c17603a7718a63a3812b50c09f35f5d3daa00134
[oota-llvm.git] / lib / Target / PowerPC / PPCInstrInfo.cpp
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "ppc-instr-info"
44
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
48
49 static cl::
50 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
51             cl::desc("Disable analysis for CTR loops"));
52
53 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
54 cl::desc("Disable compare instruction optimization"), cl::Hidden);
55
56 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
57 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
58 cl::Hidden);
59
60 static cl::opt<bool>
61 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
62   cl::desc("Use the old (incorrect) instruction latency calculation"));
63
64 // Pin the vtable to this file.
65 void PPCInstrInfo::anchor() {}
66
67 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
68     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
69       Subtarget(STI), RI(STI.getTargetMachine()) {}
70
71 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
72 /// this target when scheduling the DAG.
73 ScheduleHazardRecognizer *
74 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
75                                            const ScheduleDAG *DAG) const {
76   unsigned Directive =
77       static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
78   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
79       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
80     const InstrItineraryData *II =
81         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
82     return new ScoreboardHazardRecognizer(II, DAG);
83   }
84
85   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
86 }
87
88 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
89 /// to use for this target when scheduling the DAG.
90 ScheduleHazardRecognizer *
91 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
92                                                  const ScheduleDAG *DAG) const {
93   unsigned Directive =
94       DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
95
96   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
97     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
98
99   // Most subtargets use a PPC970 recognizer.
100   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
101       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
102     assert(DAG->TII && "No InstrInfo?");
103
104     return new PPCHazardRecognizer970(*DAG);
105   }
106
107   return new ScoreboardHazardRecognizer(II, DAG);
108 }
109
110 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
111                                        const MachineInstr *MI,
112                                        unsigned *PredCost) const {
113   if (!ItinData || UseOldLatencyCalc)
114     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
115
116   // The default implementation of getInstrLatency calls getStageLatency, but
117   // getStageLatency does not do the right thing for us. While we have
118   // itinerary, most cores are fully pipelined, and so the itineraries only
119   // express the first part of the pipeline, not every stage. Instead, we need
120   // to use the listed output operand cycle number (using operand 0 here, which
121   // is an output).
122
123   unsigned Latency = 1;
124   unsigned DefClass = MI->getDesc().getSchedClass();
125   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
126     const MachineOperand &MO = MI->getOperand(i);
127     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
128       continue;
129
130     int Cycle = ItinData->getOperandCycle(DefClass, i);
131     if (Cycle < 0)
132       continue;
133
134     Latency = std::max(Latency, (unsigned) Cycle);
135   }
136
137   return Latency;
138 }
139
140 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
141                                     const MachineInstr *DefMI, unsigned DefIdx,
142                                     const MachineInstr *UseMI,
143                                     unsigned UseIdx) const {
144   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
145                                                    UseMI, UseIdx);
146
147   if (!DefMI->getParent())
148     return Latency;
149
150   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
151   unsigned Reg = DefMO.getReg();
152
153   bool IsRegCR;
154   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
155     const MachineRegisterInfo *MRI =
156       &DefMI->getParent()->getParent()->getRegInfo();
157     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
158               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
159   } else {
160     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
161               PPC::CRBITRCRegClass.contains(Reg);
162   }
163
164   if (UseMI->isBranch() && IsRegCR) {
165     if (Latency < 0)
166       Latency = getInstrLatency(ItinData, DefMI);
167
168     // On some cores, there is an additional delay between writing to a condition
169     // register, and using it from a branch.
170     unsigned Directive = Subtarget.getDarwinDirective();
171     switch (Directive) {
172     default: break;
173     case PPC::DIR_7400:
174     case PPC::DIR_750:
175     case PPC::DIR_970:
176     case PPC::DIR_E5500:
177     case PPC::DIR_PWR4:
178     case PPC::DIR_PWR5:
179     case PPC::DIR_PWR5X:
180     case PPC::DIR_PWR6:
181     case PPC::DIR_PWR6X:
182     case PPC::DIR_PWR7:
183     case PPC::DIR_PWR8:
184       Latency += 2;
185       break;
186     }
187   }
188
189   return Latency;
190 }
191
192 // This function does not list all associative and commutative operations, but
193 // only those worth feeding through the machine combiner in an attempt to
194 // reduce the critical path. Mostly, this means floating-point operations,
195 // because they have high latencies (compared to other operations, such and
196 // and/or, which are also associative and commutative, but have low latencies).
197 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
198   switch (Inst.getOpcode()) {
199   // FP Add:
200   case PPC::FADD:
201   case PPC::FADDS:
202   // FP Multiply:
203   case PPC::FMUL:
204   case PPC::FMULS:
205   // Altivec Add:
206   case PPC::VADDFP:
207   // VSX Add:
208   case PPC::XSADDDP:
209   case PPC::XVADDDP:
210   case PPC::XVADDSP:
211   case PPC::XSADDSP:
212   // VSX Multiply:
213   case PPC::XSMULDP:
214   case PPC::XVMULDP:
215   case PPC::XVMULSP:
216   case PPC::XSMULSP:
217   // QPX Add:
218   case PPC::QVFADD:
219   case PPC::QVFADDS:
220   case PPC::QVFADDSs:
221   // QPX Multiply:
222   case PPC::QVFMUL:
223   case PPC::QVFMULS:
224   case PPC::QVFMULSs:
225     return true;
226   default:
227     return false;
228   }
229 }
230
231 bool PPCInstrInfo::getMachineCombinerPatterns(
232     MachineInstr &Root,
233     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
234   // Using the machine combiner in this way is potentially expensive, so
235   // restrict to when aggressive optimizations are desired.
236   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
237     return false;
238
239   // FP reassociation is only legal when we don't need strict IEEE semantics.
240   if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath)
241     return false;
242
243   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns);
244 }
245
246 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
247 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
248                                          unsigned &SrcReg, unsigned &DstReg,
249                                          unsigned &SubIdx) const {
250   switch (MI.getOpcode()) {
251   default: return false;
252   case PPC::EXTSW:
253   case PPC::EXTSW_32_64:
254     SrcReg = MI.getOperand(1).getReg();
255     DstReg = MI.getOperand(0).getReg();
256     SubIdx = PPC::sub_32;
257     return true;
258   }
259 }
260
261 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
262                                            int &FrameIndex) const {
263   // Note: This list must be kept consistent with LoadRegFromStackSlot.
264   switch (MI->getOpcode()) {
265   default: break;
266   case PPC::LD:
267   case PPC::LWZ:
268   case PPC::LFS:
269   case PPC::LFD:
270   case PPC::RESTORE_CR:
271   case PPC::RESTORE_CRBIT:
272   case PPC::LVX:
273   case PPC::LXVD2X:
274   case PPC::QVLFDX:
275   case PPC::QVLFSXs:
276   case PPC::QVLFDXb:
277   case PPC::RESTORE_VRSAVE:
278     // Check for the operands added by addFrameReference (the immediate is the
279     // offset which defaults to 0).
280     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
281         MI->getOperand(2).isFI()) {
282       FrameIndex = MI->getOperand(2).getIndex();
283       return MI->getOperand(0).getReg();
284     }
285     break;
286   }
287   return 0;
288 }
289
290 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
291                                           int &FrameIndex) const {
292   // Note: This list must be kept consistent with StoreRegToStackSlot.
293   switch (MI->getOpcode()) {
294   default: break;
295   case PPC::STD:
296   case PPC::STW:
297   case PPC::STFS:
298   case PPC::STFD:
299   case PPC::SPILL_CR:
300   case PPC::SPILL_CRBIT:
301   case PPC::STVX:
302   case PPC::STXVD2X:
303   case PPC::QVSTFDX:
304   case PPC::QVSTFSXs:
305   case PPC::QVSTFDXb:
306   case PPC::SPILL_VRSAVE:
307     // Check for the operands added by addFrameReference (the immediate is the
308     // offset which defaults to 0).
309     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
310         MI->getOperand(2).isFI()) {
311       FrameIndex = MI->getOperand(2).getIndex();
312       return MI->getOperand(0).getReg();
313     }
314     break;
315   }
316   return 0;
317 }
318
319 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr *MI,
320                                                    bool NewMI,
321                                                    unsigned OpIdx1,
322                                                    unsigned OpIdx2) const {
323   MachineFunction &MF = *MI->getParent()->getParent();
324
325   // Normal instructions can be commuted the obvious way.
326   if (MI->getOpcode() != PPC::RLWIMI &&
327       MI->getOpcode() != PPC::RLWIMIo)
328     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
329   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
330   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
331   // changing the relative order of the mask operands might change what happens
332   // to the high-bits of the mask (and, thus, the result).
333
334   // Cannot commute if it has a non-zero rotate count.
335   if (MI->getOperand(3).getImm() != 0)
336     return nullptr;
337
338   // If we have a zero rotate count, we have:
339   //   M = mask(MB,ME)
340   //   Op0 = (Op1 & ~M) | (Op2 & M)
341   // Change this to:
342   //   M = mask((ME+1)&31, (MB-1)&31)
343   //   Op0 = (Op2 & ~M) | (Op1 & M)
344
345   // Swap op1/op2
346   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
347          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
348   unsigned Reg0 = MI->getOperand(0).getReg();
349   unsigned Reg1 = MI->getOperand(1).getReg();
350   unsigned Reg2 = MI->getOperand(2).getReg();
351   unsigned SubReg1 = MI->getOperand(1).getSubReg();
352   unsigned SubReg2 = MI->getOperand(2).getSubReg();
353   bool Reg1IsKill = MI->getOperand(1).isKill();
354   bool Reg2IsKill = MI->getOperand(2).isKill();
355   bool ChangeReg0 = false;
356   // If machine instrs are no longer in two-address forms, update
357   // destination register as well.
358   if (Reg0 == Reg1) {
359     // Must be two address instruction!
360     assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
361            "Expecting a two-address instruction!");
362     assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
363     Reg2IsKill = false;
364     ChangeReg0 = true;
365   }
366
367   // Masks.
368   unsigned MB = MI->getOperand(4).getImm();
369   unsigned ME = MI->getOperand(5).getImm();
370
371   // We can't commute a trivial mask (there is no way to represent an all-zero
372   // mask).
373   if (MB == 0 && ME == 31)
374     return nullptr;
375
376   if (NewMI) {
377     // Create a new instruction.
378     unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
379     bool Reg0IsDead = MI->getOperand(0).isDead();
380     return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
381       .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
382       .addReg(Reg2, getKillRegState(Reg2IsKill))
383       .addReg(Reg1, getKillRegState(Reg1IsKill))
384       .addImm((ME+1) & 31)
385       .addImm((MB-1) & 31);
386   }
387
388   if (ChangeReg0) {
389     MI->getOperand(0).setReg(Reg2);
390     MI->getOperand(0).setSubReg(SubReg2);
391   }
392   MI->getOperand(2).setReg(Reg1);
393   MI->getOperand(1).setReg(Reg2);
394   MI->getOperand(2).setSubReg(SubReg1);
395   MI->getOperand(1).setSubReg(SubReg2);
396   MI->getOperand(2).setIsKill(Reg1IsKill);
397   MI->getOperand(1).setIsKill(Reg2IsKill);
398
399   // Swap the mask around.
400   MI->getOperand(4).setImm((ME+1) & 31);
401   MI->getOperand(5).setImm((MB-1) & 31);
402   return MI;
403 }
404
405 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
406                                          unsigned &SrcOpIdx2) const {
407   // For VSX A-Type FMA instructions, it is the first two operands that can be
408   // commuted, however, because the non-encoded tied input operand is listed
409   // first, the operands to swap are actually the second and third.
410
411   int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
412   if (AltOpc == -1)
413     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
414
415   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
416   // and SrcOpIdx2.
417   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
418 }
419
420 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
421                               MachineBasicBlock::iterator MI) const {
422   // This function is used for scheduling, and the nop wanted here is the type
423   // that terminates dispatch groups on the POWER cores.
424   unsigned Directive = Subtarget.getDarwinDirective();
425   unsigned Opcode;
426   switch (Directive) {
427   default:            Opcode = PPC::NOP; break;
428   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
429   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
430   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
431   }
432
433   DebugLoc DL;
434   BuildMI(MBB, MI, DL, get(Opcode));
435 }
436
437 /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
438 void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
439   NopInst.setOpcode(PPC::NOP);
440 }
441
442 // Branch analysis.
443 // Note: If the condition register is set to CTR or CTR8 then this is a
444 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
445 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
446                                  MachineBasicBlock *&FBB,
447                                  SmallVectorImpl<MachineOperand> &Cond,
448                                  bool AllowModify) const {
449   bool isPPC64 = Subtarget.isPPC64();
450
451   // If the block has no terminators, it just falls into the block after it.
452   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
453   if (I == MBB.end())
454     return false;
455
456   if (!isUnpredicatedTerminator(I))
457     return false;
458
459   // Get the last instruction in the block.
460   MachineInstr *LastInst = I;
461
462   // If there is only one terminator instruction, process it.
463   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
464     if (LastInst->getOpcode() == PPC::B) {
465       if (!LastInst->getOperand(0).isMBB())
466         return true;
467       TBB = LastInst->getOperand(0).getMBB();
468       return false;
469     } else if (LastInst->getOpcode() == PPC::BCC) {
470       if (!LastInst->getOperand(2).isMBB())
471         return true;
472       // Block ends with fall-through condbranch.
473       TBB = LastInst->getOperand(2).getMBB();
474       Cond.push_back(LastInst->getOperand(0));
475       Cond.push_back(LastInst->getOperand(1));
476       return false;
477     } else if (LastInst->getOpcode() == PPC::BC) {
478       if (!LastInst->getOperand(1).isMBB())
479         return true;
480       // Block ends with fall-through condbranch.
481       TBB = LastInst->getOperand(1).getMBB();
482       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
483       Cond.push_back(LastInst->getOperand(0));
484       return false;
485     } else if (LastInst->getOpcode() == PPC::BCn) {
486       if (!LastInst->getOperand(1).isMBB())
487         return true;
488       // Block ends with fall-through condbranch.
489       TBB = LastInst->getOperand(1).getMBB();
490       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
491       Cond.push_back(LastInst->getOperand(0));
492       return false;
493     } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
494                LastInst->getOpcode() == PPC::BDNZ) {
495       if (!LastInst->getOperand(0).isMBB())
496         return true;
497       if (DisableCTRLoopAnal)
498         return true;
499       TBB = LastInst->getOperand(0).getMBB();
500       Cond.push_back(MachineOperand::CreateImm(1));
501       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
502                                                true));
503       return false;
504     } else if (LastInst->getOpcode() == PPC::BDZ8 ||
505                LastInst->getOpcode() == PPC::BDZ) {
506       if (!LastInst->getOperand(0).isMBB())
507         return true;
508       if (DisableCTRLoopAnal)
509         return true;
510       TBB = LastInst->getOperand(0).getMBB();
511       Cond.push_back(MachineOperand::CreateImm(0));
512       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
513                                                true));
514       return false;
515     }
516
517     // Otherwise, don't know what this is.
518     return true;
519   }
520
521   // Get the instruction before it if it's a terminator.
522   MachineInstr *SecondLastInst = I;
523
524   // If there are three terminators, we don't know what sort of block this is.
525   if (SecondLastInst && I != MBB.begin() &&
526       isUnpredicatedTerminator(--I))
527     return true;
528
529   // If the block ends with PPC::B and PPC:BCC, handle it.
530   if (SecondLastInst->getOpcode() == PPC::BCC &&
531       LastInst->getOpcode() == PPC::B) {
532     if (!SecondLastInst->getOperand(2).isMBB() ||
533         !LastInst->getOperand(0).isMBB())
534       return true;
535     TBB =  SecondLastInst->getOperand(2).getMBB();
536     Cond.push_back(SecondLastInst->getOperand(0));
537     Cond.push_back(SecondLastInst->getOperand(1));
538     FBB = LastInst->getOperand(0).getMBB();
539     return false;
540   } else if (SecondLastInst->getOpcode() == PPC::BC &&
541       LastInst->getOpcode() == PPC::B) {
542     if (!SecondLastInst->getOperand(1).isMBB() ||
543         !LastInst->getOperand(0).isMBB())
544       return true;
545     TBB =  SecondLastInst->getOperand(1).getMBB();
546     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
547     Cond.push_back(SecondLastInst->getOperand(0));
548     FBB = LastInst->getOperand(0).getMBB();
549     return false;
550   } else if (SecondLastInst->getOpcode() == PPC::BCn &&
551       LastInst->getOpcode() == PPC::B) {
552     if (!SecondLastInst->getOperand(1).isMBB() ||
553         !LastInst->getOperand(0).isMBB())
554       return true;
555     TBB =  SecondLastInst->getOperand(1).getMBB();
556     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
557     Cond.push_back(SecondLastInst->getOperand(0));
558     FBB = LastInst->getOperand(0).getMBB();
559     return false;
560   } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
561               SecondLastInst->getOpcode() == PPC::BDNZ) &&
562       LastInst->getOpcode() == PPC::B) {
563     if (!SecondLastInst->getOperand(0).isMBB() ||
564         !LastInst->getOperand(0).isMBB())
565       return true;
566     if (DisableCTRLoopAnal)
567       return true;
568     TBB = SecondLastInst->getOperand(0).getMBB();
569     Cond.push_back(MachineOperand::CreateImm(1));
570     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
571                                              true));
572     FBB = LastInst->getOperand(0).getMBB();
573     return false;
574   } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
575               SecondLastInst->getOpcode() == PPC::BDZ) &&
576       LastInst->getOpcode() == PPC::B) {
577     if (!SecondLastInst->getOperand(0).isMBB() ||
578         !LastInst->getOperand(0).isMBB())
579       return true;
580     if (DisableCTRLoopAnal)
581       return true;
582     TBB = SecondLastInst->getOperand(0).getMBB();
583     Cond.push_back(MachineOperand::CreateImm(0));
584     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
585                                              true));
586     FBB = LastInst->getOperand(0).getMBB();
587     return false;
588   }
589
590   // If the block ends with two PPC:Bs, handle it.  The second one is not
591   // executed, so remove it.
592   if (SecondLastInst->getOpcode() == PPC::B &&
593       LastInst->getOpcode() == PPC::B) {
594     if (!SecondLastInst->getOperand(0).isMBB())
595       return true;
596     TBB = SecondLastInst->getOperand(0).getMBB();
597     I = LastInst;
598     if (AllowModify)
599       I->eraseFromParent();
600     return false;
601   }
602
603   // Otherwise, can't handle this.
604   return true;
605 }
606
607 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
608   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
609   if (I == MBB.end())
610     return 0;
611
612   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
613       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
614       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
615       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
616     return 0;
617
618   // Remove the branch.
619   I->eraseFromParent();
620
621   I = MBB.end();
622
623   if (I == MBB.begin()) return 1;
624   --I;
625   if (I->getOpcode() != PPC::BCC &&
626       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
627       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
628       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
629     return 1;
630
631   // Remove the branch.
632   I->eraseFromParent();
633   return 2;
634 }
635
636 unsigned
637 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
638                            MachineBasicBlock *FBB,
639                            ArrayRef<MachineOperand> Cond,
640                            DebugLoc DL) const {
641   // Shouldn't be a fall through.
642   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
643   assert((Cond.size() == 2 || Cond.size() == 0) &&
644          "PPC branch conditions have two components!");
645
646   bool isPPC64 = Subtarget.isPPC64();
647
648   // One-way branch.
649   if (!FBB) {
650     if (Cond.empty())   // Unconditional branch
651       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
652     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
653       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
654                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
655                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
656     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
657       BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
658     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
659       BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
660     else                // Conditional branch
661       BuildMI(&MBB, DL, get(PPC::BCC))
662         .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
663     return 1;
664   }
665
666   // Two-way Conditional Branch.
667   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
668     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
669                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
670                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
671   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
672     BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
673   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
674     BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
675   else
676     BuildMI(&MBB, DL, get(PPC::BCC))
677       .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
678   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
679   return 2;
680 }
681
682 // Select analysis.
683 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
684                 ArrayRef<MachineOperand> Cond,
685                 unsigned TrueReg, unsigned FalseReg,
686                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
687   if (!Subtarget.hasISEL())
688     return false;
689
690   if (Cond.size() != 2)
691     return false;
692
693   // If this is really a bdnz-like condition, then it cannot be turned into a
694   // select.
695   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
696     return false;
697
698   // Check register classes.
699   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
700   const TargetRegisterClass *RC =
701     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
702   if (!RC)
703     return false;
704
705   // isel is for regular integer GPRs only.
706   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
707       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
708       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
709       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
710     return false;
711
712   // FIXME: These numbers are for the A2, how well they work for other cores is
713   // an open question. On the A2, the isel instruction has a 2-cycle latency
714   // but single-cycle throughput. These numbers are used in combination with
715   // the MispredictPenalty setting from the active SchedMachineModel.
716   CondCycles = 1;
717   TrueCycles = 1;
718   FalseCycles = 1;
719
720   return true;
721 }
722
723 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
724                                 MachineBasicBlock::iterator MI, DebugLoc dl,
725                                 unsigned DestReg, ArrayRef<MachineOperand> Cond,
726                                 unsigned TrueReg, unsigned FalseReg) const {
727   assert(Cond.size() == 2 &&
728          "PPC branch conditions have two components!");
729
730   assert(Subtarget.hasISEL() &&
731          "Cannot insert select on target without ISEL support");
732
733   // Get the register classes.
734   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
735   const TargetRegisterClass *RC =
736     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
737   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
738
739   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
740                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
741   assert((Is64Bit ||
742           PPC::GPRCRegClass.hasSubClassEq(RC) ||
743           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
744          "isel is for regular integer GPRs only");
745
746   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
747   unsigned SelectPred = Cond[0].getImm();
748
749   unsigned SubIdx;
750   bool SwapOps;
751   switch (SelectPred) {
752   default: llvm_unreachable("invalid predicate for isel");
753   case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
754   case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
755   case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
756   case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
757   case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
758   case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
759   case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
760   case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
761   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
762   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
763   }
764
765   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
766            SecondReg = SwapOps ? TrueReg  : FalseReg;
767
768   // The first input register of isel cannot be r0. If it is a member
769   // of a register class that can be r0, then copy it first (the
770   // register allocator should eliminate the copy).
771   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
772       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
773     const TargetRegisterClass *FirstRC =
774       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
775         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
776     unsigned OldFirstReg = FirstReg;
777     FirstReg = MRI.createVirtualRegister(FirstRC);
778     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
779       .addReg(OldFirstReg);
780   }
781
782   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
783     .addReg(FirstReg).addReg(SecondReg)
784     .addReg(Cond[1].getReg(), 0, SubIdx);
785 }
786
787 static unsigned getCRBitValue(unsigned CRBit) {
788   unsigned Ret = 4;
789   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
790       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
791       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
792       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
793     Ret = 3;
794   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
795       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
796       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
797       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
798     Ret = 2;
799   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
800       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
801       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
802       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
803     Ret = 1;
804   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
805       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
806       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
807       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
808     Ret = 0;
809
810   assert(Ret != 4 && "Invalid CR bit register");
811   return Ret;
812 }
813
814 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
815                                MachineBasicBlock::iterator I, DebugLoc DL,
816                                unsigned DestReg, unsigned SrcReg,
817                                bool KillSrc) const {
818   // We can end up with self copies and similar things as a result of VSX copy
819   // legalization. Promote them here.
820   const TargetRegisterInfo *TRI = &getRegisterInfo();
821   if (PPC::F8RCRegClass.contains(DestReg) &&
822       PPC::VSRCRegClass.contains(SrcReg)) {
823     unsigned SuperReg =
824       TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
825
826     if (VSXSelfCopyCrash && SrcReg == SuperReg)
827       llvm_unreachable("nop VSX copy");
828
829     DestReg = SuperReg;
830   } else if (PPC::VRRCRegClass.contains(DestReg) &&
831              PPC::VSRCRegClass.contains(SrcReg)) {
832     unsigned SuperReg =
833       TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
834
835     if (VSXSelfCopyCrash && SrcReg == SuperReg)
836       llvm_unreachable("nop VSX copy");
837
838     DestReg = SuperReg;
839   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
840              PPC::VSRCRegClass.contains(DestReg)) {
841     unsigned SuperReg =
842       TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
843
844     if (VSXSelfCopyCrash && DestReg == SuperReg)
845       llvm_unreachable("nop VSX copy");
846
847     SrcReg = SuperReg;
848   } else if (PPC::VRRCRegClass.contains(SrcReg) &&
849              PPC::VSRCRegClass.contains(DestReg)) {
850     unsigned SuperReg =
851       TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
852
853     if (VSXSelfCopyCrash && DestReg == SuperReg)
854       llvm_unreachable("nop VSX copy");
855
856     SrcReg = SuperReg;
857   }
858
859   // Different class register copy
860   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
861       PPC::GPRCRegClass.contains(DestReg)) {
862     unsigned CRReg = getCRFromCRBit(SrcReg);
863     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg)
864        .addReg(CRReg), getKillRegState(KillSrc);
865     // Rotate the CR bit in the CR fields to be the least significant bit and
866     // then mask with 0x1 (MB = ME = 31).
867     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
868        .addReg(DestReg, RegState::Kill)
869        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
870        .addImm(31)
871        .addImm(31);
872     return;
873   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
874       PPC::G8RCRegClass.contains(DestReg)) {
875     BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg)
876        .addReg(SrcReg), getKillRegState(KillSrc);
877     return;
878   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
879       PPC::GPRCRegClass.contains(DestReg)) {
880     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg)
881        .addReg(SrcReg), getKillRegState(KillSrc);
882     return;
883    }
884
885   unsigned Opc;
886   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
887     Opc = PPC::OR;
888   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
889     Opc = PPC::OR8;
890   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
891     Opc = PPC::FMR;
892   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
893     Opc = PPC::MCRF;
894   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
895     Opc = PPC::VOR;
896   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
897     // There are two different ways this can be done:
898     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
899     //      issue in VSU pipeline 0.
900     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
901     //      can go to either pipeline.
902     // We'll always use xxlor here, because in practically all cases where
903     // copies are generated, they are close enough to some use that the
904     // lower-latency form is preferable.
905     Opc = PPC::XXLOR;
906   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
907            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
908     Opc = PPC::XXLORf;
909   else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
910     Opc = PPC::QVFMR;
911   else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
912     Opc = PPC::QVFMRs;
913   else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
914     Opc = PPC::QVFMRb;
915   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
916     Opc = PPC::CROR;
917   else
918     llvm_unreachable("Impossible reg-to-reg copy");
919
920   const MCInstrDesc &MCID = get(Opc);
921   if (MCID.getNumOperands() == 3)
922     BuildMI(MBB, I, DL, MCID, DestReg)
923       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
924   else
925     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
926 }
927
928 // This function returns true if a CR spill is necessary and false otherwise.
929 bool
930 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
931                                   unsigned SrcReg, bool isKill,
932                                   int FrameIdx,
933                                   const TargetRegisterClass *RC,
934                                   SmallVectorImpl<MachineInstr*> &NewMIs,
935                                   bool &NonRI, bool &SpillsVRS) const{
936   // Note: If additional store instructions are added here,
937   // update isStoreToStackSlot.
938
939   DebugLoc DL;
940   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
941       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
942     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
943                                        .addReg(SrcReg,
944                                                getKillRegState(isKill)),
945                                        FrameIdx));
946   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
947              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
948     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
949                                        .addReg(SrcReg,
950                                                getKillRegState(isKill)),
951                                        FrameIdx));
952   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
953     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
954                                        .addReg(SrcReg,
955                                                getKillRegState(isKill)),
956                                        FrameIdx));
957   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
958     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
959                                        .addReg(SrcReg,
960                                                getKillRegState(isKill)),
961                                        FrameIdx));
962   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
963     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
964                                        .addReg(SrcReg,
965                                                getKillRegState(isKill)),
966                                        FrameIdx));
967     return true;
968   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
969     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
970                                        .addReg(SrcReg,
971                                                getKillRegState(isKill)),
972                                        FrameIdx));
973     return true;
974   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
975     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
976                                        .addReg(SrcReg,
977                                                getKillRegState(isKill)),
978                                        FrameIdx));
979     NonRI = true;
980   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
981     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
982                                        .addReg(SrcReg,
983                                                getKillRegState(isKill)),
984                                        FrameIdx));
985     NonRI = true;
986   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
987     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
988                                        .addReg(SrcReg,
989                                                getKillRegState(isKill)),
990                                        FrameIdx));
991     NonRI = true;
992   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
993     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSSPX))
994                                        .addReg(SrcReg,
995                                                getKillRegState(isKill)),
996                                        FrameIdx));
997     NonRI = true;
998   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
999     assert(Subtarget.isDarwin() &&
1000            "VRSAVE only needs spill/restore on Darwin");
1001     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
1002                                        .addReg(SrcReg,
1003                                                getKillRegState(isKill)),
1004                                        FrameIdx));
1005     SpillsVRS = true;
1006   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1007     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
1008                                        .addReg(SrcReg,
1009                                                getKillRegState(isKill)),
1010                                        FrameIdx));
1011     NonRI = true;
1012   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1013     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
1014                                        .addReg(SrcReg,
1015                                                getKillRegState(isKill)),
1016                                        FrameIdx));
1017     NonRI = true;
1018   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1019     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
1020                                        .addReg(SrcReg,
1021                                                getKillRegState(isKill)),
1022                                        FrameIdx));
1023     NonRI = true;
1024   } else {
1025     llvm_unreachable("Unknown regclass!");
1026   }
1027
1028   return false;
1029 }
1030
1031 void
1032 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1033                                   MachineBasicBlock::iterator MI,
1034                                   unsigned SrcReg, bool isKill, int FrameIdx,
1035                                   const TargetRegisterClass *RC,
1036                                   const TargetRegisterInfo *TRI) const {
1037   MachineFunction &MF = *MBB.getParent();
1038   SmallVector<MachineInstr*, 4> NewMIs;
1039
1040   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1041   FuncInfo->setHasSpills();
1042
1043   bool NonRI = false, SpillsVRS = false;
1044   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
1045                           NonRI, SpillsVRS))
1046     FuncInfo->setSpillsCR();
1047
1048   if (SpillsVRS)
1049     FuncInfo->setSpillsVRSAVE();
1050
1051   if (NonRI)
1052     FuncInfo->setHasNonRISpills();
1053
1054   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1055     MBB.insert(MI, NewMIs[i]);
1056
1057   const MachineFrameInfo &MFI = *MF.getFrameInfo();
1058   MachineMemOperand *MMO = MF.getMachineMemOperand(
1059       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1060       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1061       MFI.getObjectAlignment(FrameIdx));
1062   NewMIs.back()->addMemOperand(MF, MMO);
1063 }
1064
1065 bool
1066 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
1067                                    unsigned DestReg, int FrameIdx,
1068                                    const TargetRegisterClass *RC,
1069                                    SmallVectorImpl<MachineInstr*> &NewMIs,
1070                                    bool &NonRI, bool &SpillsVRS) const{
1071   // Note: If additional load instructions are added here,
1072   // update isLoadFromStackSlot.
1073
1074   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1075       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1076     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
1077                                                DestReg), FrameIdx));
1078   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1079              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1080     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
1081                                        FrameIdx));
1082   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1083     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
1084                                        FrameIdx));
1085   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1086     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
1087                                        FrameIdx));
1088   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1089     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1090                                                get(PPC::RESTORE_CR), DestReg),
1091                                        FrameIdx));
1092     return true;
1093   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1094     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1095                                                get(PPC::RESTORE_CRBIT), DestReg),
1096                                        FrameIdx));
1097     return true;
1098   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1099     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1100                                        FrameIdx));
1101     NonRI = true;
1102   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1103     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
1104                                        FrameIdx));
1105     NonRI = true;
1106   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1107     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
1108                                        FrameIdx));
1109     NonRI = true;
1110   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1111     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSSPX), DestReg),
1112                                        FrameIdx));
1113     NonRI = true;
1114   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1115     assert(Subtarget.isDarwin() &&
1116            "VRSAVE only needs spill/restore on Darwin");
1117     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1118                                                get(PPC::RESTORE_VRSAVE),
1119                                                DestReg),
1120                                        FrameIdx));
1121     SpillsVRS = true;
1122   } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1123     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1124                                        FrameIdx));
1125     NonRI = true;
1126   } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1127     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1128                                        FrameIdx));
1129     NonRI = true;
1130   } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1131     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1132                                        FrameIdx));
1133     NonRI = true;
1134   } else {
1135     llvm_unreachable("Unknown regclass!");
1136   }
1137
1138   return false;
1139 }
1140
1141 void
1142 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1143                                    MachineBasicBlock::iterator MI,
1144                                    unsigned DestReg, int FrameIdx,
1145                                    const TargetRegisterClass *RC,
1146                                    const TargetRegisterInfo *TRI) const {
1147   MachineFunction &MF = *MBB.getParent();
1148   SmallVector<MachineInstr*, 4> NewMIs;
1149   DebugLoc DL;
1150   if (MI != MBB.end()) DL = MI->getDebugLoc();
1151
1152   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1153   FuncInfo->setHasSpills();
1154
1155   bool NonRI = false, SpillsVRS = false;
1156   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1157                            NonRI, SpillsVRS))
1158     FuncInfo->setSpillsCR();
1159
1160   if (SpillsVRS)
1161     FuncInfo->setSpillsVRSAVE();
1162
1163   if (NonRI)
1164     FuncInfo->setHasNonRISpills();
1165
1166   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1167     MBB.insert(MI, NewMIs[i]);
1168
1169   const MachineFrameInfo &MFI = *MF.getFrameInfo();
1170   MachineMemOperand *MMO = MF.getMachineMemOperand(
1171       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1172       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
1173       MFI.getObjectAlignment(FrameIdx));
1174   NewMIs.back()->addMemOperand(MF, MMO);
1175 }
1176
1177 bool PPCInstrInfo::
1178 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1179   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1180   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1181     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1182   else
1183     // Leave the CR# the same, but invert the condition.
1184     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1185   return false;
1186 }
1187
1188 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
1189                              unsigned Reg, MachineRegisterInfo *MRI) const {
1190   // For some instructions, it is legal to fold ZERO into the RA register field.
1191   // A zero immediate should always be loaded with a single li.
1192   unsigned DefOpc = DefMI->getOpcode();
1193   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1194     return false;
1195   if (!DefMI->getOperand(1).isImm())
1196     return false;
1197   if (DefMI->getOperand(1).getImm() != 0)
1198     return false;
1199
1200   // Note that we cannot here invert the arguments of an isel in order to fold
1201   // a ZERO into what is presented as the second argument. All we have here
1202   // is the condition bit, and that might come from a CR-logical bit operation.
1203
1204   const MCInstrDesc &UseMCID = UseMI->getDesc();
1205
1206   // Only fold into real machine instructions.
1207   if (UseMCID.isPseudo())
1208     return false;
1209
1210   unsigned UseIdx;
1211   for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
1212     if (UseMI->getOperand(UseIdx).isReg() &&
1213         UseMI->getOperand(UseIdx).getReg() == Reg)
1214       break;
1215
1216   assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
1217   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1218
1219   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1220
1221   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1222   // register (which might also be specified as a pointer class kind).
1223   if (UseInfo->isLookupPtrRegClass()) {
1224     if (UseInfo->RegClass /* Kind */ != 1)
1225       return false;
1226   } else {
1227     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1228         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1229       return false;
1230   }
1231
1232   // Make sure this is not tied to an output register (or otherwise
1233   // constrained). This is true for ST?UX registers, for example, which
1234   // are tied to their output registers.
1235   if (UseInfo->Constraints != 0)
1236     return false;
1237
1238   unsigned ZeroReg;
1239   if (UseInfo->isLookupPtrRegClass()) {
1240     bool isPPC64 = Subtarget.isPPC64();
1241     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1242   } else {
1243     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1244               PPC::ZERO8 : PPC::ZERO;
1245   }
1246
1247   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1248   UseMI->getOperand(UseIdx).setReg(ZeroReg);
1249
1250   if (DeleteDef)
1251     DefMI->eraseFromParent();
1252
1253   return true;
1254 }
1255
1256 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1257   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1258        I != IE; ++I)
1259     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1260       return true;
1261   return false;
1262 }
1263
1264 // We should make sure that, if we're going to predicate both sides of a
1265 // condition (a diamond), that both sides don't define the counter register. We
1266 // can predicate counter-decrement-based branches, but while that predicates
1267 // the branching, it does not predicate the counter decrement. If we tried to
1268 // merge the triangle into one predicated block, we'd decrement the counter
1269 // twice.
1270 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1271                      unsigned NumT, unsigned ExtraT,
1272                      MachineBasicBlock &FMBB,
1273                      unsigned NumF, unsigned ExtraF,
1274                      BranchProbability Probability) const {
1275   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1276 }
1277
1278
1279 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
1280   // The predicated branches are identified by their type, not really by the
1281   // explicit presence of a predicate. Furthermore, some of them can be
1282   // predicated more than once. Because if conversion won't try to predicate
1283   // any instruction which already claims to be predicated (by returning true
1284   // here), always return false. In doing so, we let isPredicable() be the
1285   // final word on whether not the instruction can be (further) predicated.
1286
1287   return false;
1288 }
1289
1290 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1291   if (!MI->isTerminator())
1292     return false;
1293
1294   // Conditional branch is a special case.
1295   if (MI->isBranch() && !MI->isBarrier())
1296     return true;
1297
1298   return !isPredicated(MI);
1299 }
1300
1301 bool PPCInstrInfo::PredicateInstruction(MachineInstr *MI,
1302                                         ArrayRef<MachineOperand> Pred) const {
1303   unsigned OpC = MI->getOpcode();
1304   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1305     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1306       bool isPPC64 = Subtarget.isPPC64();
1307       MI->setDesc(get(Pred[0].getImm() ?
1308                       (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
1309                       (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
1310     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1311       MI->setDesc(get(PPC::BCLR));
1312       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1313         .addReg(Pred[1].getReg());
1314     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1315       MI->setDesc(get(PPC::BCLRn));
1316       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1317         .addReg(Pred[1].getReg());
1318     } else {
1319       MI->setDesc(get(PPC::BCCLR));
1320       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1321         .addImm(Pred[0].getImm())
1322         .addReg(Pred[1].getReg());
1323     }
1324
1325     return true;
1326   } else if (OpC == PPC::B) {
1327     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1328       bool isPPC64 = Subtarget.isPPC64();
1329       MI->setDesc(get(Pred[0].getImm() ?
1330                       (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1331                       (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
1332     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1333       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1334       MI->RemoveOperand(0);
1335
1336       MI->setDesc(get(PPC::BC));
1337       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1338         .addReg(Pred[1].getReg())
1339         .addMBB(MBB);
1340     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1341       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1342       MI->RemoveOperand(0);
1343
1344       MI->setDesc(get(PPC::BCn));
1345       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1346         .addReg(Pred[1].getReg())
1347         .addMBB(MBB);
1348     } else {
1349       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1350       MI->RemoveOperand(0);
1351
1352       MI->setDesc(get(PPC::BCC));
1353       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1354         .addImm(Pred[0].getImm())
1355         .addReg(Pred[1].getReg())
1356         .addMBB(MBB);
1357     }
1358
1359     return true;
1360   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1361              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1362     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1363       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1364
1365     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1366     bool isPPC64 = Subtarget.isPPC64();
1367
1368     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1369       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
1370                                 (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
1371       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1372         .addReg(Pred[1].getReg());
1373       return true;
1374     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1375       MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
1376                                 (setLR ? PPC::BCCTRLn  : PPC::BCCTRn)));
1377       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1378         .addReg(Pred[1].getReg());
1379       return true;
1380     }
1381
1382     MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
1383                               (setLR ? PPC::BCCCTRL  : PPC::BCCCTR)));
1384     MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1385       .addImm(Pred[0].getImm())
1386       .addReg(Pred[1].getReg());
1387     return true;
1388   }
1389
1390   return false;
1391 }
1392
1393 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1394                                      ArrayRef<MachineOperand> Pred2) const {
1395   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1396   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1397
1398   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1399     return false;
1400   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1401     return false;
1402
1403   // P1 can only subsume P2 if they test the same condition register.
1404   if (Pred1[1].getReg() != Pred2[1].getReg())
1405     return false;
1406
1407   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1408   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1409
1410   if (P1 == P2)
1411     return true;
1412
1413   // Does P1 subsume P2, e.g. GE subsumes GT.
1414   if (P1 == PPC::PRED_LE &&
1415       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1416     return true;
1417   if (P1 == PPC::PRED_GE &&
1418       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1419     return true;
1420
1421   return false;
1422 }
1423
1424 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
1425                                     std::vector<MachineOperand> &Pred) const {
1426   // Note: At the present time, the contents of Pred from this function is
1427   // unused by IfConversion. This implementation follows ARM by pushing the
1428   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1429   // predicate, instructions defining CTR or CTR8 are also included as
1430   // predicate-defining instructions.
1431
1432   const TargetRegisterClass *RCs[] =
1433     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1434       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1435
1436   bool Found = false;
1437   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1438     const MachineOperand &MO = MI->getOperand(i);
1439     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1440       const TargetRegisterClass *RC = RCs[c];
1441       if (MO.isReg()) {
1442         if (MO.isDef() && RC->contains(MO.getReg())) {
1443           Pred.push_back(MO);
1444           Found = true;
1445         }
1446       } else if (MO.isRegMask()) {
1447         for (TargetRegisterClass::iterator I = RC->begin(),
1448              IE = RC->end(); I != IE; ++I)
1449           if (MO.clobbersPhysReg(*I)) {
1450             Pred.push_back(MO);
1451             Found = true;
1452           }
1453       }
1454     }
1455   }
1456
1457   return Found;
1458 }
1459
1460 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
1461   unsigned OpC = MI->getOpcode();
1462   switch (OpC) {
1463   default:
1464     return false;
1465   case PPC::B:
1466   case PPC::BLR:
1467   case PPC::BLR8:
1468   case PPC::BCTR:
1469   case PPC::BCTR8:
1470   case PPC::BCTRL:
1471   case PPC::BCTRL8:
1472     return true;
1473   }
1474 }
1475
1476 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
1477                                   unsigned &SrcReg, unsigned &SrcReg2,
1478                                   int &Mask, int &Value) const {
1479   unsigned Opc = MI->getOpcode();
1480
1481   switch (Opc) {
1482   default: return false;
1483   case PPC::CMPWI:
1484   case PPC::CMPLWI:
1485   case PPC::CMPDI:
1486   case PPC::CMPLDI:
1487     SrcReg = MI->getOperand(1).getReg();
1488     SrcReg2 = 0;
1489     Value = MI->getOperand(2).getImm();
1490     Mask = 0xFFFF;
1491     return true;
1492   case PPC::CMPW:
1493   case PPC::CMPLW:
1494   case PPC::CMPD:
1495   case PPC::CMPLD:
1496   case PPC::FCMPUS:
1497   case PPC::FCMPUD:
1498     SrcReg = MI->getOperand(1).getReg();
1499     SrcReg2 = MI->getOperand(2).getReg();
1500     return true;
1501   }
1502 }
1503
1504 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
1505                                         unsigned SrcReg, unsigned SrcReg2,
1506                                         int Mask, int Value,
1507                                         const MachineRegisterInfo *MRI) const {
1508   if (DisableCmpOpt)
1509     return false;
1510
1511   int OpC = CmpInstr->getOpcode();
1512   unsigned CRReg = CmpInstr->getOperand(0).getReg();
1513
1514   // FP record forms set CR1 based on the execption status bits, not a
1515   // comparison with zero.
1516   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1517     return false;
1518
1519   // The record forms set the condition register based on a signed comparison
1520   // with zero (so says the ISA manual). This is not as straightforward as it
1521   // seems, however, because this is always a 64-bit comparison on PPC64, even
1522   // for instructions that are 32-bit in nature (like slw for example).
1523   // So, on PPC32, for unsigned comparisons, we can use the record forms only
1524   // for equality checks (as those don't depend on the sign). On PPC64,
1525   // we are restricted to equality for unsigned 64-bit comparisons and for
1526   // signed 32-bit comparisons the applicability is more restricted.
1527   bool isPPC64 = Subtarget.isPPC64();
1528   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1529   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1530   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1531
1532   // Get the unique definition of SrcReg.
1533   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1534   if (!MI) return false;
1535   int MIOpC = MI->getOpcode();
1536
1537   bool equalityOnly = false;
1538   bool noSub = false;
1539   if (isPPC64) {
1540     if (is32BitSignedCompare) {
1541       // We can perform this optimization only if MI is sign-extending.
1542       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1543           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1544           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1545           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1546           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1547         noSub = true;
1548       } else
1549         return false;
1550     } else if (is32BitUnsignedCompare) {
1551       // We can perform this optimization, equality only, if MI is
1552       // zero-extending.
1553       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1554           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1555           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
1556         noSub = true;
1557         equalityOnly = true;
1558       } else
1559         return false;
1560     } else
1561       equalityOnly = is64BitUnsignedCompare;
1562   } else
1563     equalityOnly = is32BitUnsignedCompare;
1564
1565   if (equalityOnly) {
1566     // We need to check the uses of the condition register in order to reject
1567     // non-equality comparisons.
1568     for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1569          IE = MRI->use_instr_end(); I != IE; ++I) {
1570       MachineInstr *UseMI = &*I;
1571       if (UseMI->getOpcode() == PPC::BCC) {
1572         unsigned Pred = UseMI->getOperand(0).getImm();
1573         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1574           return false;
1575       } else if (UseMI->getOpcode() == PPC::ISEL ||
1576                  UseMI->getOpcode() == PPC::ISEL8) {
1577         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1578         if (SubIdx != PPC::sub_eq)
1579           return false;
1580       } else
1581         return false;
1582     }
1583   }
1584
1585   MachineBasicBlock::iterator I = CmpInstr;
1586
1587   // Scan forward to find the first use of the compare.
1588   for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1589        I != EL; ++I) {
1590     bool FoundUse = false;
1591     for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1592          JE = MRI->use_instr_end(); J != JE; ++J)
1593       if (&*J == &*I) {
1594         FoundUse = true;
1595         break;
1596       }
1597
1598     if (FoundUse)
1599       break;
1600   }
1601
1602   // There are two possible candidates which can be changed to set CR[01].
1603   // One is MI, the other is a SUB instruction.
1604   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1605   MachineInstr *Sub = nullptr;
1606   if (SrcReg2 != 0)
1607     // MI is not a candidate for CMPrr.
1608     MI = nullptr;
1609   // FIXME: Conservatively refuse to convert an instruction which isn't in the
1610   // same BB as the comparison. This is to allow the check below to avoid calls
1611   // (and other explicit clobbers); instead we should really check for these
1612   // more explicitly (in at least a few predecessors).
1613   else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1614     // PPC does not have a record-form SUBri.
1615     return false;
1616   }
1617
1618   // Search for Sub.
1619   const TargetRegisterInfo *TRI = &getRegisterInfo();
1620   --I;
1621
1622   // Get ready to iterate backward from CmpInstr.
1623   MachineBasicBlock::iterator E = MI,
1624                               B = CmpInstr->getParent()->begin();
1625
1626   for (; I != E && !noSub; --I) {
1627     const MachineInstr &Instr = *I;
1628     unsigned IOpC = Instr.getOpcode();
1629
1630     if (&*I != CmpInstr && (
1631         Instr.modifiesRegister(PPC::CR0, TRI) ||
1632         Instr.readsRegister(PPC::CR0, TRI)))
1633       // This instruction modifies or uses the record condition register after
1634       // the one we want to change. While we could do this transformation, it
1635       // would likely not be profitable. This transformation removes one
1636       // instruction, and so even forcing RA to generate one move probably
1637       // makes it unprofitable.
1638       return false;
1639
1640     // Check whether CmpInstr can be made redundant by the current instruction.
1641     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1642          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1643         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1644         ((Instr.getOperand(1).getReg() == SrcReg &&
1645           Instr.getOperand(2).getReg() == SrcReg2) ||
1646         (Instr.getOperand(1).getReg() == SrcReg2 &&
1647          Instr.getOperand(2).getReg() == SrcReg))) {
1648       Sub = &*I;
1649       break;
1650     }
1651
1652     if (I == B)
1653       // The 'and' is below the comparison instruction.
1654       return false;
1655   }
1656
1657   // Return false if no candidates exist.
1658   if (!MI && !Sub)
1659     return false;
1660
1661   // The single candidate is called MI.
1662   if (!MI) MI = Sub;
1663
1664   int NewOpC = -1;
1665   MIOpC = MI->getOpcode();
1666   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1667     NewOpC = MIOpC;
1668   else {
1669     NewOpC = PPC::getRecordFormOpcode(MIOpC);
1670     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1671       NewOpC = MIOpC;
1672   }
1673
1674   // FIXME: On the non-embedded POWER architectures, only some of the record
1675   // forms are fast, and we should use only the fast ones.
1676
1677   // The defining instruction has a record form (or is already a record
1678   // form). It is possible, however, that we'll need to reverse the condition
1679   // code of the users.
1680   if (NewOpC == -1)
1681     return false;
1682
1683   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1684   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1685
1686   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1687   // needs to be updated to be based on SUB.  Push the condition code
1688   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1689   // condition code of these operands will be modified.
1690   bool ShouldSwap = false;
1691   if (Sub) {
1692     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1693       Sub->getOperand(2).getReg() == SrcReg;
1694
1695     // The operands to subf are the opposite of sub, so only in the fixed-point
1696     // case, invert the order.
1697     ShouldSwap = !ShouldSwap;
1698   }
1699
1700   if (ShouldSwap)
1701     for (MachineRegisterInfo::use_instr_iterator
1702          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1703          I != IE; ++I) {
1704       MachineInstr *UseMI = &*I;
1705       if (UseMI->getOpcode() == PPC::BCC) {
1706         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1707         assert((!equalityOnly ||
1708                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1709                "Invalid predicate for equality-only optimization");
1710         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1711                                 PPC::getSwappedPredicate(Pred)));
1712       } else if (UseMI->getOpcode() == PPC::ISEL ||
1713                  UseMI->getOpcode() == PPC::ISEL8) {
1714         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1715         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1716                "Invalid CR bit for equality-only optimization");
1717
1718         if (NewSubReg == PPC::sub_lt)
1719           NewSubReg = PPC::sub_gt;
1720         else if (NewSubReg == PPC::sub_gt)
1721           NewSubReg = PPC::sub_lt;
1722
1723         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1724                                                  NewSubReg));
1725       } else // We need to abort on a user we don't understand.
1726         return false;
1727     }
1728
1729   // Create a new virtual register to hold the value of the CR set by the
1730   // record-form instruction. If the instruction was not previously in
1731   // record form, then set the kill flag on the CR.
1732   CmpInstr->eraseFromParent();
1733
1734   MachineBasicBlock::iterator MII = MI;
1735   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1736           get(TargetOpcode::COPY), CRReg)
1737     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1738
1739   if (MIOpC != NewOpC) {
1740     // We need to be careful here: we're replacing one instruction with
1741     // another, and we need to make sure that we get all of the right
1742     // implicit uses and defs. On the other hand, the caller may be holding
1743     // an iterator to this instruction, and so we can't delete it (this is
1744     // specifically the case if this is the instruction directly after the
1745     // compare).
1746
1747     const MCInstrDesc &NewDesc = get(NewOpC);
1748     MI->setDesc(NewDesc);
1749
1750     if (NewDesc.ImplicitDefs)
1751       for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
1752            *ImpDefs; ++ImpDefs)
1753         if (!MI->definesRegister(*ImpDefs))
1754           MI->addOperand(*MI->getParent()->getParent(),
1755                          MachineOperand::CreateReg(*ImpDefs, true, true));
1756     if (NewDesc.ImplicitUses)
1757       for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
1758            *ImpUses; ++ImpUses)
1759         if (!MI->readsRegister(*ImpUses))
1760           MI->addOperand(*MI->getParent()->getParent(),
1761                          MachineOperand::CreateReg(*ImpUses, false, true));
1762   }
1763
1764   // Modify the condition code of operands in OperandsToUpdate.
1765   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1766   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1767   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1768     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1769
1770   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1771     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1772
1773   return true;
1774 }
1775
1776 /// GetInstSize - Return the number of bytes of code the specified
1777 /// instruction may be.  This returns the maximum number of bytes.
1778 ///
1779 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
1780   unsigned Opcode = MI->getOpcode();
1781
1782   if (Opcode == PPC::INLINEASM) {
1783     const MachineFunction *MF = MI->getParent()->getParent();
1784     const char *AsmStr = MI->getOperand(0).getSymbolName();
1785     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1786   } else if (Opcode == TargetOpcode::STACKMAP) {
1787     return MI->getOperand(1).getImm();
1788   } else if (Opcode == TargetOpcode::PATCHPOINT) {
1789     PatchPointOpers Opers(MI);
1790     return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
1791   } else {
1792     const MCInstrDesc &Desc = get(Opcode);
1793     return Desc.getSize();
1794   }
1795 }
1796
1797 std::pair<unsigned, unsigned>
1798 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
1799   const unsigned Mask = PPCII::MO_ACCESS_MASK;
1800   return std::make_pair(TF & Mask, TF & ~Mask);
1801 }
1802
1803 ArrayRef<std::pair<unsigned, const char *>>
1804 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1805   using namespace PPCII;
1806   static const std::pair<unsigned, const char *> TargetFlags[] = {
1807       {MO_LO, "ppc-lo"},
1808       {MO_HA, "ppc-ha"},
1809       {MO_TPREL_LO, "ppc-tprel-lo"},
1810       {MO_TPREL_HA, "ppc-tprel-ha"},
1811       {MO_DTPREL_LO, "ppc-dtprel-lo"},
1812       {MO_TLSLD_LO, "ppc-tlsld-lo"},
1813       {MO_TOC_LO, "ppc-toc-lo"},
1814       {MO_TLS, "ppc-tls"}};
1815   return makeArrayRef(TargetFlags);
1816 }
1817
1818 ArrayRef<std::pair<unsigned, const char *>>
1819 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1820   using namespace PPCII;
1821   static const std::pair<unsigned, const char *> TargetFlags[] = {
1822       {MO_PLT_OR_STUB, "ppc-plt-or-stub"},
1823       {MO_PIC_FLAG, "ppc-pic"},
1824       {MO_NLP_FLAG, "ppc-nlp"},
1825       {MO_NLP_HIDDEN_FLAG, "ppc-nlp-hidden"}};
1826   return makeArrayRef(TargetFlags);
1827 }
1828