Move the DataLayout to the generic TargetMachine, making it mandatory.
[oota-llvm.git] / lib / Target / NVPTX / NVPTXTargetMachine.cpp
1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Top-level implementation for the NVPTX target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "NVPTXTargetMachine.h"
15 #include "MCTargetDesc/NVPTXMCAsmInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXAllocaHoisting.h"
18 #include "NVPTXLowerAggrCopies.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXTargetTransformInfo.h"
21 #include "llvm/Analysis/Passes.h"
22 #include "llvm/CodeGen/AsmPrinter.h"
23 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/IRPrintingPasses.h"
28 #include "llvm/IR/LegacyPassManager.h"
29 #include "llvm/IR/Verifier.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCInstrInfo.h"
32 #include "llvm/MC/MCStreamer.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/FormattedStream.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetLowering.h"
41 #include "llvm/Target/TargetLoweringObjectFile.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include "llvm/Target/TargetOptions.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetSubtargetInfo.h"
46 #include "llvm/Transforms/Scalar.h"
47
48 using namespace llvm;
49
50 namespace llvm {
51 void initializeNVVMReflectPass(PassRegistry&);
52 void initializeGenericToNVVMPass(PassRegistry&);
53 void initializeNVPTXAllocaHoistingPass(PassRegistry &);
54 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
55 void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
56 void initializeNVPTXLowerStructArgsPass(PassRegistry &);
57 }
58
59 extern "C" void LLVMInitializeNVPTXTarget() {
60   // Register the target.
61   RegisterTargetMachine<NVPTXTargetMachine32> X(TheNVPTXTarget32);
62   RegisterTargetMachine<NVPTXTargetMachine64> Y(TheNVPTXTarget64);
63
64   // FIXME: This pass is really intended to be invoked during IR optimization,
65   // but it's very NVPTX-specific.
66   initializeNVVMReflectPass(*PassRegistry::getPassRegistry());
67   initializeGenericToNVVMPass(*PassRegistry::getPassRegistry());
68   initializeNVPTXAllocaHoistingPass(*PassRegistry::getPassRegistry());
69   initializeNVPTXAssignValidGlobalNamesPass(*PassRegistry::getPassRegistry());
70   initializeNVPTXFavorNonGenericAddrSpacesPass(
71     *PassRegistry::getPassRegistry());
72   initializeNVPTXLowerStructArgsPass(*PassRegistry::getPassRegistry());
73 }
74
75 static std::string computeDataLayout(bool is64Bit) {
76   std::string Ret = "e";
77
78   if (!is64Bit)
79     Ret += "-p:32:32";
80
81   Ret += "-i64:64-v16:16-v32:32-n16:32:64";
82
83   return Ret;
84 }
85
86 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, StringRef TT,
87                                        StringRef CPU, StringRef FS,
88                                        const TargetOptions &Options,
89                                        Reloc::Model RM, CodeModel::Model CM,
90                                        CodeGenOpt::Level OL, bool is64bit)
91     : LLVMTargetMachine(T, computeDataLayout(is64bit), TT, CPU, FS, Options, RM,
92                         CM, OL),
93       is64bit(is64bit), TLOF(make_unique<NVPTXTargetObjectFile>()),
94       Subtarget(TT, CPU, FS, *this) {
95   if (Triple(TT).getOS() == Triple::NVCL)
96     drvInterface = NVPTX::NVCL;
97   else
98     drvInterface = NVPTX::CUDA;
99   initAsmInfo();
100 }
101
102 NVPTXTargetMachine::~NVPTXTargetMachine() {}
103
104 void NVPTXTargetMachine32::anchor() {}
105
106 NVPTXTargetMachine32::NVPTXTargetMachine32(
107     const Target &T, StringRef TT, StringRef CPU, StringRef FS,
108     const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM,
109     CodeGenOpt::Level OL)
110     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
111
112 void NVPTXTargetMachine64::anchor() {}
113
114 NVPTXTargetMachine64::NVPTXTargetMachine64(
115     const Target &T, StringRef TT, StringRef CPU, StringRef FS,
116     const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM,
117     CodeGenOpt::Level OL)
118     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
119
120 namespace {
121 class NVPTXPassConfig : public TargetPassConfig {
122 public:
123   NVPTXPassConfig(NVPTXTargetMachine *TM, PassManagerBase &PM)
124       : TargetPassConfig(TM, PM) {}
125
126   NVPTXTargetMachine &getNVPTXTargetMachine() const {
127     return getTM<NVPTXTargetMachine>();
128   }
129
130   void addIRPasses() override;
131   bool addInstSelector() override;
132   void addPostRegAlloc() override;
133   void addMachineSSAOptimization() override;
134
135   FunctionPass *createTargetRegisterAllocator(bool) override;
136   void addFastRegAlloc(FunctionPass *RegAllocPass) override;
137   void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
138 };
139 } // end anonymous namespace
140
141 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
142   NVPTXPassConfig *PassConfig = new NVPTXPassConfig(this, PM);
143   return PassConfig;
144 }
145
146 TargetIRAnalysis NVPTXTargetMachine::getTargetIRAnalysis() {
147   return TargetIRAnalysis(
148       [this](Function &) { return TargetTransformInfo(NVPTXTTIImpl(this)); });
149 }
150
151 void NVPTXPassConfig::addIRPasses() {
152   // The following passes are known to not play well with virtual regs hanging
153   // around after register allocation (which in our case, is *all* registers).
154   // We explicitly disable them here.  We do, however, need some functionality
155   // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
156   // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
157   disablePass(&PrologEpilogCodeInserterID);
158   disablePass(&MachineCopyPropagationID);
159   disablePass(&BranchFolderPassID);
160   disablePass(&TailDuplicateID);
161
162   addPass(createNVPTXImageOptimizerPass());
163   TargetPassConfig::addIRPasses();
164   addPass(createNVPTXAssignValidGlobalNamesPass());
165   addPass(createGenericToNVVMPass());
166   addPass(createNVPTXFavorNonGenericAddrSpacesPass());
167   addPass(createStraightLineStrengthReducePass());
168   addPass(createSeparateConstOffsetFromGEPPass());
169   // The SeparateConstOffsetFromGEP pass creates variadic bases that can be used
170   // by multiple GEPs. Run GVN or EarlyCSE to really reuse them. GVN generates
171   // significantly better code than EarlyCSE for some of our benchmarks.
172   if (getOptLevel() == CodeGenOpt::Aggressive)
173     addPass(createGVNPass());
174   else
175     addPass(createEarlyCSEPass());
176   // Both FavorNonGenericAddrSpaces and SeparateConstOffsetFromGEP may leave
177   // some dead code.  We could remove dead code in an ad-hoc manner, but that
178   // requires manual work and might be error-prone.
179   //
180   // The FavorNonGenericAddrSpaces pass shortcuts unnecessary addrspacecasts,
181   // and leave them unused.
182   //
183   // SeparateConstOffsetFromGEP rebuilds a new index from the old index, and the
184   // old index and some of its intermediate results may become unused.
185   addPass(createDeadCodeEliminationPass());
186 }
187
188 bool NVPTXPassConfig::addInstSelector() {
189   const NVPTXSubtarget &ST =
190     getTM<NVPTXTargetMachine>().getSubtarget<NVPTXSubtarget>();
191
192   addPass(createLowerAggrCopies());
193   addPass(createAllocaHoisting());
194   addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
195
196   if (!ST.hasImageHandles())
197     addPass(createNVPTXReplaceImageHandlesPass());
198
199   return false;
200 }
201
202 void NVPTXPassConfig::addPostRegAlloc() {
203   addPass(createNVPTXPrologEpilogPass(), false);
204 }
205
206 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
207   return nullptr; // No reg alloc
208 }
209
210 void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
211   assert(!RegAllocPass && "NVPTX uses no regalloc!");
212   addPass(&PHIEliminationID);
213   addPass(&TwoAddressInstructionPassID);
214 }
215
216 void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
217   assert(!RegAllocPass && "NVPTX uses no regalloc!");
218
219   addPass(&ProcessImplicitDefsID);
220   addPass(&LiveVariablesID);
221   addPass(&MachineLoopInfoID);
222   addPass(&PHIEliminationID);
223
224   addPass(&TwoAddressInstructionPassID);
225   addPass(&RegisterCoalescerID);
226
227   // PreRA instruction scheduling.
228   if (addPass(&MachineSchedulerID))
229     printAndVerify("After Machine Scheduling");
230
231
232   addPass(&StackSlotColoringID);
233
234   // FIXME: Needs physical registers
235   //addPass(&PostRAMachineLICMID);
236
237   printAndVerify("After StackSlotColoring");
238 }
239
240 void NVPTXPassConfig::addMachineSSAOptimization() {
241   // Pre-ra tail duplication.
242   if (addPass(&EarlyTailDuplicateID))
243     printAndVerify("After Pre-RegAlloc TailDuplicate");
244
245   // Optimize PHIs before DCE: removing dead PHI cycles may make more
246   // instructions dead.
247   addPass(&OptimizePHIsID);
248
249   // This pass merges large allocas. StackSlotColoring is a different pass
250   // which merges spill slots.
251   addPass(&StackColoringID);
252
253   // If the target requests it, assign local variables to stack slots relative
254   // to one another and simplify frame index references where possible.
255   addPass(&LocalStackSlotAllocationID);
256
257   // With optimization, dead code should already be eliminated. However
258   // there is one known exception: lowered code for arguments that are only
259   // used by tail calls, where the tail calls reuse the incoming stack
260   // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
261   addPass(&DeadMachineInstructionElimID);
262   printAndVerify("After codegen DCE pass");
263
264   // Allow targets to insert passes that improve instruction level parallelism,
265   // like if-conversion. Such passes will typically need dominator trees and
266   // loop info, just like LICM and CSE below.
267   if (addILPOpts())
268     printAndVerify("After ILP optimizations");
269
270   addPass(&MachineLICMID);
271   addPass(&MachineCSEID);
272
273   addPass(&MachineSinkingID);
274   printAndVerify("After Machine LICM, CSE and Sinking passes");
275
276   addPass(&PeepholeOptimizerID);
277   printAndVerify("After codegen peephole optimization pass");
278 }