FST0r },
1073   { X86::DIV_Fp64  , X86::DIV_FST0r },
1074   { X86::DIV_Fp80  , X86::DIV_FST0r },
1075   { X86::MUL_Fp32  , X86::MUL_FST0r },
1076   { X86::MUL_Fp64  , X86::MUL_FST0r },
1077   { X86::MUL_Fp80  , X86::MUL_FST0r },
1078   { X86::SUB_Fp32  , X86::SUB_FST0r },
1079   { X86::SUB_Fp64  , X86::SUB_FST0r },
1080   { X86::SUB_Fp80  , X86::SUB_FST0r },
1081 };
1082
1083 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1084 static const TableEntry ReverseST0Table[] = {
1085   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1086   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1087   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1088   { X86::DIV_Fp32  , X86::DIVR_FST0r },
1089   { X86::DIV_Fp64  , X86::DIVR_FST0r },
1090   { X86::DIV_Fp80  , X86::DIVR_FST0r },
1091   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1092   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1093   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1094   { X86::SUB_Fp32  , X86::SUBR_FST0r },
1095   { X86::SUB_Fp64  , X86::SUBR_FST0r },
1096   { X86::SUB_Fp80  , X86::SUBR_FST0r },
1097 };
1098
1099 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1100 static const TableEntry ForwardSTiTable[] = {
1101   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1102   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1103   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1104   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1105   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1106   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1107   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1108   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1109   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1110   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1111   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1112   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1113 };
1114
1115 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1116 static const TableEntry ReverseSTiTable[] = {
1117   { X86::ADD_Fp32  , X86::ADD_FrST0 },
1118   { X86::ADD_Fp64  , X86::ADD_FrST0 },
1119   { X86::ADD_Fp80  , X86::ADD_FrST0 },
1120   { X86::DIV_Fp32  , X86::DIV_FrST0 },
1121   { X86::DIV_Fp64  , X86::DIV_FrST0 },
1122   { X86::DIV_Fp80  , X86::DIV_FrST0 },
1123   { X86::MUL_Fp32  , X86::MUL_FrST0 },
1124   { X86::MUL_Fp64  , X86::MUL_FrST0 },
1125   { X86::MUL_Fp80  , X86::MUL_FrST0 },
1126   { X86::SUB_Fp32  , X86::SUB_FrST0 },
1127   { X86::SUB_Fp64  , X86::SUB_FrST0 },
1128   { X86::SUB_Fp80  , X86::SUB_FrST0 },
1129 };
1130
1131
1132 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1133 /// instructions which need to be simplified and possibly transformed.
1134 ///
1135 /// Result: ST(0) = fsub  ST(0), ST(i)
1136 ///         ST(i) = fsub  ST(0), ST(i)
1137 ///         ST(0) = fsubr ST(0), ST(i)
1138 ///         ST(i) = fsubr ST(0), ST(i)
1139 ///
1140 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1141   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1142   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1143   MachineInstr *MI = I;
1144
1145   unsigned NumOperands = MI->getDesc().getNumOperands();
1146   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1147   unsigned Dest = getFPReg(MI->getOperand(0));
1148   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1149   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1150   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1151   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1152   DebugLoc dl = MI->getDebugLoc();
1153
1154   unsigned TOS = getStackEntry(0);
1155
1156   // One of our operands must be on the top of the stack.  If neither is yet, we
1157   // need to move one.
1158   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1159     // We can choose to move either operand to the top of the stack.  If one of
1160     // the operands is killed by this instruction, we want that one so that we
1161     // can update right on top of the old version.
1162     if (KillsOp0) {
1163       moveToTop(Op0, I);         // Move dead operand to TOS.
1164       TOS = Op0;
1165     } else if (KillsOp1) {
1166       moveToTop(Op1, I);
1167       TOS = Op1;
1168     } else {
1169       // All of the operands are live after this instruction executes, so we
1170       // cannot update on top of any operand.  Because of this, we must
1171       // duplicate one of the stack elements to the top.  It doesn't matter
1172       // which one we pick.
1173       //
1174       duplicateToTop(Op0, Dest, I);
1175       Op0 = TOS = Dest;
1176       KillsOp0 = true;
1177     }
1178   } else if (!KillsOp0 && !KillsOp1) {
1179     // If we DO have one of our operands at the top of the stack, but we don't
1180     // have a dead operand, we must duplicate one of the operands to a new slot
1181     // on the stack.
1182     duplicateToTop(Op0, Dest, I);
1183     Op0 = TOS = Dest;
1184     KillsOp0 = true;
1185   }
1186
1187   // Now we know that one of our operands is on the top of the stack, and at
1188   // least one of our operands is killed by this instruction.
1189   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1190          "Stack conditions not set up right!");
1191
1192   // We decide which form to use based on what is on the top of the stack, and
1193   // which operand is killed by this instruction.
1194   const TableEntry *InstTable;
1195   bool isForward = TOS == Op0;
1196   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1197   if (updateST0) {
1198     if (isForward)
1199       InstTable = ForwardST0Table;
1200     else
1201       InstTable = ReverseST0Table;
1202   } else {
1203     if (isForward)
1204       InstTable = ForwardSTiTable;
1205     else
1206       InstTable = ReverseSTiTable;
1207   }
1208
1209   int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1210                       MI->getOpcode());
1211   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1212
1213   // NotTOS - The register which is not on the top of stack...
1214   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1215
1216   // Replace the old instruction with a new instruction
1217   MBB->remove(I++);
1218   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1219
1220   // If both operands are killed, pop one off of the stack in addition to
1221   // overwriting the other one.
1222   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1223     assert(!updateST0 && "Should have updated other operand!");
1224     popStackAfter(I);   // Pop the top of stack
1225   }
1226
1227   // Update stack information so that we know the destination register is now on
1228   // the stack.
1229   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1230   assert(UpdatedSlot < StackTop && Dest < 7);
1231   Stack[UpdatedSlot]   = Dest;
1232   RegMap[Dest]         = UpdatedSlot;
1233   MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1234 }
1235
1236 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1237 /// register arguments and no explicit destinations.
1238 ///
1239 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1240   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1241   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1242   MachineInstr *MI = I;
1243
1244   unsigned NumOperands = MI->getDesc().getNumOperands();
1245   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1246   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1247   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1248   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1249   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1250
1251   // Make sure the first operand is on the top of stack, the other one can be
1252   // anywhere.
1253   moveToTop(Op0, I);
1254
1255   // Change from the pseudo instruction to the concrete instruction.
1256   MI->getOperand(0).setReg(getSTReg(Op1));
1257   MI->RemoveOperand(1);
1258   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1259
1260   // If any of the operands are killed by this instruction, free them.
1261   if (KillsOp0) freeStackSlotAfter(I, Op0);
1262   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1263 }
1264
1265 /// handleCondMovFP - Handle two address conditional move instructions.  These
1266 /// instructions move a st(i) register to st(0) iff a condition is true.  These
1267 /// instructions require that the first operand is at the top of the stack, but
1268 /// otherwise don't modify the stack at all.
1269 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1270   MachineInstr *MI = I;
1271
1272   unsigned Op0 = getFPReg(MI->getOperand(0));
1273   unsigned Op1 = getFPReg(MI->getOperand(2));
1274   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1275
1276   // The first operand *must* be on the top of the stack.
1277   moveToTop(Op0, I);
1278
1279   // Change the second operand to the stack register that the operand is in.
1280   // Change from the pseudo instruction to the concrete instruction.
1281   MI->RemoveOperand(0);
1282   MI->RemoveOperand(1);
1283   MI->getOperand(0).setReg(getSTReg(Op1));
1284   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1285
1286   // If we kill the second operand, make sure to pop it from the stack.
1287   if (Op0 != Op1 && KillsOp1) {
1288     // Get this value off of the register stack.
1289     freeStackSlotAfter(I, Op1);
1290   }
1291 }
1292
1293
1294 /// handleSpecialFP - Handle special instructions which behave unlike other
1295 /// floating point instructions.  This is primarily intended for use by pseudo
1296 /// instructions.
1297 ///
1298 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1299   MachineInstr *MI = Inst;
1300
1301   if (MI->isCall()) {
1302     handleCall(Inst);
1303     return;
1304   }
1305
1306   switch (MI->getOpcode()) {
1307   default: llvm_unreachable("Unknown SpecialFP instruction!");
1308   case TargetOpcode::COPY: {
1309     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1310     const MachineOperand &MO1 = MI->getOperand(1);
1311     const MachineOperand &MO0 = MI->getOperand(0);
1312     bool KillsSrc = MI->killsRegister(MO1.getReg());
1313
1314     // FP <- FP copy.
1315     unsigned DstFP = getFPReg(MO0);
1316     unsigned SrcFP = getFPReg(MO1);
1317     assert(isLive(SrcFP) && "Cannot copy dead register");
1318     if (KillsSrc) {
1319       // If the input operand is killed, we can just change the owner of the
1320       // incoming stack slot into the result.
1321       unsigned Slot = getSlot(SrcFP);
1322       Stack[Slot] = DstFP;
1323       RegMap[DstFP] = Slot;
1324     } else {
1325       // For COPY we just duplicate the specified value to a new stack slot.
1326       // This could be made better, but would require substantial changes.
1327       duplicateToTop(SrcFP, DstFP, Inst);
1328     }
1329     break;
1330   }
1331
1332   case TargetOpcode::IMPLICIT_DEF: {
1333     // All FP registers must be explicitly defined, so load a 0 instead.
1334     unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1335     DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1336     BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::LD_F0));
1337     pushReg(Reg);
1338     break;
1339   }
1340
1341   case TargetOpcode::INLINEASM: {
1342     // The inline asm MachineInstr currently only *uses* FP registers for the
1343     // 'f' constraint.  These should be turned into the current ST(x) register
1344     // in the machine instr.
1345     //
1346     // There are special rules for x87 inline assembly. The compiler must know
1347     // exactly how many registers are popped and pushed implicitly by the asm.
1348     // Otherwise it is not possible to restore the stack state after the inline
1349     // asm.
1350     //
1351     // There are 3 kinds of input operands:
1352     //
1353     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1354     //    popped input operand must be in a fixed stack slot, and it is either
1355     //    tied to an output operand, or in the clobber list. The MI has ST use
1356     //    and def operands for these inputs.
1357     //
1358     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1359     //    preserved by the inline asm. The fixed stack slots must be STn-STm
1360     //    following the popped inputs. A fixed input operand cannot be tied to
1361     //    an output or appear in the clobber list. The MI has ST use operands
1362     //    and no defs for these inputs.
1363     //
1364     // 3. Preserved inputs. These inputs use the "f" constraint which is
1365     //    represented as an FP register. The inline asm won't change these
1366     //    stack slots.
1367     //
1368     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1369     // registers do not count as output operands. The inline asm changes the
1370     // stack as if it popped all the popped inputs and then pushed all the
1371     // output operands.
1372
1373     // Scan the assembly for ST registers used, defined and clobbered. We can
1374     // only tell clobbers from defs by looking at the asm descriptor.
1375     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1376     unsigned NumOps = 0;
1377     SmallSet<unsigned, 1> FRegIdx;
1378     unsigned RCID;
1379
1380     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1381          i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1382       unsigned Flags = MI->getOperand(i).getImm();
1383
1384       NumOps = InlineAsm::getNumOperandRegisters(Flags);
1385       if (NumOps != 1)
1386         continue;
1387       const MachineOperand &MO = MI->getOperand(i + 1);
1388       if (!MO.isReg())
1389         continue;
1390       unsigned STReg = MO.getReg() - X86::FP0;
1391       if (STReg >= 8)
1392         continue;
1393
1394       // If the flag has a register class constraint, this must be an operand
1395       // with constraint "f". Record its index and continue.
1396       if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1397         FRegIdx.insert(i + 1);
1398         continue;
1399       }
1400
1401       switch (InlineAsm::getKind(Flags)) {
1402       case InlineAsm::Kind_RegUse:
1403         STUses |= (1u << STReg);
1404         break;
1405       case InlineAsm::Kind_RegDef:
1406       case InlineAsm::Kind_RegDefEarlyClobber:
1407         STDefs |= (1u << STReg);
1408         if (MO.isDead())
1409           STDeadDefs |= (1u << STReg);
1410         break;
1411       case InlineAsm::Kind_Clobber:
1412         STClobbers |= (1u << STReg);
1413         break;
1414       default:
1415         break;
1416       }
1417     }
1418
1419     if (STUses && !isMask_32(STUses))
1420       MI->emitError("fixed input regs must be last on the x87 stack");
1421     unsigned NumSTUses = CountTrailingOnes_32(STUses);
1422
1423     // Defs must be contiguous from the stack top. ST0-STn.
1424     if (STDefs && !isMask_32(STDefs)) {
1425       MI->emitError("output regs must be last on the x87 stack");
1426       STDefs = NextPowerOf2(STDefs) - 1;
1427     }
1428     unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1429
1430     // So must the clobbered stack slots. ST0-STm, m >= n.
1431     if (STClobbers && !isMask_32(STDefs | STClobbers))
1432       MI->emitError("clobbers must be last on the x87 stack");
1433
1434     // Popped inputs are the ones that are also clobbered or defined.
1435     unsigned STPopped = STUses & (STDefs | STClobbers);
1436     if (STPopped && !isMask_32(STPopped))
1437       MI->emitError("implicitly popped regs must be last on the x87 stack");
1438     unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1439
1440     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1441                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1442
1443 #ifndef NDEBUG
1444     // If any input operand uses constraint "f", all output register
1445     // constraints must be early-clobber defs.
1446     for (unsigned I = 0, E = MI->getNumOperands(); I < E; ++I)
1447       if (FRegIdx.count(I)) {
1448         assert((1 << getFPReg(MI->getOperand(I)) & STDefs) == 0 &&
1449                "Operands with constraint \"f\" cannot overlap with defs");
1450       }
1451 #endif
1452
1453     // Collect all FP registers (register operands with constraints "t", "u",
1454     // and "f") to kill afer the instruction.
1455     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1456     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1457       MachineOperand &Op = MI->getOperand(i);
1458       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1459         continue;
1460       unsigned FPReg = getFPReg(Op);
1461
1462       // If we kill this operand, make sure to pop it from the stack after the
1463       // asm.  We just remember it for now, and pop them all off at the end in
1464       // a batch.
1465       if (Op.isUse() && Op.isKill())
1466         FPKills |= 1U << FPReg;
1467     }
1468
1469     // Do not include registers that are implicitly popped by defs/clobbers.
1470     FPKills &= ~(STDefs | STClobbers);
1471
1472     // Now we can rearrange the live registers to match what was requested.
1473     unsigned char STUsesArray[8];
1474
1475     for (unsigned I = 0; I < NumSTUses; ++I)
1476       STUsesArray[I] = I;
1477
1478     shuffleStackTop(STUsesArray, NumSTUses, Inst);
1479     DEBUG({dbgs() << "Before asm: "; dumpStack();});
1480
1481     // With the stack layout fixed, rewrite the FP registers.
1482     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1483       MachineOperand &Op = MI->getOperand(i);
1484       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1485         continue;
1486
1487       unsigned FPReg = getFPReg(Op);
1488
1489       if (FRegIdx.count(i))
1490         // Operand with constraint "f".
1491         Op.setReg(getSTReg(FPReg));
1492       else
1493         // Operand with a single register class constraint ("t" or "u").
1494         Op.setReg(X86::ST0 + FPReg);
1495     }
1496
1497     // Simulate the inline asm popping its inputs and pushing its outputs.
1498     StackTop -= NumSTPopped;
1499
1500     for (unsigned i = 0; i < NumSTDefs; ++i)
1501       pushReg(NumSTDefs - i - 1);
1502
1503     // If this asm kills any FP registers (is the last use of them) we must
1504     // explicitly emit pop instructions for them.  Do this now after the asm has
1505     // executed so that the ST(x) numbers are not off (which would happen if we
1506     // did this inline with operand rewriting).
1507     //
1508     // Note: this might be a non-optimal pop sequence.  We might be able to do
1509     // better by trying to pop in stack order or something.
1510     while (FPKills) {
1511       unsigned FPReg = countTrailingZeros(FPKills);
1512       if (isLive(FPReg))
1513         freeStackSlotAfter(Inst, FPReg);
1514       FPKills &= ~(1U << FPReg);
1515     }
1516
1517     // Don't delete the inline asm!
1518     return;
1519   }
1520
1521   case X86::WIN_FTOL_32:
1522   case X86::WIN_FTOL_64: {
1523     // Push the operand into ST0.
1524     MachineOperand &Op = MI->getOperand(0);
1525     assert(Op.isUse() && Op.isReg() &&
1526       Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
1527     unsigned FPReg = getFPReg(Op);
1528     if (Op.isKill())
1529       moveToTop(FPReg, Inst);
1530     else
1531       duplicateToTop(FPReg, FPReg, Inst);
1532
1533     // Emit the call. This will pop the operand.
1534     BuildMI(*MBB, Inst, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
1535       .addExternalSymbol("_ftol2")
1536       .addReg(X86::ST0, RegState::ImplicitKill)
1537       .addReg(X86::ECX, RegState::ImplicitDefine)
1538       .addReg(X86::EAX, RegState::Define | RegState::Implicit)
1539       .addReg(X86::EDX, RegState::Define | RegState::Implicit)
1540       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1541     --StackTop;
1542
1543     break;
1544   }
1545
1546   case X86::RETQ:
1547   case X86::RETL:
1548   case X86::RETIL:
1549   case X86::RETIQ:
1550     // If RET has an FP register use operand, pass the first one in ST(0) and
1551     // the second one in ST(1).
1552
1553     // Find the register operands.
1554     unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1555     unsigned LiveMask = 0;
1556
1557     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1558       MachineOperand &Op = MI->getOperand(i);
1559       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1560         continue;
1561       // FP Register uses must be kills unless there are two uses of the same
1562       // register, in which case only one will be a kill.
1563       assert(Op.isUse() &&
1564              (Op.isKill() ||                        // Marked kill.
1565               getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1566               MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1567              "Ret only defs operands, and values aren't live beyond it");
1568
1569       if (FirstFPRegOp == ~0U)
1570         FirstFPRegOp = getFPReg(Op);
1571       else {
1572         assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1573         SecondFPRegOp = getFPReg(Op);
1574       }
1575       LiveMask |= (1 << getFPReg(Op));
1576
1577       // Remove the operand so that later passes don't see it.
1578       MI->RemoveOperand(i);
1579       --i, --e;
1580     }
1581
1582     // We may have been carrying spurious live-ins, so make sure only the returned
1583     // registers are left live.
1584     adjustLiveRegs(LiveMask, MI);
1585     if (!LiveMask) return;  // Quick check to see if any are possible.
1586
1587     // There are only four possibilities here:
1588     // 1) we are returning a single FP value.  In this case, it has to be in
1589     //    ST(0) already, so just declare success by removing the value from the
1590     //    FP Stack.
1591     if (SecondFPRegOp == ~0U) {
1592       // Assert that the top of stack contains the right FP register.
1593       assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1594              "Top of stack not the right register for RET!");
1595
1596       // Ok, everything is good, mark the value as not being on the stack
1597       // anymore so that our assertion about the stack being empty at end of
1598       // block doesn't fire.
1599       StackTop = 0;
1600       return;
1601     }
1602
1603     // Otherwise, we are returning two values:
1604     // 2) If returning the same value for both, we only have one thing in the FP
1605     //    stack.  Consider:  RET FP1, FP1
1606     if (StackTop == 1) {
1607       assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1608              "Stack misconfiguration for RET!");
1609
1610       // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1611       // register to hold it.
1612       unsigned NewReg = ScratchFPReg;
1613       duplicateToTop(FirstFPRegOp, NewReg, MI);
1614       FirstFPRegOp = NewReg;
1615     }
1616
1617     /// Okay we know we have two different FPx operands now:
1618     assert(StackTop == 2 && "Must have two values live!");
1619
1620     /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1621     ///    in ST(1).  In this case, emit an fxch.
1622     if (getStackEntry(0) == SecondFPRegOp) {
1623       assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1624       moveToTop(FirstFPRegOp, MI);
1625     }
1626
1627     /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1628     /// ST(1).  Just remove both from our understanding of the stack and return.
1629     assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1630     assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1631     StackTop = 0;
1632     return;
1633   }
1634
1635   Inst = MBB->erase(Inst);  // Remove the pseudo instruction
1636
1637   // We want to leave I pointing to the previous instruction, but what if we
1638   // just erased the first instruction?
1639   if (Inst == MBB->begin()) {
1640     DEBUG(dbgs() << "Inserting dummy KILL\n");
1641     Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1642   } else
1643     --Inst;
1644 }
1645
1646 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1647   const TargetRegisterInfo *TRI =
1648       MBB.getParent()->getSubtarget().getRegisterInfo();
1649   LivePhysRegs LPR(TRI);
1650
1651   LPR.addLiveOuts(&MBB);
1652
1653   for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1654        I != E; ++I) {
1655     if (I->isDebugValue())
1656       continue;
1657
1658     std::bitset<8> Defs;
1659     SmallVector<MachineOperand *, 2> Uses;
1660     MachineInstr &MI = *I;
1661
1662     for (auto &MO : I->operands()) {
1663       if (!MO.isReg())
1664         continue;
1665
1666       unsigned Reg = MO.getReg() - X86::FP0;
1667
1668       if (Reg >= 8)
1669         continue;
1670
1671       if (MO.isDef()) {
1672         Defs.set(Reg);
1673         if (!LPR.contains(MO.getReg()))
1674           MO.setIsDead();
1675       } else
1676         Uses.push_back(&MO);
1677     }
1678
1679     for (auto *MO : Uses)
1680       if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1681         MO->setIsKill();
1682
1683     LPR.stepBackward(MI);
1684   }
1685 }