[C++11] Add 'override' keywords and remove 'virtual'. Additionally add 'final' and...
[oota-llvm.git] / lib / Target / SystemZ / SystemZLongBranch.cpp
1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass makes sure that all branches are in range.  There are several ways
11 // in which this could be done.  One aggressive approach is to assume that all
12 // branches are in range and successively replace those that turn out not
13 // to be in range with a longer form (branch relaxation).  A simple
14 // implementation is to continually walk through the function relaxing
15 // branches until no more changes are needed and a fixed point is reached.
16 // However, in the pathological worst case, this implementation is
17 // quadratic in the number of blocks; relaxing branch N can make branch N-1
18 // go out of range, which in turn can make branch N-2 go out of range,
19 // and so on.
20 //
21 // An alternative approach is to assume that all branches must be
22 // converted to their long forms, then reinstate the short forms of
23 // branches that, even under this pessimistic assumption, turn out to be
24 // in range (branch shortening).  This too can be implemented as a function
25 // walk that is repeated until a fixed point is reached.  In general,
26 // the result of shortening is not as good as that of relaxation, and
27 // shortening is also quadratic in the worst case; shortening branch N
28 // can bring branch N-1 in range of the short form, which in turn can do
29 // the same for branch N-2, and so on.  The main advantage of shortening
30 // is that each walk through the function produces valid code, so it is
31 // possible to stop at any point after the first walk.  The quadraticness
32 // could therefore be handled with a maximum pass count, although the
33 // question then becomes: what maximum count should be used?
34 //
35 // On SystemZ, long branches are only needed for functions bigger than 64k,
36 // which are relatively rare to begin with, and the long branch sequences
37 // are actually relatively cheap.  It therefore doesn't seem worth spending
38 // much compilation time on the problem.  Instead, the approach we take is:
39 //
40 // (1) Work out the address that each block would have if no branches
41 //     need relaxing.  Exit the pass early if all branches are in range
42 //     according to this assumption.
43 //
44 // (2) Work out the address that each block would have if all branches
45 //     need relaxing.
46 //
47 // (3) Walk through the block calculating the final address of each instruction
48 //     and relaxing those that need to be relaxed.  For backward branches,
49 //     this check uses the final address of the target block, as calculated
50 //     earlier in the walk.  For forward branches, this check uses the
51 //     address of the target block that was calculated in (2).  Both checks
52 //     give a conservatively-correct range.
53 //
54 //===----------------------------------------------------------------------===//
55
56 #include "SystemZTargetMachine.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/CodeGen/MachineFunctionPass.h"
59 #include "llvm/CodeGen/MachineInstrBuilder.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Target/TargetInstrInfo.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetRegisterInfo.h"
66
67 using namespace llvm;
68
69 #define DEBUG_TYPE "systemz-long-branch"
70
71 STATISTIC(LongBranches, "Number of long branches.");
72
73 namespace {
74 // Represents positional information about a basic block.
75 struct MBBInfo {
76   // The address that we currently assume the block has.
77   uint64_t Address;
78
79   // The size of the block in bytes, excluding terminators.
80   // This value never changes.
81   uint64_t Size;
82
83   // The minimum alignment of the block, as a log2 value.
84   // This value never changes.
85   unsigned Alignment;
86
87   // The number of terminators in this block.  This value never changes.
88   unsigned NumTerminators;
89
90   MBBInfo()
91     : Address(0), Size(0), Alignment(0), NumTerminators(0) {} 
92 };
93
94 // Represents the state of a block terminator.
95 struct TerminatorInfo {
96   // If this terminator is a relaxable branch, this points to the branch
97   // instruction, otherwise it is null.
98   MachineInstr *Branch;
99
100   // The address that we currently assume the terminator has.
101   uint64_t Address;
102
103   // The current size of the terminator in bytes.
104   uint64_t Size;
105
106   // If Branch is nonnull, this is the number of the target block,
107   // otherwise it is unused.
108   unsigned TargetBlock;
109
110   // If Branch is nonnull, this is the length of the longest relaxed form,
111   // otherwise it is zero.
112   unsigned ExtraRelaxSize;
113
114   TerminatorInfo() : Branch(nullptr), Size(0), TargetBlock(0),
115                      ExtraRelaxSize(0) {}
116 };
117
118 // Used to keep track of the current position while iterating over the blocks.
119 struct BlockPosition {
120   // The address that we assume this position has.
121   uint64_t Address;
122
123   // The number of low bits in Address that are known to be the same
124   // as the runtime address.
125   unsigned KnownBits;
126
127   BlockPosition(unsigned InitialAlignment)
128     : Address(0), KnownBits(InitialAlignment) {}
129 };
130
131 class SystemZLongBranch : public MachineFunctionPass {
132 public:
133   static char ID;
134   SystemZLongBranch(const SystemZTargetMachine &tm)
135     : MachineFunctionPass(ID), TII(nullptr) {}
136
137   const char *getPassName() const override {
138     return "SystemZ Long Branch";
139   }
140
141   bool runOnMachineFunction(MachineFunction &F) override;
142
143 private:
144   void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
145   void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
146                       bool AssumeRelaxed);
147   TerminatorInfo describeTerminator(MachineInstr *MI);
148   uint64_t initMBBInfo();
149   bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
150   bool mustRelaxABranch();
151   void setWorstCaseAddresses();
152   void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
153   void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
154   void relaxBranch(TerminatorInfo &Terminator);
155   void relaxBranches();
156
157   const SystemZInstrInfo *TII;
158   MachineFunction *MF;
159   SmallVector<MBBInfo, 16> MBBs;
160   SmallVector<TerminatorInfo, 16> Terminators;
161 };
162
163 char SystemZLongBranch::ID = 0;
164
165 const uint64_t MaxBackwardRange = 0x10000;
166 const uint64_t MaxForwardRange = 0xfffe;
167 } // end anonymous namespace
168
169 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
170   return new SystemZLongBranch(TM);
171 }
172
173 // Position describes the state immediately before Block.  Update Block
174 // accordingly and move Position to the end of the block's non-terminator
175 // instructions.
176 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
177                                            MBBInfo &Block) {
178   if (Block.Alignment > Position.KnownBits) {
179     // When calculating the address of Block, we need to conservatively
180     // assume that Block had the worst possible misalignment.
181     Position.Address += ((uint64_t(1) << Block.Alignment) -
182                          (uint64_t(1) << Position.KnownBits));
183     Position.KnownBits = Block.Alignment;
184   }
185
186   // Align the addresses.
187   uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1;
188   Position.Address = (Position.Address + AlignMask) & ~AlignMask;
189
190   // Record the block's position.
191   Block.Address = Position.Address;
192
193   // Move past the non-terminators in the block.
194   Position.Address += Block.Size;
195 }
196
197 // Position describes the state immediately before Terminator.
198 // Update Terminator accordingly and move Position past it.
199 // Assume that Terminator will be relaxed if AssumeRelaxed.
200 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
201                                        TerminatorInfo &Terminator,
202                                        bool AssumeRelaxed) {
203   Terminator.Address = Position.Address;
204   Position.Address += Terminator.Size;
205   if (AssumeRelaxed)
206     Position.Address += Terminator.ExtraRelaxSize;
207 }
208
209 // Return a description of terminator instruction MI.
210 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr *MI) {
211   TerminatorInfo Terminator;
212   Terminator.Size = TII->getInstSizeInBytes(MI);
213   if (MI->isConditionalBranch() || MI->isUnconditionalBranch()) {
214     switch (MI->getOpcode()) {
215     case SystemZ::J:
216       // Relaxes to JG, which is 2 bytes longer.
217       Terminator.ExtraRelaxSize = 2;
218       break;
219     case SystemZ::BRC:
220       // Relaxes to BRCL, which is 2 bytes longer.
221       Terminator.ExtraRelaxSize = 2;
222       break;
223     case SystemZ::BRCT:
224     case SystemZ::BRCTG:
225       // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
226       Terminator.ExtraRelaxSize = 6;
227       break;
228     case SystemZ::CRJ:
229     case SystemZ::CLRJ:
230       // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
231       Terminator.ExtraRelaxSize = 2;
232       break;
233     case SystemZ::CGRJ:
234     case SystemZ::CLGRJ:
235       // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
236       Terminator.ExtraRelaxSize = 4;
237       break;
238     case SystemZ::CIJ:
239     case SystemZ::CGIJ:
240       // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
241       Terminator.ExtraRelaxSize = 4;
242       break;
243     case SystemZ::CLIJ:
244     case SystemZ::CLGIJ:
245       // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
246       Terminator.ExtraRelaxSize = 6;
247       break;
248     default:
249       llvm_unreachable("Unrecognized branch instruction");
250     }
251     Terminator.Branch = MI;
252     Terminator.TargetBlock =
253       TII->getBranchInfo(MI).Target->getMBB()->getNumber();
254   }
255   return Terminator;
256 }
257
258 // Fill MBBs and Terminators, setting the addresses on the assumption
259 // that no branches need relaxation.  Return the size of the function under
260 // this assumption.
261 uint64_t SystemZLongBranch::initMBBInfo() {
262   MF->RenumberBlocks();
263   unsigned NumBlocks = MF->size();
264
265   MBBs.clear();
266   MBBs.resize(NumBlocks);
267
268   Terminators.clear();
269   Terminators.reserve(NumBlocks);
270
271   BlockPosition Position(MF->getAlignment());
272   for (unsigned I = 0; I < NumBlocks; ++I) {
273     MachineBasicBlock *MBB = MF->getBlockNumbered(I);
274     MBBInfo &Block = MBBs[I];
275
276     // Record the alignment, for quick access.
277     Block.Alignment = MBB->getAlignment();
278
279     // Calculate the size of the fixed part of the block.
280     MachineBasicBlock::iterator MI = MBB->begin();
281     MachineBasicBlock::iterator End = MBB->end();
282     while (MI != End && !MI->isTerminator()) {
283       Block.Size += TII->getInstSizeInBytes(MI);
284       ++MI;
285     }
286     skipNonTerminators(Position, Block);
287
288     // Add the terminators.
289     while (MI != End) {
290       if (!MI->isDebugValue()) {
291         assert(MI->isTerminator() && "Terminator followed by non-terminator");
292         Terminators.push_back(describeTerminator(MI));
293         skipTerminator(Position, Terminators.back(), false);
294         ++Block.NumTerminators;
295       }
296       ++MI;
297     }
298   }
299
300   return Position.Address;
301 }
302
303 // Return true if, under current assumptions, Terminator would need to be
304 // relaxed if it were placed at address Address.
305 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
306                                         uint64_t Address) {
307   if (!Terminator.Branch)
308     return false;
309
310   const MBBInfo &Target = MBBs[Terminator.TargetBlock];
311   if (Address >= Target.Address) {
312     if (Address - Target.Address <= MaxBackwardRange)
313       return false;
314   } else {
315     if (Target.Address - Address <= MaxForwardRange)
316       return false;
317   }
318
319   return true;
320 }
321
322 // Return true if, under current assumptions, any terminator needs
323 // to be relaxed.
324 bool SystemZLongBranch::mustRelaxABranch() {
325   for (auto &Terminator : Terminators)
326     if (mustRelaxBranch(Terminator, Terminator.Address))
327       return true;
328   return false;
329 }
330
331 // Set the address of each block on the assumption that all branches
332 // must be long.
333 void SystemZLongBranch::setWorstCaseAddresses() {
334   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
335   BlockPosition Position(MF->getAlignment());
336   for (auto &Block : MBBs) {
337     skipNonTerminators(Position, Block);
338     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
339       skipTerminator(Position, *TI, true);
340       ++TI;
341     }
342   }
343 }
344
345 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
346 // by a BRCL on the result.
347 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
348                                            unsigned AddOpcode) {
349   MachineBasicBlock *MBB = MI->getParent();
350   DebugLoc DL = MI->getDebugLoc();
351   BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
352     .addOperand(MI->getOperand(0))
353     .addOperand(MI->getOperand(1))
354     .addImm(-1);
355   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
356     .addImm(SystemZ::CCMASK_ICMP)
357     .addImm(SystemZ::CCMASK_CMP_NE)
358     .addOperand(MI->getOperand(2));
359   // The implicit use of CC is a killing use.
360   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
361   MI->eraseFromParent();
362 }
363
364 // Split MI into the comparison given by CompareOpcode followed
365 // a BRCL on the result.
366 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
367                                            unsigned CompareOpcode) {
368   MachineBasicBlock *MBB = MI->getParent();
369   DebugLoc DL = MI->getDebugLoc();
370   BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
371     .addOperand(MI->getOperand(0))
372     .addOperand(MI->getOperand(1));
373   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
374     .addImm(SystemZ::CCMASK_ICMP)
375     .addOperand(MI->getOperand(2))
376     .addOperand(MI->getOperand(3));
377   // The implicit use of CC is a killing use.
378   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
379   MI->eraseFromParent();
380 }
381
382 // Relax the branch described by Terminator.
383 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
384   MachineInstr *Branch = Terminator.Branch;
385   switch (Branch->getOpcode()) {
386   case SystemZ::J:
387     Branch->setDesc(TII->get(SystemZ::JG));
388     break;
389   case SystemZ::BRC:
390     Branch->setDesc(TII->get(SystemZ::BRCL));
391     break;
392   case SystemZ::BRCT:
393     splitBranchOnCount(Branch, SystemZ::AHI);
394     break;
395   case SystemZ::BRCTG:
396     splitBranchOnCount(Branch, SystemZ::AGHI);
397     break;
398   case SystemZ::CRJ:
399     splitCompareBranch(Branch, SystemZ::CR);
400     break;
401   case SystemZ::CGRJ:
402     splitCompareBranch(Branch, SystemZ::CGR);
403     break;
404   case SystemZ::CIJ:
405     splitCompareBranch(Branch, SystemZ::CHI);
406     break;
407   case SystemZ::CGIJ:
408     splitCompareBranch(Branch, SystemZ::CGHI);
409     break;
410   case SystemZ::CLRJ:
411     splitCompareBranch(Branch, SystemZ::CLR);
412     break;
413   case SystemZ::CLGRJ:
414     splitCompareBranch(Branch, SystemZ::CLGR);
415     break;
416   case SystemZ::CLIJ:
417     splitCompareBranch(Branch, SystemZ::CLFI);
418     break;
419   case SystemZ::CLGIJ:
420     splitCompareBranch(Branch, SystemZ::CLGFI);
421     break;
422   default:
423     llvm_unreachable("Unrecognized branch");
424   }
425
426   Terminator.Size += Terminator.ExtraRelaxSize;
427   Terminator.ExtraRelaxSize = 0;
428   Terminator.Branch = nullptr;
429
430   ++LongBranches;
431 }
432
433 // Run a shortening pass and relax any branches that need to be relaxed.
434 void SystemZLongBranch::relaxBranches() {
435   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
436   BlockPosition Position(MF->getAlignment());
437   for (auto &Block : MBBs) {
438     skipNonTerminators(Position, Block);
439     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
440       assert(Position.Address <= TI->Address &&
441              "Addresses shouldn't go forwards");
442       if (mustRelaxBranch(*TI, Position.Address))
443         relaxBranch(*TI);
444       skipTerminator(Position, *TI, false);
445       ++TI;
446     }
447   }
448 }
449
450 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
451   TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo());
452   MF = &F;
453   uint64_t Size = initMBBInfo();
454   if (Size <= MaxForwardRange || !mustRelaxABranch())
455     return false;
456
457   setWorstCaseAddresses();
458   relaxBranches();
459   return true;
460 }