The MCAssembler.h include isn't used.
[oota-llvm.git] / lib / Target / X86 / MCTargetDesc / X86AsmBackend.cpp
1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "MCTargetDesc/X86BaseInfo.h"
11 #include "MCTargetDesc/X86FixupKinds.h"
12 #include "llvm/ADT/StringSwitch.h"
13 #include "llvm/MC/MCAsmBackend.h"
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/MC/MCExpr.h"
16 #include "llvm/MC/MCFixupKindInfo.h"
17 #include "llvm/MC/MCMachObjectWriter.h"
18 #include "llvm/MC/MCObjectWriter.h"
19 #include "llvm/MC/MCSectionCOFF.h"
20 #include "llvm/MC/MCSectionELF.h"
21 #include "llvm/MC/MCSectionMachO.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/ELF.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MachO.h"
26 #include "llvm/Support/TargetRegistry.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
29
30 // Option to allow disabling arithmetic relaxation to workaround PR9807, which
31 // is useful when running bitwise comparison experiments on Darwin. We should be
32 // able to remove this once PR9807 is resolved.
33 static cl::opt<bool>
34 MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
35          cl::desc("Disable relaxation of arithmetic instruction for X86"));
36
37 static unsigned getFixupKindLog2Size(unsigned Kind) {
38   switch (Kind) {
39   default:
40     llvm_unreachable("invalid fixup kind!");
41   case FK_PCRel_1:
42   case FK_SecRel_1:
43   case FK_Data_1:
44     return 0;
45   case FK_PCRel_2:
46   case FK_SecRel_2:
47   case FK_Data_2:
48     return 1;
49   case FK_PCRel_4:
50   case X86::reloc_riprel_4byte:
51   case X86::reloc_riprel_4byte_movq_load:
52   case X86::reloc_signed_4byte:
53   case X86::reloc_global_offset_table:
54   case FK_SecRel_4:
55   case FK_Data_4:
56     return 2;
57   case FK_PCRel_8:
58   case FK_SecRel_8:
59   case FK_Data_8:
60   case X86::reloc_global_offset_table8:
61     return 3;
62   }
63 }
64
65 namespace {
66
67 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
68 public:
69   X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
70                      bool HasRelocationAddend, bool foobar)
71     : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
72 };
73
74 class X86AsmBackend : public MCAsmBackend {
75   const StringRef CPU;
76   bool HasNopl;
77   const uint64_t MaxNopLength;
78 public:
79   X86AsmBackend(const Target &T, StringRef _CPU)
80     : MCAsmBackend(), CPU(_CPU), MaxNopLength(_CPU == "slm" ? 7 : 15) {
81     HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
82               CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
83               CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
84               CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
85               CPU != "c3" && CPU != "c3-2";
86   }
87
88   unsigned getNumFixupKinds() const override {
89     return X86::NumTargetFixupKinds;
90   }
91
92   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
93     const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
94       { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
95       { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
96       { "reloc_signed_4byte", 0, 4 * 8, 0},
97       { "reloc_global_offset_table", 0, 4 * 8, 0}
98     };
99
100     if (Kind < FirstTargetFixupKind)
101       return MCAsmBackend::getFixupKindInfo(Kind);
102
103     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
104            "Invalid kind!");
105     return Infos[Kind - FirstTargetFixupKind];
106   }
107
108   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
109                   uint64_t Value, bool IsPCRel) const override {
110     unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
111
112     assert(Fixup.getOffset() + Size <= DataSize &&
113            "Invalid fixup offset!");
114
115     // Check that uppper bits are either all zeros or all ones.
116     // Specifically ignore overflow/underflow as long as the leakage is
117     // limited to the lower bits. This is to remain compatible with
118     // other assemblers.
119     assert(isIntN(Size * 8 + 1, Value) &&
120            "Value does not fit in the Fixup field");
121
122     for (unsigned i = 0; i != Size; ++i)
123       Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
124   }
125
126   bool mayNeedRelaxation(const MCInst &Inst) const override;
127
128   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
129                             const MCRelaxableFragment *DF,
130                             const MCAsmLayout &Layout) const override;
131
132   void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
133
134   bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
135 };
136 } // end anonymous namespace
137
138 static unsigned getRelaxedOpcodeBranch(unsigned Op) {
139   switch (Op) {
140   default:
141     return Op;
142
143   case X86::JAE_1: return X86::JAE_4;
144   case X86::JA_1:  return X86::JA_4;
145   case X86::JBE_1: return X86::JBE_4;
146   case X86::JB_1:  return X86::JB_4;
147   case X86::JE_1:  return X86::JE_4;
148   case X86::JGE_1: return X86::JGE_4;
149   case X86::JG_1:  return X86::JG_4;
150   case X86::JLE_1: return X86::JLE_4;
151   case X86::JL_1:  return X86::JL_4;
152   case X86::JMP_1: return X86::JMP_4;
153   case X86::JNE_1: return X86::JNE_4;
154   case X86::JNO_1: return X86::JNO_4;
155   case X86::JNP_1: return X86::JNP_4;
156   case X86::JNS_1: return X86::JNS_4;
157   case X86::JO_1:  return X86::JO_4;
158   case X86::JP_1:  return X86::JP_4;
159   case X86::JS_1:  return X86::JS_4;
160   }
161 }
162
163 static unsigned getRelaxedOpcodeArith(unsigned Op) {
164   switch (Op) {
165   default:
166     return Op;
167
168     // IMUL
169   case X86::IMUL16rri8: return X86::IMUL16rri;
170   case X86::IMUL16rmi8: return X86::IMUL16rmi;
171   case X86::IMUL32rri8: return X86::IMUL32rri;
172   case X86::IMUL32rmi8: return X86::IMUL32rmi;
173   case X86::IMUL64rri8: return X86::IMUL64rri32;
174   case X86::IMUL64rmi8: return X86::IMUL64rmi32;
175
176     // AND
177   case X86::AND16ri8: return X86::AND16ri;
178   case X86::AND16mi8: return X86::AND16mi;
179   case X86::AND32ri8: return X86::AND32ri;
180   case X86::AND32mi8: return X86::AND32mi;
181   case X86::AND64ri8: return X86::AND64ri32;
182   case X86::AND64mi8: return X86::AND64mi32;
183
184     // OR
185   case X86::OR16ri8: return X86::OR16ri;
186   case X86::OR16mi8: return X86::OR16mi;
187   case X86::OR32ri8: return X86::OR32ri;
188   case X86::OR32mi8: return X86::OR32mi;
189   case X86::OR64ri8: return X86::OR64ri32;
190   case X86::OR64mi8: return X86::OR64mi32;
191
192     // XOR
193   case X86::XOR16ri8: return X86::XOR16ri;
194   case X86::XOR16mi8: return X86::XOR16mi;
195   case X86::XOR32ri8: return X86::XOR32ri;
196   case X86::XOR32mi8: return X86::XOR32mi;
197   case X86::XOR64ri8: return X86::XOR64ri32;
198   case X86::XOR64mi8: return X86::XOR64mi32;
199
200     // ADD
201   case X86::ADD16ri8: return X86::ADD16ri;
202   case X86::ADD16mi8: return X86::ADD16mi;
203   case X86::ADD32ri8: return X86::ADD32ri;
204   case X86::ADD32mi8: return X86::ADD32mi;
205   case X86::ADD64ri8: return X86::ADD64ri32;
206   case X86::ADD64mi8: return X86::ADD64mi32;
207
208     // SUB
209   case X86::SUB16ri8: return X86::SUB16ri;
210   case X86::SUB16mi8: return X86::SUB16mi;
211   case X86::SUB32ri8: return X86::SUB32ri;
212   case X86::SUB32mi8: return X86::SUB32mi;
213   case X86::SUB64ri8: return X86::SUB64ri32;
214   case X86::SUB64mi8: return X86::SUB64mi32;
215
216     // CMP
217   case X86::CMP16ri8: return X86::CMP16ri;
218   case X86::CMP16mi8: return X86::CMP16mi;
219   case X86::CMP32ri8: return X86::CMP32ri;
220   case X86::CMP32mi8: return X86::CMP32mi;
221   case X86::CMP64ri8: return X86::CMP64ri32;
222   case X86::CMP64mi8: return X86::CMP64mi32;
223
224     // PUSH
225   case X86::PUSH32i8:  return X86::PUSHi32;
226   case X86::PUSH16i8:  return X86::PUSHi16;
227   case X86::PUSH64i8:  return X86::PUSH64i32;
228   case X86::PUSH64i16: return X86::PUSH64i32;
229   }
230 }
231
232 static unsigned getRelaxedOpcode(unsigned Op) {
233   unsigned R = getRelaxedOpcodeArith(Op);
234   if (R != Op)
235     return R;
236   return getRelaxedOpcodeBranch(Op);
237 }
238
239 bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
240   // Branches can always be relaxed.
241   if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
242     return true;
243
244   if (MCDisableArithRelaxation)
245     return false;
246
247   // Check if this instruction is ever relaxable.
248   if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
249     return false;
250
251
252   // Check if it has an expression and is not RIP relative.
253   bool hasExp = false;
254   bool hasRIP = false;
255   for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
256     const MCOperand &Op = Inst.getOperand(i);
257     if (Op.isExpr())
258       hasExp = true;
259
260     if (Op.isReg() && Op.getReg() == X86::RIP)
261       hasRIP = true;
262   }
263
264   // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
265   // how we do relaxations?
266   return hasExp && !hasRIP;
267 }
268
269 bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
270                                          uint64_t Value,
271                                          const MCRelaxableFragment *DF,
272                                          const MCAsmLayout &Layout) const {
273   // Relax if the value is too big for a (signed) i8.
274   return int64_t(Value) != int64_t(int8_t(Value));
275 }
276
277 // FIXME: Can tblgen help at all here to verify there aren't other instructions
278 // we can relax?
279 void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
280   // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
281   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
282
283   if (RelaxedOp == Inst.getOpcode()) {
284     SmallString<256> Tmp;
285     raw_svector_ostream OS(Tmp);
286     Inst.dump_pretty(OS);
287     OS << "\n";
288     report_fatal_error("unexpected instruction to relax: " + OS.str());
289   }
290
291   Res = Inst;
292   Res.setOpcode(RelaxedOp);
293 }
294
295 /// \brief Write a sequence of optimal nops to the output, covering \p Count
296 /// bytes.
297 /// \return - true on success, false on failure
298 bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
299   static const uint8_t Nops[10][10] = {
300     // nop
301     {0x90},
302     // xchg %ax,%ax
303     {0x66, 0x90},
304     // nopl (%[re]ax)
305     {0x0f, 0x1f, 0x00},
306     // nopl 0(%[re]ax)
307     {0x0f, 0x1f, 0x40, 0x00},
308     // nopl 0(%[re]ax,%[re]ax,1)
309     {0x0f, 0x1f, 0x44, 0x00, 0x00},
310     // nopw 0(%[re]ax,%[re]ax,1)
311     {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
312     // nopl 0L(%[re]ax)
313     {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
314     // nopl 0L(%[re]ax,%[re]ax,1)
315     {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
316     // nopw 0L(%[re]ax,%[re]ax,1)
317     {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
318     // nopw %cs:0L(%[re]ax,%[re]ax,1)
319     {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
320   };
321
322   // This CPU doesn't support long nops. If needed add more.
323   // FIXME: Can we get this from the subtarget somehow?
324   // FIXME: We could generated something better than plain 0x90.
325   if (!HasNopl) {
326     for (uint64_t i = 0; i < Count; ++i)
327       OW->Write8(0x90);
328     return true;
329   }
330
331   // 15 is the longest single nop instruction.  Emit as many 15-byte nops as
332   // needed, then emit a nop of the remaining length.
333   do {
334     const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
335     const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
336     for (uint8_t i = 0; i < Prefixes; i++)
337       OW->Write8(0x66);
338     const uint8_t Rest = ThisNopLength - Prefixes;
339     for (uint8_t i = 0; i < Rest; i++)
340       OW->Write8(Nops[Rest - 1][i]);
341     Count -= ThisNopLength;
342   } while (Count != 0);
343
344   return true;
345 }
346
347 /* *** */
348
349 namespace {
350
351 class ELFX86AsmBackend : public X86AsmBackend {
352 public:
353   uint8_t OSABI;
354   ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
355       : X86AsmBackend(T, CPU), OSABI(_OSABI) {}
356 };
357
358 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
359 public:
360   ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
361     : ELFX86AsmBackend(T, OSABI, CPU) {}
362
363   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
364     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
365   }
366 };
367
368 class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
369 public:
370   ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
371       : ELFX86AsmBackend(T, OSABI, CPU) {}
372
373   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
374     return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
375                                     ELF::EM_X86_64);
376   }
377 };
378
379 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
380 public:
381   ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
382     : ELFX86AsmBackend(T, OSABI, CPU) {}
383
384   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
385     return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
386   }
387 };
388
389 class WindowsX86AsmBackend : public X86AsmBackend {
390   bool Is64Bit;
391
392 public:
393   WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
394     : X86AsmBackend(T, CPU)
395     , Is64Bit(is64Bit) {
396   }
397
398   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
399     return createX86WinCOFFObjectWriter(OS, Is64Bit);
400   }
401 };
402
403 namespace CU {
404
405   /// Compact unwind encoding values.
406   enum CompactUnwindEncodings {
407     /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
408     /// the return address, then [RE]SP is moved to [RE]BP.
409     UNWIND_MODE_BP_FRAME                   = 0x01000000,
410
411     /// A frameless function with a small constant stack size.
412     UNWIND_MODE_STACK_IMMD                 = 0x02000000,
413
414     /// A frameless function with a large constant stack size.
415     UNWIND_MODE_STACK_IND                  = 0x03000000,
416
417     /// No compact unwind encoding is available.
418     UNWIND_MODE_DWARF                      = 0x04000000,
419
420     /// Mask for encoding the frame registers.
421     UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF,
422
423     /// Mask for encoding the frameless registers.
424     UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
425   };
426
427 } // end CU namespace
428
429 class DarwinX86AsmBackend : public X86AsmBackend {
430   const MCRegisterInfo &MRI;
431
432   /// \brief Number of registers that can be saved in a compact unwind encoding.
433   enum { CU_NUM_SAVED_REGS = 6 };
434
435   mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
436   bool Is64Bit;
437
438   unsigned OffsetSize;                   ///< Offset of a "push" instruction.
439   unsigned MoveInstrSize;                ///< Size of a "move" instruction.
440   unsigned StackDivide;                  ///< Amount to adjust stack size by.
441 protected:
442   /// \brief Size of a "push" instruction for the given register.
443   unsigned PushInstrSize(unsigned Reg) const {
444     switch (Reg) {
445       case X86::EBX:
446       case X86::ECX:
447       case X86::EDX:
448       case X86::EDI:
449       case X86::ESI:
450       case X86::EBP:
451       case X86::RBX:
452       case X86::RBP:
453         return 1;
454       case X86::R12:
455       case X86::R13:
456       case X86::R14:
457       case X86::R15:
458         return 2;
459     }
460     return 1;
461   }
462
463   /// \brief Implementation of algorithm to generate the compact unwind encoding
464   /// for the CFI instructions.
465   uint32_t
466   generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
467     if (Instrs.empty()) return 0;
468
469     // Reset the saved registers.
470     unsigned SavedRegIdx = 0;
471     memset(SavedRegs, 0, sizeof(SavedRegs));
472
473     bool HasFP = false;
474
475     // Encode that we are using EBP/RBP as the frame pointer.
476     uint32_t CompactUnwindEncoding = 0;
477
478     unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
479     unsigned InstrOffset = 0;
480     unsigned StackAdjust = 0;
481     unsigned StackSize = 0;
482     unsigned PrevStackSize = 0;
483     unsigned NumDefCFAOffsets = 0;
484
485     for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
486       const MCCFIInstruction &Inst = Instrs[i];
487
488       switch (Inst.getOperation()) {
489       default:
490         // Any other CFI directives indicate a frame that we aren't prepared
491         // to represent via compact unwind, so just bail out.
492         return 0;
493       case MCCFIInstruction::OpDefCfaRegister: {
494         // Defines a frame pointer. E.g.
495         //
496         //     movq %rsp, %rbp
497         //  L0:
498         //     .cfi_def_cfa_register %rbp
499         //
500         HasFP = true;
501         assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
502                (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
503
504         // Reset the counts.
505         memset(SavedRegs, 0, sizeof(SavedRegs));
506         StackAdjust = 0;
507         SavedRegIdx = 0;
508         InstrOffset += MoveInstrSize;
509         break;
510       }
511       case MCCFIInstruction::OpDefCfaOffset: {
512         // Defines a new offset for the CFA. E.g.
513         //
514         //  With frame:
515         //  
516         //     pushq %rbp
517         //  L0:
518         //     .cfi_def_cfa_offset 16
519         //
520         //  Without frame:
521         //
522         //     subq $72, %rsp
523         //  L0:
524         //     .cfi_def_cfa_offset 80
525         //
526         PrevStackSize = StackSize;
527         StackSize = std::abs(Inst.getOffset()) / StackDivide;
528         ++NumDefCFAOffsets;
529         break;
530       }
531       case MCCFIInstruction::OpOffset: {
532         // Defines a "push" of a callee-saved register. E.g.
533         //
534         //     pushq %r15
535         //     pushq %r14
536         //     pushq %rbx
537         //  L0:
538         //     subq $120, %rsp
539         //  L1:
540         //     .cfi_offset %rbx, -40
541         //     .cfi_offset %r14, -32
542         //     .cfi_offset %r15, -24
543         //
544         if (SavedRegIdx == CU_NUM_SAVED_REGS)
545           // If there are too many saved registers, we cannot use a compact
546           // unwind encoding.
547           return CU::UNWIND_MODE_DWARF;
548
549         unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
550         SavedRegs[SavedRegIdx++] = Reg;
551         StackAdjust += OffsetSize;
552         InstrOffset += PushInstrSize(Reg);
553         break;
554       }
555       }
556     }
557
558     StackAdjust /= StackDivide;
559
560     if (HasFP) {
561       if ((StackAdjust & 0xFF) != StackAdjust)
562         // Offset was too big for a compact unwind encoding.
563         return CU::UNWIND_MODE_DWARF;
564
565       // Get the encoding of the saved registers when we have a frame pointer.
566       uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
567       if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
568
569       CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
570       CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
571       CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
572     } else {
573       // If the amount of the stack allocation is the size of a register, then
574       // we "push" the RAX/EAX register onto the stack instead of adjusting the
575       // stack pointer with a SUB instruction. We don't support the push of the
576       // RAX/EAX register with compact unwind. So we check for that situation
577       // here.
578       if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
579            StackSize - PrevStackSize == 1) ||
580           (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
581         return CU::UNWIND_MODE_DWARF;
582
583       SubtractInstrIdx += InstrOffset;
584       ++StackAdjust;
585
586       if ((StackSize & 0xFF) == StackSize) {
587         // Frameless stack with a small stack size.
588         CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
589
590         // Encode the stack size.
591         CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
592       } else {
593         if ((StackAdjust & 0x7) != StackAdjust)
594           // The extra stack adjustments are too big for us to handle.
595           return CU::UNWIND_MODE_DWARF;
596
597         // Frameless stack with an offset too large for us to encode compactly.
598         CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
599
600         // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
601         // instruction.
602         CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
603
604         // Encode any extra stack stack adjustments (done via push
605         // instructions).
606         CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
607       }
608
609       // Encode the number of registers saved. (Reverse the list first.)
610       std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
611       CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
612
613       // Get the encoding of the saved registers when we don't have a frame
614       // pointer.
615       uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
616       if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
617
618       // Encode the register encoding.
619       CompactUnwindEncoding |=
620         RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
621     }
622
623     return CompactUnwindEncoding;
624   }
625
626 private:
627   /// \brief Get the compact unwind number for a given register. The number
628   /// corresponds to the enum lists in compact_unwind_encoding.h.
629   int getCompactUnwindRegNum(unsigned Reg) const {
630     static const uint16_t CU32BitRegs[7] = {
631       X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
632     };
633     static const uint16_t CU64BitRegs[] = {
634       X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
635     };
636     const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
637     for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
638       if (*CURegs == Reg)
639         return Idx;
640
641     return -1;
642   }
643
644   /// \brief Return the registers encoded for a compact encoding with a frame
645   /// pointer.
646   uint32_t encodeCompactUnwindRegistersWithFrame() const {
647     // Encode the registers in the order they were saved --- 3-bits per
648     // register. The list of saved registers is assumed to be in reverse
649     // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
650     uint32_t RegEnc = 0;
651     for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
652       unsigned Reg = SavedRegs[i];
653       if (Reg == 0) break;
654
655       int CURegNum = getCompactUnwindRegNum(Reg);
656       if (CURegNum == -1) return ~0U;
657
658       // Encode the 3-bit register number in order, skipping over 3-bits for
659       // each register.
660       RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
661     }
662
663     assert((RegEnc & 0x3FFFF) == RegEnc &&
664            "Invalid compact register encoding!");
665     return RegEnc;
666   }
667
668   /// \brief Create the permutation encoding used with frameless stacks. It is
669   /// passed the number of registers to be saved and an array of the registers
670   /// saved.
671   uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
672     // The saved registers are numbered from 1 to 6. In order to encode the
673     // order in which they were saved, we re-number them according to their
674     // place in the register order. The re-numbering is relative to the last
675     // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
676     // that order:
677     //
678     //    Orig  Re-Num
679     //    ----  ------
680     //     6       6
681     //     2       2
682     //     4       3
683     //     5       3
684     //
685     for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
686       int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
687       if (CUReg == -1) return ~0U;
688       SavedRegs[i] = CUReg;
689     }
690
691     // Reverse the list.
692     std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
693
694     uint32_t RenumRegs[CU_NUM_SAVED_REGS];
695     for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
696       unsigned Countless = 0;
697       for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
698         if (SavedRegs[j] < SavedRegs[i])
699           ++Countless;
700
701       RenumRegs[i] = SavedRegs[i] - Countless - 1;
702     }
703
704     // Take the renumbered values and encode them into a 10-bit number.
705     uint32_t permutationEncoding = 0;
706     switch (RegCount) {
707     case 6:
708       permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
709                              + 6 * RenumRegs[2] +  2 * RenumRegs[3]
710                              +     RenumRegs[4];
711       break;
712     case 5:
713       permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
714                              + 6 * RenumRegs[3] +  2 * RenumRegs[4]
715                              +     RenumRegs[5];
716       break;
717     case 4:
718       permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
719                              + 3 * RenumRegs[4] +      RenumRegs[5];
720       break;
721     case 3:
722       permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
723                              +     RenumRegs[5];
724       break;
725     case 2:
726       permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
727       break;
728     case 1:
729       permutationEncoding |=       RenumRegs[5];
730       break;
731     }
732
733     assert((permutationEncoding & 0x3FF) == permutationEncoding &&
734            "Invalid compact register encoding!");
735     return permutationEncoding;
736   }
737
738 public:
739   DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
740                       bool Is64Bit)
741     : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
742     memset(SavedRegs, 0, sizeof(SavedRegs));
743     OffsetSize = Is64Bit ? 8 : 4;
744     MoveInstrSize = Is64Bit ? 3 : 2;
745     StackDivide = Is64Bit ? 8 : 4;
746   }
747 };
748
749 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
750 public:
751   DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
752                          StringRef CPU)
753       : DarwinX86AsmBackend(T, MRI, CPU, false) {}
754
755   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
756     return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
757                                      MachO::CPU_TYPE_I386,
758                                      MachO::CPU_SUBTYPE_I386_ALL);
759   }
760
761   /// \brief Generate the compact unwind encoding for the CFI instructions.
762   uint32_t generateCompactUnwindEncoding(
763                              ArrayRef<MCCFIInstruction> Instrs) const override {
764     return generateCompactUnwindEncodingImpl(Instrs);
765   }
766 };
767
768 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
769   const MachO::CPUSubTypeX86 Subtype;
770 public:
771   DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
772                          StringRef CPU, MachO::CPUSubTypeX86 st)
773       : DarwinX86AsmBackend(T, MRI, CPU, true), Subtype(st) {}
774
775   MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
776     return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
777                                      MachO::CPU_TYPE_X86_64, Subtype);
778   }
779
780   bool doesSectionRequireSymbols(const MCSection &Section) const override {
781     // Temporary labels in the string literals sections require symbols. The
782     // issue is that the x86_64 relocation format does not allow symbol +
783     // offset, and so the linker does not have enough information to resolve the
784     // access to the appropriate atom unless an external relocation is used. For
785     // non-cstring sections, we expect the compiler to use a non-temporary label
786     // for anything that could have an addend pointing outside the symbol.
787     //
788     // See <rdar://problem/4765733>.
789     const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
790     return SMO.getType() == MachO::S_CSTRING_LITERALS;
791   }
792
793   bool isSectionAtomizable(const MCSection &Section) const override {
794     const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
795     // Fixed sized data sections are uniqued, they cannot be diced into atoms.
796     switch (SMO.getType()) {
797     default:
798       return true;
799
800     case MachO::S_4BYTE_LITERALS:
801     case MachO::S_8BYTE_LITERALS:
802     case MachO::S_16BYTE_LITERALS:
803     case MachO::S_LITERAL_POINTERS:
804     case MachO::S_NON_LAZY_SYMBOL_POINTERS:
805     case MachO::S_LAZY_SYMBOL_POINTERS:
806     case MachO::S_MOD_INIT_FUNC_POINTERS:
807     case MachO::S_MOD_TERM_FUNC_POINTERS:
808     case MachO::S_INTERPOSING:
809       return false;
810     }
811   }
812
813   /// \brief Generate the compact unwind encoding for the CFI instructions.
814   uint32_t generateCompactUnwindEncoding(
815                              ArrayRef<MCCFIInstruction> Instrs) const override {
816     return generateCompactUnwindEncodingImpl(Instrs);
817   }
818 };
819
820 } // end anonymous namespace
821
822 MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
823                                            const MCRegisterInfo &MRI,
824                                            StringRef TT,
825                                            StringRef CPU) {
826   Triple TheTriple(TT);
827
828   if (TheTriple.isOSBinFormatMachO())
829     return new DarwinX86_32AsmBackend(T, MRI, CPU);
830
831   if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
832     return new WindowsX86AsmBackend(T, false, CPU);
833
834   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
835   return new ELFX86_32AsmBackend(T, OSABI, CPU);
836 }
837
838 MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
839                                            const MCRegisterInfo &MRI,
840                                            StringRef TT,
841                                            StringRef CPU) {
842   Triple TheTriple(TT);
843
844   if (TheTriple.isOSBinFormatMachO()) {
845     MachO::CPUSubTypeX86 CS =
846         StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
847             .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
848             .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
849     return new DarwinX86_64AsmBackend(T, MRI, CPU, CS);
850   }
851
852   if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
853     return new WindowsX86AsmBackend(T, true, CPU);
854
855   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
856
857   if (TheTriple.getEnvironment() == Triple::GNUX32)
858     return new ELFX86_X32AsmBackend(T, OSABI, CPU);
859   return new ELFX86_64AsmBackend(T, OSABI, CPU);
860 }