Fixed/added namespace ending comments using clang-tidy. NFC
[oota-llvm.git] / lib / Target / X86 / Utils / X86ShuffleDecode.cpp
1 //===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Define several functions to decode x86 specific shuffle semantics into a
11 // generic vector mask.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "X86ShuffleDecode.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/CodeGen/MachineValueType.h"
18
19 //===----------------------------------------------------------------------===//
20 //  Vector Mask Decoding
21 //===----------------------------------------------------------------------===//
22
23 namespace llvm {
24
25 void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
26   // Defaults the copying the dest value.
27   ShuffleMask.push_back(0);
28   ShuffleMask.push_back(1);
29   ShuffleMask.push_back(2);
30   ShuffleMask.push_back(3);
31
32   // Decode the immediate.
33   unsigned ZMask = Imm & 15;
34   unsigned CountD = (Imm >> 4) & 3;
35   unsigned CountS = (Imm >> 6) & 3;
36
37   // CountS selects which input element to use.
38   unsigned InVal = 4 + CountS;
39   // CountD specifies which element of destination to update.
40   ShuffleMask[CountD] = InVal;
41   // ZMask zaps values, potentially overriding the CountD elt.
42   if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
43   if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
44   if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
45   if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
46 }
47
48 // <3,1> or <6,7,2,3>
49 void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
50   for (unsigned i = NElts / 2; i != NElts; ++i)
51     ShuffleMask.push_back(NElts + i);
52
53   for (unsigned i = NElts / 2; i != NElts; ++i)
54     ShuffleMask.push_back(i);
55 }
56
57 // <0,2> or <0,1,4,5>
58 void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
59   for (unsigned i = 0; i != NElts / 2; ++i)
60     ShuffleMask.push_back(i);
61
62   for (unsigned i = 0; i != NElts / 2; ++i)
63     ShuffleMask.push_back(NElts + i);
64 }
65
66 void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
67   unsigned NumElts = VT.getVectorNumElements();
68   for (int i = 0, e = NumElts / 2; i < e; ++i) {
69     ShuffleMask.push_back(2 * i);
70     ShuffleMask.push_back(2 * i);
71   }
72 }
73
74 void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
75   unsigned NumElts = VT.getVectorNumElements();
76   for (int i = 0, e = NumElts / 2; i < e; ++i) {
77     ShuffleMask.push_back(2 * i + 1);
78     ShuffleMask.push_back(2 * i + 1);
79   }
80 }
81
82 void DecodeMOVDDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
83   unsigned VectorSizeInBits = VT.getSizeInBits();
84   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
85   unsigned NumElts = VT.getVectorNumElements();
86   unsigned NumLanes = VectorSizeInBits / 128;
87   unsigned NumLaneElts = NumElts / NumLanes;
88   unsigned NumLaneSubElts = 64 / ScalarSizeInBits;
89
90   for (unsigned l = 0; l < NumElts; l += NumLaneElts)
91     for (unsigned i = 0; i < NumLaneElts; i += NumLaneSubElts)
92       for (unsigned s = 0; s != NumLaneSubElts; s++)
93         ShuffleMask.push_back(l + s);
94 }
95
96 void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
97   unsigned VectorSizeInBits = VT.getSizeInBits();
98   unsigned NumElts = VectorSizeInBits / 8;
99   unsigned NumLanes = VectorSizeInBits / 128;
100   unsigned NumLaneElts = NumElts / NumLanes;
101
102   for (unsigned l = 0; l < NumElts; l += NumLaneElts)
103     for (unsigned i = 0; i < NumLaneElts; ++i) {
104       int M = SM_SentinelZero;
105       if (i >= Imm) M = i - Imm + l;
106       ShuffleMask.push_back(M);
107     }
108 }
109
110 void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
111   unsigned VectorSizeInBits = VT.getSizeInBits();
112   unsigned NumElts = VectorSizeInBits / 8;
113   unsigned NumLanes = VectorSizeInBits / 128;
114   unsigned NumLaneElts = NumElts / NumLanes;
115
116   for (unsigned l = 0; l < NumElts; l += NumLaneElts)
117     for (unsigned i = 0; i < NumLaneElts; ++i) {
118       unsigned Base = i + Imm;
119       int M = Base + l;
120       if (Base >= NumLaneElts) M = SM_SentinelZero;
121       ShuffleMask.push_back(M);
122     }
123 }
124
125 void DecodePALIGNRMask(MVT VT, unsigned Imm,
126                        SmallVectorImpl<int> &ShuffleMask) {
127   unsigned NumElts = VT.getVectorNumElements();
128   unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8);
129
130   unsigned NumLanes = VT.getSizeInBits() / 128;
131   unsigned NumLaneElts = NumElts / NumLanes;
132
133   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
134     for (unsigned i = 0; i != NumLaneElts; ++i) {
135       unsigned Base = i + Offset;
136       // if i+offset is out of this lane then we actually need the other source
137       if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
138       ShuffleMask.push_back(Base + l);
139     }
140   }
141 }
142
143 /// DecodePSHUFMask - This decodes the shuffle masks for pshufd, and vpermilp*.
144 /// VT indicates the type of the vector allowing it to handle different
145 /// datatypes and vector widths.
146 void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
147   unsigned NumElts = VT.getVectorNumElements();
148
149   unsigned NumLanes = VT.getSizeInBits() / 128;
150   unsigned NumLaneElts = NumElts / NumLanes;
151
152   unsigned NewImm = Imm;
153   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
154     for (unsigned i = 0; i != NumLaneElts; ++i) {
155       ShuffleMask.push_back(NewImm % NumLaneElts + l);
156       NewImm /= NumLaneElts;
157     }
158     if (NumLaneElts == 4) NewImm = Imm; // reload imm
159   }
160 }
161
162 void DecodePSHUFHWMask(MVT VT, unsigned Imm,
163                        SmallVectorImpl<int> &ShuffleMask) {
164   unsigned NumElts = VT.getVectorNumElements();
165
166   for (unsigned l = 0; l != NumElts; l += 8) {
167     unsigned NewImm = Imm;
168     for (unsigned i = 0, e = 4; i != e; ++i) {
169       ShuffleMask.push_back(l + i);
170     }
171     for (unsigned i = 4, e = 8; i != e; ++i) {
172       ShuffleMask.push_back(l + 4 + (NewImm & 3));
173       NewImm >>= 2;
174     }
175   }
176 }
177
178 void DecodePSHUFLWMask(MVT VT, unsigned Imm,
179                        SmallVectorImpl<int> &ShuffleMask) {
180   unsigned NumElts = VT.getVectorNumElements();
181
182   for (unsigned l = 0; l != NumElts; l += 8) {
183     unsigned NewImm = Imm;
184     for (unsigned i = 0, e = 4; i != e; ++i) {
185       ShuffleMask.push_back(l + (NewImm & 3));
186       NewImm >>= 2;
187     }
188     for (unsigned i = 4, e = 8; i != e; ++i) {
189       ShuffleMask.push_back(l + i);
190     }
191   }
192 }
193
194 /// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
195 /// the type of the vector allowing it to handle different datatypes and vector
196 /// widths.
197 void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
198   unsigned NumElts = VT.getVectorNumElements();
199
200   unsigned NumLanes = VT.getSizeInBits() / 128;
201   unsigned NumLaneElts = NumElts / NumLanes;
202
203   unsigned NewImm = Imm;
204   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
205     // each half of a lane comes from different source
206     for (unsigned s = 0; s != NumElts * 2; s += NumElts) {
207       for (unsigned i = 0; i != NumLaneElts / 2; ++i) {
208         ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
209         NewImm /= NumLaneElts;
210       }
211     }
212     if (NumLaneElts == 4) NewImm = Imm; // reload imm
213   }
214 }
215
216 /// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
217 /// and punpckh*. VT indicates the type of the vector allowing it to handle
218 /// different datatypes and vector widths.
219 void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
220   unsigned NumElts = VT.getVectorNumElements();
221
222   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
223   // independently on 128-bit lanes.
224   unsigned NumLanes = VT.getSizeInBits() / 128;
225   if (NumLanes == 0 ) NumLanes = 1;  // Handle MMX
226   unsigned NumLaneElts = NumElts / NumLanes;
227
228   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
229     for (unsigned i = l + NumLaneElts / 2, e = l + NumLaneElts; i != e; ++i) {
230       ShuffleMask.push_back(i);           // Reads from dest/src1
231       ShuffleMask.push_back(i + NumElts); // Reads from src/src2
232     }
233   }
234 }
235
236 /// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
237 /// and punpckl*. VT indicates the type of the vector allowing it to handle
238 /// different datatypes and vector widths.
239 void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
240   unsigned NumElts = VT.getVectorNumElements();
241
242   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
243   // independently on 128-bit lanes.
244   unsigned NumLanes = VT.getSizeInBits() / 128;
245   if (NumLanes == 0 ) NumLanes = 1;  // Handle MMX
246   unsigned NumLaneElts = NumElts / NumLanes;
247
248   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
249     for (unsigned i = l, e = l + NumLaneElts / 2; i != e; ++i) {
250       ShuffleMask.push_back(i);           // Reads from dest/src1
251       ShuffleMask.push_back(i + NumElts); // Reads from src/src2
252     }
253   }
254 }
255
256 void DecodeVPERM2X128Mask(MVT VT, unsigned Imm,
257                           SmallVectorImpl<int> &ShuffleMask) {
258   if (Imm & 0x88)
259     return; // Not a shuffle
260
261   unsigned HalfSize = VT.getVectorNumElements() / 2;
262
263   for (unsigned l = 0; l != 2; ++l) {
264     unsigned HalfBegin = ((Imm >> (l * 4)) & 0x3) * HalfSize;
265     for (unsigned i = HalfBegin, e = HalfBegin + HalfSize; i != e; ++i)
266       ShuffleMask.push_back(i);
267   }
268 }
269
270 void DecodePSHUFBMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
271   Type *MaskTy = C->getType();
272   // It is not an error for the PSHUFB mask to not be a vector of i8 because the
273   // constant pool uniques constants by their bit representation.
274   // e.g. the following take up the same space in the constant pool:
275   //   i128 -170141183420855150465331762880109871104
276   //
277   //   <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160>
278   //
279   //   <4 x i32> <i32 -2147483648, i32 -2147483648,
280   //              i32 -2147483648, i32 -2147483648>
281
282   unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits();
283
284   if (MaskTySize != 128 && MaskTySize != 256) // FIXME: Add support for AVX-512.
285     return;
286
287   // This is a straightforward byte vector.
288   if (MaskTy->isVectorTy() && MaskTy->getVectorElementType()->isIntegerTy(8)) {
289     int NumElements = MaskTy->getVectorNumElements();
290     ShuffleMask.reserve(NumElements);
291
292     for (int i = 0; i < NumElements; ++i) {
293       // For AVX vectors with 32 bytes the base of the shuffle is the 16-byte
294       // lane of the vector we're inside.
295       int Base = i < 16 ? 0 : 16;
296       Constant *COp = C->getAggregateElement(i);
297       if (!COp) {
298         ShuffleMask.clear();
299         return;
300       } else if (isa<UndefValue>(COp)) {
301         ShuffleMask.push_back(SM_SentinelUndef);
302         continue;
303       }
304       uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
305       // If the high bit (7) of the byte is set, the element is zeroed.
306       if (Element & (1 << 7))
307         ShuffleMask.push_back(SM_SentinelZero);
308       else {
309         // Only the least significant 4 bits of the byte are used.
310         int Index = Base + (Element & 0xf);
311         ShuffleMask.push_back(Index);
312       }
313     }
314   }
315   // TODO: Handle funny-looking vectors too.
316 }
317
318 void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask,
319                       SmallVectorImpl<int> &ShuffleMask) {
320   for (int i = 0, e = RawMask.size(); i < e; ++i) {
321     uint64_t M = RawMask[i];
322     if (M == (uint64_t)SM_SentinelUndef) {
323       ShuffleMask.push_back(M);
324       continue;
325     }
326     // For AVX vectors with 32 bytes the base of the shuffle is the half of
327     // the vector we're inside.
328     int Base = i < 16 ? 0 : 16;
329     // If the high bit (7) of the byte is set, the element is zeroed.
330     if (M & (1 << 7))
331       ShuffleMask.push_back(SM_SentinelZero);
332     else {
333       // Only the least significant 4 bits of the byte are used.
334       int Index = Base + (M & 0xf);
335       ShuffleMask.push_back(Index);
336     }
337   }
338 }
339
340 void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
341   int ElementBits = VT.getScalarSizeInBits();
342   int NumElements = VT.getVectorNumElements();
343   for (int i = 0; i < NumElements; ++i) {
344     // If there are more than 8 elements in the vector, then any immediate blend
345     // mask applies to each 128-bit lane. There can never be more than
346     // 8 elements in a 128-bit lane with an immediate blend.
347     int Bit = NumElements > 8 ? i % (128 / ElementBits) : i;
348     assert(Bit < 8 &&
349            "Immediate blends only operate over 8 elements at a time!");
350     ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElements + i : i);
351   }
352 }
353
354 /// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
355 /// No VT provided since it only works on 256-bit, 4 element vectors.
356 void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
357   for (unsigned i = 0; i != 4; ++i) {
358     ShuffleMask.push_back((Imm >> (2 * i)) & 3);
359   }
360 }
361
362 void DecodeVPERMILPMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
363   Type *MaskTy = C->getType();
364   assert(MaskTy->isVectorTy() && "Expected a vector constant mask!");
365   assert(MaskTy->getVectorElementType()->isIntegerTy() &&
366          "Expected integer constant mask elements!");
367   int ElementBits = MaskTy->getScalarSizeInBits();
368   int NumElements = MaskTy->getVectorNumElements();
369   assert((NumElements == 2 || NumElements == 4 || NumElements == 8) &&
370          "Unexpected number of vector elements.");
371   ShuffleMask.reserve(NumElements);
372   if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
373     assert((unsigned)NumElements == CDS->getNumElements() &&
374            "Constant mask has a different number of elements!");
375
376     for (int i = 0; i < NumElements; ++i) {
377       int Base = (i * ElementBits / 128) * (128 / ElementBits);
378       uint64_t Element = CDS->getElementAsInteger(i);
379       // Only the least significant 2 bits of the integer are used.
380       int Index = Base + (Element & 0x3);
381       ShuffleMask.push_back(Index);
382     }
383   } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
384     assert((unsigned)NumElements == C->getNumOperands() &&
385            "Constant mask has a different number of elements!");
386
387     for (int i = 0; i < NumElements; ++i) {
388       int Base = (i * ElementBits / 128) * (128 / ElementBits);
389       Constant *COp = CV->getOperand(i);
390       if (isa<UndefValue>(COp)) {
391         ShuffleMask.push_back(SM_SentinelUndef);
392         continue;
393       }
394       uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
395       // Only the least significant 2 bits of the integer are used.
396       int Index = Base + (Element & 0x3);
397       ShuffleMask.push_back(Index);
398     }
399   }
400 }
401
402 void DecodeZeroExtendMask(MVT SrcVT, MVT DstVT, SmallVectorImpl<int> &Mask) {
403   unsigned NumDstElts = DstVT.getVectorNumElements();
404   unsigned SrcScalarBits = SrcVT.getScalarSizeInBits();
405   unsigned DstScalarBits = DstVT.getScalarSizeInBits();
406   unsigned Scale = DstScalarBits / SrcScalarBits;
407   assert(SrcScalarBits < DstScalarBits &&
408          "Expected zero extension mask to increase scalar size");
409   assert(SrcVT.getVectorNumElements() >= NumDstElts &&
410          "Too many zero extension lanes");
411
412   for (unsigned i = 0; i != NumDstElts; i++) {
413     Mask.push_back(i);
414     for (unsigned j = 1; j != Scale; j++)
415       Mask.push_back(SM_SentinelZero);
416   }
417 }
418
419 void DecodeZeroMoveLowMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
420   unsigned NumElts = VT.getVectorNumElements();
421   ShuffleMask.push_back(0);
422   for (unsigned i = 1; i < NumElts; i++)
423     ShuffleMask.push_back(SM_SentinelZero);
424 }
425
426 void DecodeScalarMoveMask(MVT VT, bool IsLoad, SmallVectorImpl<int> &Mask) {
427   // First element comes from the first element of second source.
428   // Remaining elements: Load zero extends / Move copies from first source.
429   unsigned NumElts = VT.getVectorNumElements();
430   Mask.push_back(NumElts);
431   for (unsigned i = 1; i < NumElts; i++)
432     Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i);
433 }
434 } // namespace llvm